CS 640: Introduction to **Computer Networks**

Aditya Akella

Lecture 9 -IP: Packets and Routers

The Road Ahead

• Last lecture

- How does choice of address impact network architecture and scalability?
- What do IP addresses look like?
- How to get an IP address?

This lecture

- What do IP packets look like?
- How to handle differences between LANs?

2

- How do routers work?

IP Packets

 Low-level communication model provided by Internet - Unit: "Datagram"

Datagram

- Each packet self-contained All information needed to get to destination
 Analogous to letter or telegram

IP Delivery Model

Best effort service

.

- Network will do its best to get packet to destination
- Does NOT guarantee:
 - Any maximum latency or even ultimate success
 - Sender will be informed if packet doesn't make it - Packets will arrive in same order sent
 - Just one copy of packet will arrive

Implications

- Scales very well → simple, dumb network; "plug-n-play" Higher level protocols must make up for shortcomings
- Reliably delivering ordered sequence of bytes ightarrow TCP
- Some services not feasible
- Latency or bandwidth guarantees
 Need special support

- IP Solution
 - When hit network with small MTU, fragment packets • Might get further fragmentation as proceed farther

Reassembly

- Where to do reassembly? - End nodes or at routers?
- End nodes -- better
 - Avoids unnecessary work where large packets are fragmented multiple times
 - If any fragment missing, delete entire packet
- Intermediate nodes -- Dangerous
 - How much buffer space required at routers?
 - What if routes in network change?

 - Multiple paths through network
 All fragments only required to go through destination

9

7

- Router solicitation / advertisement
- Helps newly connected host discover local router
 Redirect
 - Suggest alternate routing path for future messages

Network Processor

- Runs routing protocol and downloads forwarding table to forwarding engines
- Performs "slow" path processing
 - ICMP error messages
 - IP option processing
 - Fragmentation
 - Packets destined to router

28

A Note on Buffering

- 3 types of switch buffering

 Input buffering
 Fabric slower than input ports combined → queuing may occur at

 - Can avoid any input queuing by making switch speed = N × link speed
 - Output buffering • Buffering when arrival rate via switch exceeds output line speed - Internal buffering
 - Can have buffering inside switch fabric to deal with limitations of fabric

 - What happens when these buffers fill up?
 Packets are THROWN AWAY!! This is where (most) packet loss comes from

Speeding up Prefix Match -Some Alternatives

- Route caches
 - Packet trains \rightarrow group of packets belonging to same flow
 - Temporal locality
 - Many packets to same destination
 - Size of the cache is an issue
- Other algorithms
 - Routing with a Clue [Bremler-Barr Sigcomm 99]
 Clue = prefix length matched at previous hop
 Why is this useful?

Next Lecture

- How do forwarding tables get built?
- Routing protocols - Distance vector routing
 - Link state routing