CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 7 - IP: Addressing and Forwarding

What is an Internetwork?

- Multiple incompatible LANs can be physically connected by specialized computers called routers
- · The connected networks are called an internetworks
 - The *Internet* can be viewed as an internetwork of internetworks

LAN 1 and LAN 2 might be completely different, totally incompatible LANs (e.g., Ethernet and ATM)

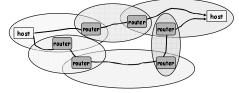
2

Internet Protocol (IP)

- · Hour Glass Model
 - Create abstraction layer that hides underlying technology from network application software
 - Make as minimal as possible
 - Allows range of current & future technologies
 - Can support many different types of applications

Network applications

Network technology


Designing an Internetwork

- · How do I designate a distant host?
 - Addressing
- · How do I send information to a distant host?
 - Underlying service model
 - What gets sent?
 - How fast will it go?
 - · What happens if it doesn't get there?
 - Routing/Forwarding: What path is it sent on?
- Challenges
 - Heterogeneity
 - · Assembly from variety of different networks
 - Scalability
 - · Ensure ability to grow to worldwide scale

The Road Ahead

- · Methods for packet forwarding
- Traditional IP addressing
- · CIDR IP addressing
- Forwarding examples

Logical Structure of Internet

- Ad hoc interconnection of internetworks, owned by different organizations called ISPs.

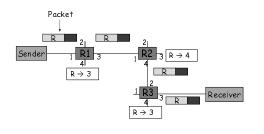
 - No particular topology
 Vastly different router & link capacities
- Send packets from source to destination by hopping through networks

 Router forms bridge from one network to another

 - · Different packets may take different routes

Approaches to Forwarding Packets

Forwarding: which path to send a packet on? Choices arise both at Layer 2 and Layer 3, but we will discuss in the context of Layer 3.

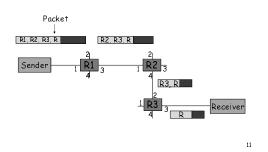

- Table of global addresses "packet switching"
 Routers keep next hop for destination
 Packets carry destination address

 - Very common
- 2. Source routing
 - Packet carries path
- 3. Table of virtual circuits "virtual circuit switching"
 - Connection routed through network to setup state Packets forwarded using connection state

Global Addresses

- · Each packet has destination address
- · Each router has forwarding table of $(destination \rightarrow next hop)$
 - Routing table is static does not change with flows (cf. VCs)
- Distributed routing algorithm for calculating forwarding tables
 - Next class

Global Address Example



Source Routing

- · List entire path in packet
- · Router processing
 - Strip first step from packet
 - Examine next step in directions
 - Forward to next step

10

Source Routing Example

Simplified Virtual Circuits

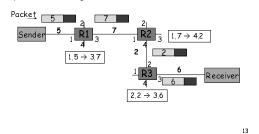
- Connection-oriented packet-switching
 Telephone: connection-oriented circuit-switching
- Connection setup phase

 - connection setup phase

 Use other means to route setup request

 Each router allocates flow ID on local link

 Local significance


 Currently unused on link

 Set up connection state

- Each packet carries connection ID Sent from source with 1st hop connection ID
- Router processing
 Lookup flow ID simple table lookup
 Replace flow ID with outgoing flow ID
 Forward to output port

Virtual Circuits Example

- Network picks a path
 Assigns VC numbers for flow on each link
 Populates forwarding table

Source Routing

- Advantages
 - Switches can be very simple and fast
- Disadvantages
 - Variable (unbounded) header size
 - Sources must know or discover topology
 - Must also deal with failures
- Typical uses
 - Ad-hoc wireless networks
 - Loose source routing in overlays

14

Virtual Circuits

- Advantages
 - Source knows route exists and receiver willing to receive
 - Efficient lookup (simple table lookup)
 - More flexible (different path for each flow)
 - ${\it C}$ an reserve bandwidth at connection setup
 - Easier for hardware implementations
- Disadvantages
 - Still need to route connection setup request
 - More complex failure recovery must recreate connection state
- · Typical use \Rightarrow fast router/switch implementations

 - ATM combined with fix sized cells
 MPLS tag switching for IP networks

Global Addresses

- Advantages
 - No per connection state (per source/flow)
 Aggregation → also helps
 Scalability
- Disadvantages
 - Routers must know routes even for inactive destinations
 Potentially large tables

 All packets to destination take same route
 Little flexibility

 - Need routing protocol to fill table
 Complex distributed process

16

Comparison

	Source Routing	Giobal Addresses	Virtual Circuits
Header Size	Worst	OK - Large address	Best
Router Table Size	None	Number of hosts (prefixes)	Number of circuits
Forward Overhead	Best	Prefix matching	Pretty Good
Setup Overhead	None	None	Connection Setup
Error Recovery	Tell all hosts	Tell allrouters	Tell all routers and Tear down circuits and re-route

17

Router Table Size

- · One entry for every host on the Internet?
 - 300M entries, doubling every 18 months
- · One entry for every LAN?
 - Every host on LAN shares prefix
 - Still too many and growing quickly
- · One entry for every organization? Better...
 - Every host in organization shares prefix
 - Requires careful address allocation

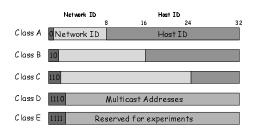
Addressing in IP: Considerations

- Hierarchical vs. flat
 Wisconsin / Madison / UW-Campus / Aditya

 - vs. Aditya:123-45-6789 Ethernet addresses are flat
- · What information would routers need to route to Ethernet addresses?
 - Hierarchical structure crucial for designing scalable binding from interface name to route
 Route to a general area, then to a specific location
- What type of Hierarchy?

 - How many levels?
 Same hierarchy depth for everyone?

- Address broken in segments of increasing specificity
 Uniform for everybody: needs centralized management
 Non-uniform: more flexible, needs careful decentralized management


IP Addresses

- Fixed length: 32 bits
- · Total IP address size: 4 billion
- Initial class-ful structure (1981)
 - Class A: 128 networks, 16M hosts

 - Class B: 16 K networks, 64 K hosts Class C: 2M networks, 256 hosts

20

IP Address Classes (Some are Obsolete)

Original IP Route Lookup

- · Address would specify prefix for forwarding table
 - Simple lookup
- · www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table
 - Prefix part of address that really matters for routing
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - 2 Million class C networks

22

Subnet Addressing: RFC917 (1984)

- Original goal: network part would uniquely identify a single physical network
- · Inefficient address space usage

 - INETTICIENT Address space usage

 Class A & B networks too big

 Also, very few LANs have close to 64K hosts

 Easy for networks to (claim to) outgrow class-C

 Each physical network must have one network number
- · Routing table size is too high
- Need simple way to reduce the number of network numbers assigned
 Subnetting: Split up single network address ranges
 Fizes routing table size problem, partially

23

Subnetting

- · Add another "floating" layer to hierarchy
- · Variable length subnet masks
 - Could subnet a class B into several chunks

Network	Н	os†	
Network	Subnet	Host	
1111111111111111111	. 1 1 1 1 1	00000000	Subnet Mask

Subnetting Example

- Assume an organization was assigned address 150.100 (class B)
- Assume < 100 hosts per subnet (department)
- · How many host bits do we need? - Seven
- What is the network mask?
 11111111 11111111 11111111 10000000

 - 255.255.255.128

Forwarding Example

- · Host configured with IP adress and subnet mask
- · Subnet number = IP (AND) Mask
- · (Subnet number, subnet mask) → Outgoing I/F

D = destination IP address For each forwarding table entry (SN, SM ightarrow OI) D1 = SM & D if (D1 == SN) Deliver on Ol

Forward to default router

26

Inefficient Address Usage

- · Address space depletion
 - In danger of running out of classes A and B
 - - · Class C too small for most domains
 - · Very few class A very careful about giving them out
 - · Class B poses greatest problem
 - Class B sparsely populated
 - · But people refuse to give it back

u	Y			
	ч			

Classless Inter-Domain Routing (CIDR) - RFC1338

- Allows arbitrary split between network & host part of address
 - Do not use classes to determine network ID
 - Use common part of address as network number
 - Allows handing out arbitrary sized chunks of address space
 - E.g., addresses 192.4.16 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number \rightarrow 192.4.16/20
- Enables more efficient usage of address space (and router tables)
 - Use single entry for range in forwarding tables
 - Combine forwarding entries when possible

28

CIDR Example

- Network is allocated 8 contiguous chunks of 256-host addresses 200,10,0,0 to 200,10,7,255
 - Allocation uses 3 bits of class C space
 - Remaining 20 bits are network number, written as 201.10.0.0/21
- Replaces 8 class C routing entries with 1 combined entry
 - Routing protocols carry prefix with destination network address

29

IP Addresses: How to Get One?

Network (network portion):

• Get allocated portion of ISP's address space:

 ISP's block
 11001000
 00010111
 00010000
 00000000
 20023.16.0/20

 Organization 0
 11001000
 00010111
 00010000
 00000000
 200.23.16.0/23

 Organization 1
 11001000
 00010111
 00010100
 00000000
 200.23.18.0/23

 Organization 2
 11001000
 00010111
 00010100
 00000000
 200.23.20.0/23

 Organization 7
 11001000
 00010111
 00011110
 00000000
 200.23.30.0/23

IP Addresses: How to Get One?

- · How does an ISP get block of addresses?
 - From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- · How about a single host?
 - Hard-coded by system admin in a file
 - DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play" Host broadcasts "DHCP discover" msg

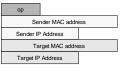
 - DHCP server responds with "DHCP offer" msg
 - · Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

31

Back to CIDR Provider is given 201.10.0.0/21 201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 CIDR implications: Longest prefix match 32 Route aggregation

Finding a Local Machine 128.2.198.222 host host host Destination = 128.2.198.222 · Routing Gets Packet to Correct Local Network - Based on IP address - Router sees that destination address is of local machine Still Need to Get Packet to Host - Using link-layer protocol - Need to know hardware address Same Issue for Any Local Communication - Find local machine, given its IP address 33

Address Resolution Protocol (ARP)



- op: Operation - 1: request
- 2: reply
- Sender - Host sending ARP message
- Target
- Intended receiver of message
- Diagrammed for Ethernet (6-byte MAC addresses)
- Low-Level Protocol
 - Operates only within local network
 - Determines mapping from IP address to hardware (MAC) address

 - Mapping determined dynamically
 No need to statically configure tables
 Only requirement is that each host know its own IP address

 34

ARP Request

- op: Operation
- 1: request Sender
- Host that wants to determine MAC address of another machine
- Target
- Other machine

- Fills in own IP and MAC address as "sender"
 Why include its MAC address?

- Mapping
 Fills desired host IP address in target IP address
- Sending
 Send to MAC address ff:ff:ff:ff:ff
 - Ethernet broadcast

35

ARP Reply

- op: Operation
 - 2: reply
- Sender - Host with desired IP
 - address
- Target
- Óriginal requestor

· Responder becomes "sender"

- Fill in own IP and MAC address
- Set requestor as target
- Send to requestor's MAC address

1	\mathbf{a}
1	

Host Routing Table Example

Destination 128 2 209 100	Gateway 0.0.0.0	Genmask 255 255 255 255	Iface eth0
128.2.0.0	0.0.0.0	255.255.0.0	eth0
127.0.0.0	0.0.0.0	255.0.0.0	lo
0.0.0.0	128.2.254.36	0.0.0.0	eth0

- Host 128.2.209.100 when plugged into \mathcal{CS} ethernet
- Dest 128.2.209.100 \rightarrow routing to same machine
- Dest 128.2.0.0 \rightarrow other hosts on same ethernet
- Dest 127.0.0.0 → special loopback address
- Dest 0.0.0.0 → default route to rest of Internet
 Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

37

The Next Lecture

- IP packet structure
 - Fragmentaiton
- · Routers and route lookup