
Page 1

1CS 640: Introduction to Computer NetworksAditya AkellaLecture 2Layering, Protocol Stacks,and Standards
2

Today’s Lecture• Layers and Protocols• Standards and standardization process• Applications
3

Network Communication:Lots of Functions Needed• Links• Multiplexing • Routing• Addressing/naming (locating peers)• Reliability• Flow control• FragmentationHow do you implement these functions?Key: Layering and protocols

Page 2

4
What is Layering?• A way to deal with complexity– Add multiple levels of abstraction– Each level encapsulates some key functionality– And exports an interface to other components– Example?• Layering: Modular approach to implementing network functionality by introducing abstractions• Challenge: how to come up with the “right”abstractions?

5
Example of Layering• Software and hardware for communication between two hosts• Advantages:– Simplifies design and implementation– Easy to modify/evolveLink hardwareHost-to-host connectivityApplication-to-application channelsApplication semantics

6
What is a Protocol?• Could be multiple abstractions at a given level – Build on the same lower level– But provide diferent service to higher layers• Protocol: Abstract object or module in layered structure Link hardwareHost-to-host connectivityRequest-ReplyApplicationMessage stream

Page 3

7
ProtocolFriendly greetingMuttered replyDestination?MadisonThank you• Implements an agreement between parties on how communication should take place

8
1. Protocols Offer Interfaces• Each protocol offers interfaces – One to higher-level protocols on the same end hosts• Expects one from the layers on which it builds• Interface characteristics, e.g. IP service model– A “peer interface” to a counterpart on destinations• Syntax and semantics of communications• (Assumptions about) data formats• Protocols build upon each other– Adds value, improves functionality overall• E.g., a reliable protocol running on top of IP– Reuse, avoid re-writing• E.g., OS provides TCP, so apps don’t have to rewrite

9
2. Protocols Necessary for Interoperability• Protocols are the key to interoperability.– Networks are very heterogenous:– The hardware/software of communicating parties are often not built by the same vendor– Yet they can communicate because they use the same protocol• Actually implementations could be different • But must adhere to same specification• Protocols exist at many levels.– Application level protocols– Protocols at the hardware levelHardware/linkNetworkApplicationEthernet: 3com, etc.Routers: cisco, juniper etc.App: Email, AIM, IE etc.

Page 4

10
How do protocols/layers work?• One or more protocols implement the functionality in a layer– Only horizontal (among peers) and vertical (in a host) communication• Protocols/layers can be implemented and modified in isolation• Each layer offers a service to the higher layer, using the services of the lower layer.• “Peer” layers on different systems communicate via a protocol.– higher level protocols (e.g. TCP/IP, Appletalk) can run on multiple lower layers– multiple higher level protocols can share a single physical network

11
OSI Model• One of the first standards for layering: OSI• Breaks up network functionality into seven layers• This is a “reference model”– For ease of thinking and implementation• A different model, TCP/IP, used in practice

12
The OSI Standard: 7 Layers1. Physical: transmit bits (link)2. Data link: collect bits into frames and transmit frames (adaptor/device driver)3. Network: route packets in a packet switched network4. Transport: send messages across processes end2end5. Session: tie related flows together6. Presentation: format of app data (byte ordering, video format)7. Application: application protocols (e.g. FTP)• OSI very successful at shaping thought• TCP/IP standard has been amazingly successful, and it’s not based on a rigid OSI model

Page 5

13
OSI Layers and LocationsBridge/SwitchFull fledgedpacket switch:use dst addrto route Router/GatewayForward usingnetwork layeraddressesHost HostApplicationTransportNetworkData LinkPresentationSessionPhysical Repeater/HubSimply copypackets out

143 3 765765765765 765765765765Internetworking Options4321 43211 4321 432121 14321 43213Repeateror Hub bridge(e.g. 802 MAC)routerphysical data linknetwork 4321 43212 2gateway. . .2 21 1 1 1
15

The Reality: TCP/IP ModelFTP HTTP TFTPNVTCP UDPIPNET1 NET2 NETn… Network protocols implemented by a comb of hw and sw.Interconnection of n/w technologies into a single logical n/wTwo transport protocols: provide logical channels to appsApp protocolsNote: No strict layering.App writers can define apps that run on any lower level protocols.

Page 6

16
The Thin WaistUDP TCPData LinkPhysicalApplicationsThe Hourglass ModelWaistThe waist: minimal, carefully chosen functions. Facilitates interoperability and rapid evolutionFTP HTTP TFTPNVTCP UDPIPNET1 NET2 NETn…

17
TCP/IP vs OSIApplication(pluslibraries)TCP/UDPIPData linkPhysicalApplicationPresentationSessionTransportNetworkData linkPhysical

18
TCP/IP LayeringBridge/Switch Router/GatewayHost HostApplicationTransportNetworkLinkPhysical

Page 7

19
Layers & EncapsulationGet index.htmlConnection IDSource/DestinationLink AddressUser A User BHeader

20
Protocol Demultiplexing• Multiple choices at each layer• How to know which one to pick?FTP HTTP TFTPNVTCP UDPIPNET1 NET2 NETn… TCP/UDPIPManyNetworks

21
Multiplexing & Demultiplexing• Multiple implementations of each layer– How does the receiver know what version/module of a layer to use?• Packet header includes a demultiplexing field– Used to identify the right module for next layer– Filled in by the sender– Used by the receiver• Multiplexing occurs at multiple layers. E.g., IP, TCP, … IPTCPIPTCPV/HL TOS LengthID Flags/OffsetTTL Prot. H. ChecksumSource IP addressDestination IP addressOptions..

Page 8

22
Layering vs Not• Layer N may duplicate layer N-1 functionality – E.g., error recovery• Layers may need same info (timestamp, MTU)• Strict adherence to layering may hurt performance• Some layers are not always cleanly separated– Inter-layer dependencies in implementations for performance reasons– Many cross-layer assumptions, e.g. buffer management• Layer interfaces are not really standardized.– It would be hard to mix and match layers from independent implementations, e.g., windows network apps on unix (w/o compatibility library)

23
History of IP: The Early Days• Early packet switching networks (61-72)– Definition of packet switching– Early ARPA net: up to tens of nodes (4 at the end of 1969; 15 at the end of 1972)• single network• Simple applications (first email program: 1972)• Internetworking (72-80)– Several independent network implementations– Multiple networks with inter-networking: networks are independent, but need some rules for interoperability– Key concepts: best effort service, “stateless” routers, decentralized control (very different from telephones!)– Basis for Internet: TCP, IP, congestion control, DNS, …– Rapid growth: 10 to 100000 hosts in 10 years• NSFnet built a “backbone” to connect networks

24
Modern Times: Commercialization• Industry interest in networking encourages first commercial network deployment.– In part also encouraged by NSFNET policies/backbone• Introduction of the “Web” makes networks more accessible– Killer application– Good user interface that is accessible to anybody– Network access on every desktop and in every home– Shockingly recent - 1989, caught on in ‘92 or so– Spurred a lot of application• Commercial success � multiple vendors– How to ensure inter-operability?

Page 9

25
Standardization• Crucial to network interoperability– An example we saw earlier: OSI model• De facto standards– Standards are based on an existing system– Gives the company that developed the base system a big advantage– Often results in competing “standards” before the official standard is established– Popular in the early days• A priori standards– Standards are defined first by a standards committee– Risk of defining standards that are untested or unnecessary– Standard may be available before there is serious use of the technology– There could still be competing standards– Most current standards

26
The Internet Engineering Task Force• Internet Engineering Task Force.– decides what technology will be used in the Internet– based on working groups that focus on specific issues– encourages wide participation• Request for Comments.– document that provides information or outlines standard– requests feedback from the community– can be “promoted” to standard under certain conditions• consensus in the committee• interoperating implementations• “Rough consensus and working code”

27
Higher Level Standards• Many session/application level operations are relevant to networks– encoding: MPEG, encryption, ...– services: electronic mail, newsgroups, HTTP, ...– electronic commerce,• Standards are as important as for “lower-level” networks: interoperability.– defined by some of the same bodies as the low-level standards, e.g. IETF

Page 10

28
Applications and Application-Layer Protocols• Application: communicating, distributed processes– Running in network hosts in “user space”– N/w functionality in kernel space– Exchange messages to implement app– e.g., email, file transfer, the Web• Application-layer protocols– One “piece” of an app– Define messages exchanged by apps and actions taken– Use services provided by lower layer protocols applicationtransportnetworkdata linkphysical applicationtransportnetworkdata linkphysicalapplicationtransportnetworkdata linkphysical

29
Client-Server Paradigm vs. P2PTypical network app has two pieces: client and serverapplicationtransportnetworkdata linkphysical applicationtransportnetworkdata linkphysicalClient:• Initiates contact with server (“speaks first”)• Typically requests service from server, • For Web, client is implemented in browser; for e-mail, in mail readerServer:• Provides requested service to client• e.g., Web server sends requested Web page, mail server delivers e-mail• P2P is a very different model– No notion of client or server request reply

30
Choosing the Transport ServiceData loss• Some applications (e.g., audio) can tolerate some loss• Other applications (e.g., file transfer, telnet) require 100% reliable data transfer Timing• Some applications (e.g., Internet telephony, interactive games) require low delay to be “effective”Bandwidth• Some applications (e.g., multimedia) require a minimum amount of bandwidth to be “effective”• Other applications (“elastic apps”) will make use of whatever bandwidth they get

Page 11

31
Transmission Control Protocol (TCP)TCP• Reliable – guarantee delivery• Byte stream – in-order delivery• Checksum for validity• Setup connection followed by data transfer Telephone Call• Guaranteed delivery• In-order delivery• Setup connection followed by conversationExample TCP applicationsWeb, Email, Telnet

32
User Datagram Protocol (UDP)Example UDP applicationsMultimedia, voice over IPUDP• No guarantee of delivery• Not necessarily in-order delivery• No validity guaranteed• Must address each independent packet Postal Mail• Unreliable• Not necessarily in-order delivery• Must address each reply

33
Transport Service Requirements of Common Applicationsno lossno lossno lossloss-tolerantloss-tolerantloss-tolerantno loss elasticelasticelasticaudio: 5Kb-1Mbvideo:10Kb-5Mbsame as above few Kbpselastic nononoyes, 100’s msecyes, few secsyes, 100’s msecyes and nofile transfere-mailweb documentsreal-time audio/videostored audio/videointeractive gamesfinancial appsApplication Data loss Bandwidth Time Sensitive

Page 12

34
Server and ClientTCP/UDPIPEthernet AdapterServer TCP/UDPIPEthernet AdapterClientsServer and Client exchange messages over the network through a common Socket APISocket API hardwarekernel spaceuser spacesocket

35
Next Two Lectures• Socket programming API (Ashutosh)• Internet’s design philosophy, more on applications and application performance

