
CS 640 Introduction to Computer Networks Fall 2007

http://www.cs.wisc.edu/~akella/CS640/F07

Programming Assignment 1: Mock Name Server (MNS)

Assigned: September 11, 2006 Due: September 27, 2007, 11:59pm

1 Introduction

The Internet’s name service is used to resolve the mapping between a hostname and an IP

address. There are two sets of entities that comprise the name service system – name

servers and resolvers (clients). You will implement a simplified version of both these

types of entities.

In your implementation, the server will run on a machine at a defined port number.

The clients, called resolvers, will contact the server with queries about hostnames and IP

addresses. On receiving a name service query, the server will lookup the query in its local

database and respond with an appropriate answer. If the server does not know the answer,

but knows of another server that may have the answer, it will send a redirect response to

the resolver with the IP address and port number of that server. The resolver then queries

the new server, and this continues until there is an answer or there are no further redirects.

The server and the client (resolver) will use UDP – the User Datagram Protocol – to

communicate with each other.

2 Protocol Specification

The protocol works as follows. The client will construct queries of different types and

send them to the server. The server will query its internal database for each client query

and send back a response. Depending upon the response, the client either outputs the

response and terminates or queries another server. If a client does not get a response back

from the server within a given timeout period, it assumes that the server is unreachable,

outputs an appropriate error message, and terminates.

Packet Structure

Both the query and the response packets have the same header structure as shown below.

• Protocol Identifier: (2 bytes) Set to the integer value 640.

• Query Sequence/Ack Number: (2 bytes) The value of this sequence number is

assigned by the client and is passed as an argument to the client program. On its

response, the server increments it by one.

• Type: (3 bits) This indicates the type of the message.

000 indicates IP address to hostname resolution request (sent by the client).

001 indicates hostname to IP address resolution request (sent by the client).

010 indicates IP address to hostname resolution response (sent by the server).

011 indicates hostname to IP address resolution response (sent by the server).

100 indicates that the server could not handle this request (sent by the server).

101 indicates a ”redirect” response from the server (sent by the server).

110 indicates that the server should terminate. Note that unless the server receives this

message, the server should not terminate. (sent by the client to the server). Note

that it is only in this assignment that the clients can terminate the server. In the

real Internet’s name service the clients do not have this privilege.

• R: (1 bit) This is reserved for future use and can be either 0 or 1 in the messages. It is

ignored by both the client and the server.

• Unused: (12 bits) These bits are ignored by the client and the server.

• Length: (2 bytes) The length of the packet (in bytes) including the header sent by the

client and the server.

• Data: (Variable length) Depending upon the packet type, this field can have an IP

address (000, 011), hostname (001, 010) or IP address and port number (101). For an IP

address to hostname resolution request, this field contains the IP address; for a IP

address to hostname resolution response, this field contains a hostname; for a redirect

response it contains the IP address and port number of the server that should be

contacted next by the resolver. The IP address is stored in the network format as a 32-

bit integer (see inet ntoa() and inet aton()). The port is stored in the network format as a

16-bit integer (see htons() and ntohs()). No padding is needed in this case. A hostname

is stored using a NULL terminated text string, padded to a 32-bit word boundary.

• Note: the numbers such as protocol, sequence number, length, and port in the packet

data must be network order. It means that you must use htons() function to do the

transformation before you pack the number into the packet.

3 Server/Client Details

The server will receive packets on a pre-defined port number. Both the server and the

client will silently discard any packet which does not meet the specifications defined

above. In particular, if the client receives a malformed packet it will discard this packet

and continue to wait for a correctly formatted packet from the server, or until the timeout

period is reached. The database for each server will comprise of 2 ASCII files

• Mapping file: It will contain the IP address to hostname mapping in the format

shown below. The first line will contain the total number of entries in the file.

Each subsequent line of this file will contain a hostname and corresponding IP

address separated by white space. For example,

2
machine1.cs.wisc.edu 128.45.6.3
machine2.yahoo.com 12.4.3.7

(You can assume that there will be no errors in the data format for this file.)

• Redirect file: It will contain the list of hostnames and IP addresses for with the

current server does not know the answer but knows of another server which can

possibly have an answer. The first line will contain the total number of entries in

the file. Each subsequent line of this file will contain a hostname/IP address and

the corresponding IP address and port pair at which a server should be queried

next. The format of the file is shown below.

4
machine3.cs.wisc.edu 128.45.6.10 2345
128.45.6.4 128.45.6.11 2346
machine4.cs.wisc.edu 128.45.6.10 2348
128.45.6.5 128.45.6.10 2346

(You can assume that there will be no errors in the data format for this file.)

Upon receiving a valid query packet, the server will first query its Mapping file for

the information requested. If it fails to find the information there, it will next query its

Redirect file to find the server that might have the requested information. If it finds an

appropriate server, it will respond to the client with a redirect message. Note that the

server will construct an appropriate response packet with its answer. For queries that

cannot be answered either with a resolution response or with a redirection message, the

data part will be zero bytes and the packet type will be set to 100 (binary) as described

above. For each query, the client uses a sequence number value which is passed to it as

an argument. For a query with sequence number x, the server will send its response with

an acknowledgment number value set to x+1. The client should verify that this is true in

the response message that it receives. If the server does not respond within some time

period (specified by a timeout argument) the client will output an appropriate error

message and terminate. The server terminates on receiving a client request with the type

field set to 110. The server does not send a response to the client in this case. The client

that sends this request should also terminate immediately after sending this message.

4 Executables

The following is the expected executable format for the resolver and server (along with

the necessary arguments):

• Resolver

client [-s<server-ip>] -p <port> -r <req-type> -d <data> [-t <timeout>] [-n <seq-no>]

server-ip: IP address where the server is running. Default is localhost.

port: Port number at which the server is running.

req-type: Is 0, 1, or 6. 0 is IP address to hostname resolution request. 1 is hostname to IP address

resolution request. 6 is server termination request.

data: Is the text argument associated with the request. For request type 6 (termination request), this

field should be ignored.

timeout: The time in seconds a client should wait before terminating after sending its request to the

server. This field is ignored in request-type 6, since the client terminates immediately.

seq-no: The sequence number to be used for the request.

• Server

server -p <port> -f <mapping-file-name> -r <redirect-file-name>

port: Port number of the host at which the server will run.

mapping-file-name: Name of the Mapping file to use as described above.

redirect-file-name: Name of the Redirect file to be used as described above.

For this assignment, you should run at least 3 servers on the same machine. Since all the

servers are running on the same machine make sure that they have different port numbers.

Each of these servers will have its own set of mapping and redirect files. The server is not

required to output any text to screen in this programming assignment. You should take

care that your code is robust and handles possible erroneous messages from the client.

5 Output

On termination, the client should output the following:

• For IP address to hostname resolution request (req-type 0) output the hostname in a

single line. For example:

machine.cs.wisc.edu

• For hostname to IP address resolution request (req-type 1) output the IP address in a

single line. For example:

128.56.49.12

• In case the server does not provide any valid/correct response to the client prior to the

timeout (note that all malformed responses are silently discarded), the following text in

a single line:

timeout

• In case the server responds to the query with the type field set to 100 (binary), i.e. the

server could not resolve the request, the following text in a single line:

unresolved

• For request type 6 (termination request), no output should be provided.

Please adhere exactly to this output format. For debugging purposes you may want to

output other text messages. However, make sure you embed such messages with a

DEBUG option and turn such output off in your final submission. You should take care

that your code is robust and handles possible erroneous messages from the server.

