
1

CS 640: Introduction to
Computer Networks

Aditya Akella

Lecture 10 -

Intra-Domain Routing

2

From previous lecture….
Three Types of Switching Fabrics

3

Switching Via a Memory
First generation routers � looked like PCs
• Packet copied by system’s (single) CPU
• Speed limited by memory bandwidth (2 bus crossings
per datagram)

Input
Port

Output
Port

Memory

System Bus

Most modern routers switch via memory, but…

• Input port processor performs lookup, copy into
memory

• Cisco Catalyst 8500

2

4

Switching Via a Bus
• Datagram from input port
memory to output port
memory via a shared bus

• Bus contention: switching
speed limited by bus
bandwidth

• 1 Gbps bus, Cisco 1900:
sufficient speed for access
and enterprise routers (not
regional or backbone)

5

Switching Via an Interconnection
Network

• Overcome bus and memory
bandwidth limitations

• Crossbar provides full NxN
interconnect
– Expensive
– Uses 2N buses

• Cisco 12000: switches Gbps
through the interconnection
network

6

Routing
• Past two lectures

– IP addresses are structured

– IP packet headers carry these
addresses

– When packet arrives at router
• Examine header for intended
destination

• Look up next hop in table

• Send packet out appropriate
port

• This lecture:
– How these forwarding tables
are built?

– Routing algorithms

Router

3

7

A Model of the Problem
• Network as a Graph:

– Represent each router as node

– Direct link between routers
represented by edge

– Symmetric links ⇒ undirected
graph

• Edge “cost” c(x,y) denotes
measure of difficulty of using link
– delay, $ cost, or congestion level

• Task
– Determine least cost path from

every node to every other node
• Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

8

Ways to Compute Shortest Paths
• Centralized

– Collect graph structure in one place
– Use standard graph algorithm
– Disseminate routing tables

• Distributed
– Routers perform local computation
– Converge to a globally consistent routing state
– “Global”: Link-state

• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates own routing table

– Local: Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

9

Distance-Vector Method

• Idea
– At any time, have cost/next
hop of best known path to
destination

– Use cost ∞ when no path known

• Initially
– Only have entries for directly
connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for
A

A0A

B4B

–∞C

–∞D

E2E

F6F

Nex
t

Hop

CostDest

4

10

Algorithm
Each node x stores:

– c(x,v) for each neighbor v
– Distance vector of node x: estimate of d(x,y) for all y
– Distance vectors heard from each neighbor

Initialization:
1. d(x,y) = c(x,y) for all y.
2. Send distance vector to each neighbor

Repeat:
Whenever link cost to neighbor changes or distance
vector received from neighbor
For every neighbor z
For every destination y
d(x,y) ← Update(x,y,z)

If d(x,y) changed for any y, send distance vector to all
neighbors

11

Distance-Vector Update

Update(x,y,z)
d ← c(x,z) + d(z,y) /* Cost of path from x to y with first hop z */

if d < d(x,y)
/* Found better path */

return d,z /* Updated cost / next hop */

else

return d(x,y), nexthop(x,y) /* Existing cost / next hop */

x

z

y

c(x,z)

d(z,y)

d(x,y)

12

Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

A0A

B4B

–∞C

–∞D

E2E

F6F

HopCstDst

Table for B

A4A

B0B

–∞C

D3D

–∞E

F1F

HopCstDst

Table for C

–∞A

–∞B

C0C

D1D

–∞E

F1F

HopCstDst

Table for D

–∞A

B3B

C1C

D0D

–∞E

–∞F

HopCstDst

Table for E

A2A

–∞B

–∞C

–∞D

E0E

F3F

HopCstDst

Table for F

A6A

B1B

C1C

–∞D

E3E

F0F

HopCstDst

Optimum 1-hop paths

5

13

Iteration #1

Table for A

A0A

B4B

F7C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F7A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

–∞E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

–∞D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

14

Iteration #2

Table for A

A0A

B4B

E6C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F6A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

C5E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

F5D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

15

Distance Vector: Link Cost Changes

Link cost changes:
• Bad news travels slow -

“count to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!

6

16

Distance Vector: Poison Reverse
If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is infinite (so Y

won’t route to X via Z)

• Will this completely solve count to infinity
problem?

X Z
14

50

Y
60

algorithm
terminates

17

Poison Reverse Failures

• Iterations don’t converge

• “Count to infinity”

• Solution
– Make “infinity” smaller

– What is upper bound on
maximum path length?

Table for A

F7C

HopCstDst

Table for B

A8C

HopCstDst

Table for F

C1C

HopCstDst

Table for F

–∞C

HopCstDst

Table for A

–∞C

HopCstDst Forced
Update

Table for B

A14C

HopCstDst
Forced
Update

F C
6

1

1

1

B
D

A

4

∞∞∞∞∞∞∞∞

Table for D

B9C

HopCstDst

Forced
Update

Table for A

D13C

HopCstDst Better
Route

Table for D

B15C

HopCstDst

Table for A

D19C

HopCstDst Forced
Update

•
•
•

Forced
Update

18

Routing Information Protocol (RIP)
• Earliest IP routing protocol (1982 BSD)

– Current standard is version 2 (RFC 1723)

• Features
– Every link has cost 1 � Hop count
– “Infinity” = 16

• Limits to networks where everything reachable within 15 hops

• Sending Updates
– Every router listens for updates on UDP port 520
– Triggered

• When every entry changes, send copy of entry to neighbors
– Except for one causing update (split horizon rule)

– Periodic
• Every 30 seconds, router sends copy of its table to each neighbor

7

19

Link State Protocol Concept
• Every node gets complete copy of graph

– Every node “floods” network with data about its
outgoing links

• Every node computes routes to every other
node
– Using single-source, shortest-path algorithm

• Process performed whenever needed
– When interconnections die / reappear

20

Sending Link States by “Flooding”

• X wants to send
information
– Sends on all outgoing
links

• When node Y receives
information from Z
– Resend on all links
other than Z

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

21

Dijkstra’s Algorithm
• Given

– Graph with source node s and edge costs
c(u,v)

– Determine least cost path from s to every
node v

• Single source shortest Path Algorithm
– Traverse graph in order of least cost from
source

8

22

Dijkstra’s Algorithm

•Node Sets
– Done

• Already have least cost path to it
– Horizon:

• Reachable in 1 hop from node in
Done

– Unseen:
• Cannot reach directly from node
in Done

• Label
– d(v) = path cost

• From s to v

• Path
– Keep track of last link in
path

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon
Unseen

0

2
5

3

∞∞∞∞

∞∞∞∞

Current Path Costs

23

Dijkstra’s Algorithm: Initially

• No nodes “done”

• Source in “horizon”

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon

Unseen

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

Current Path Costs

24

Dijkstra’s Algorithm: Initially

• d(v) to node A shown in red
– Only consider links from done nodes

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done
Horizon Unseen

0

2
6

3

∞∞∞∞

∞∞∞∞

Current Path Costs

9

25

Dijkstra’s Algorithm

• Select node v in horizon with minimum d(v)
• Add link used to add node to shortest path tree
• Update d(v) information

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon
Unseen

0

2

3

∞∞∞∞

∞∞∞∞

Current Path Costs
5

26

Dijkstra’s Algorithm

• Repeat…

A

C

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon

Unseen

0

2
5

3

∞∞∞∞

∞∞∞∞

Current Path Costs
F

B

D

E

27

Dijkstra’s Algorithm

• Addition of node can add new nodes to horizon

2
6

3

1

1

2

3
Source
Node

Done
Horizon

Unseen

0

2
4

3

∞∞∞∞

6

Current Path Costs

A

C3

D

B

E

F

10

28

Dijkstra’s Algorithm

• Final tree shown in green

2
6

3

1

1

2

3
Source
Node

0

2
4

3

5

6

A

C3

D

B

E

F

29

Link State Characteristics

• With consistent
LSDBs*, all nodes
compute consistent
loop-free paths

• Can still have
transient loops

A

B

C

D

1

4

6 2

1

Packet from C�A
may loop around BDC
if B knows about failure
and C & D do not

X

*Link State Data Base

30

OSPF Routing Protocol
• Open

– Open standard created by IETF

• More prevalent than RIP

11

31

OSPF Messages
• Transmit link state advertisements

– Originating router
• Typically, IP address for router

– Link ID
• ID of router at other end of link

– Metric
• Cost of link

– Sequence number
• Incremented each time sending new link information

32

OSPF Flooding Operation
• Node X Receives LSA from Node Y

– With Sequence Number q

– Looks for entry with same origin/link ID

• Cases
– No entry present

• Add entry, propagate to all neighbors other than Y

– Entry present with sequence number p < q
• Update entry, propagate to all neighbors other than Y

– Entry present with sequence number p > q
• Send entry back to Y

• To tell Y that it has out-of-date information

– Entry present with sequence number p = q
• Ignore it

33

Flooding Issues
• When should it be performed

– Periodically
– When status of link changes

• Detected by connected node
• Congestion, lack of electric or optical signal

• What happens when router goes down & back up
– Sequence number reset to 0

• Other routers may have entries with higher sequence numbers

– Router will send out LSAs with number 0
– Will get back LSAs with last valid sequence number p
– Router sets sequence number to p+1 & resends

12

34

Adoption of OSPF
• RIP viewed as outmoded

– Good when networks small and routers had
limited memory & computational power

• OSPF Advantages
– Fast convergence when configuration
changes

– Full topology map helps

35

Comparison of LS and DV Algorithms

Message complexity
• LS: with n nodes, v

neighbors, O(nv) messages
per node

• DV: exchange between
neighbors only

Speed of Convergence
• LS: Complex computation

– But…can forward before
computation

– may have oscillations

• DV: convergence time varies

– may be routing loops

– count-to-infinity problem

– (faster with triggered
updates)

36

Robustness: what happens if router malfunctions?
LS:

• node can advertise incorrect link cost
• each node computes only its own table

DV:
• DV node can advertise incorrect path cost
• each node’s table used by others

• errors propagate thru network
• Other tradeoffs

• Making LSP flood reliable difficult
• Prioritize routing packets?

Comparison of LS and DV Algorithms

