### CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 11 -Inter-Domain Routing -BGP (Border Gateway Protocol)

## Intra-domain routing

- The Story So Far...
  - Routing protocols generate the forwarding table
  - Two styles: distance vector, link state
  - Scalability issues:
    - Distance vector protocols suffer from count-to-infinity
    - Link state protocols must flood information through network
- Today's lecture
  - How to make routing protocols support large networks
  - How to make routing protocols support business policies

## Inter-domain Routing: Hierarchy

#### • "Flat" routing not suited for the Internet

- Doesn't scale with network size
  - Storage  $\rightarrow$  Each node cannot be expected to store routes to every destination (or destination network)

  - Convergence times increase
  - Communication → Total message count increases
- Administrative autonomy
  - Each internetwork may want to run its network
  - independently E.g hide topology information from competitors
- · Solution: Hierarchy via autonomous systems

3

## Internet's Hierarchy

- What is an Autonomous System (AS)?
  - A set of routers under a single technical administration
    - Use an *interior gateway protocol (IGP)* and common metrics to route packets within the AS
      Connect to other ASes using *gateway routers*Use an *exterior gateway protocol (EGP)* to route packets to other AS's
  - IGP: OSPF, RIP (last class)
    Today's EGP: BGP version 4

  - Similar to an "inter-network"
    - Could also be a group of internetworks owned by a single commercial entity



# The Problem

- Easy when only one link leading to outside AS
- Much harder when two or more links to outside ASes
  - Which destinations reachable via a neighbor?
  - Propagate this information to other internal routers
  - Select a "good route" from multiple choices

- Inter-AS routing protocol
  - Communication between distinct ASes
  - Must be the same protocol!

#### **BGP** Preliminaries

- Pairs of routers exchange routing info over TCP connections (port 179)
  - One TCP connection for every pair of neighboring gateway
  - routers - Routers called "BGP peers"
  - BGP peers exchange routing info as messages
  - TCP connection + messages  $\rightarrow$  BGP session
- Neighbor ASes exchange info on which CIDR prefixes are reachable via them
- Primary objective: reachability not performance

# AS Numbers (ASNs)

64512 through 65535 are "private" ASNs are 16 bit values

Currently over 15,000 in use

- Genuity: 1
- MIT: 3
- CMU: 9
- UC San Diego: 7377
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- ..

ASNs represent units of routing policy

#### Distance Vector with Path

- Each routing update carries the entire AS-level path so far
  - "AS\_Path attribute"
- Loops are detected as follows:
  - When AS gets route, check if AS already in path • If yes, reject route
    - If no, add self and (possibly) advertise route further
       Advertisement depends on metrics/cost/preference etc.
- Advantage:
  - Metrics are local AS chooses path, protocol ensures no loops

9

8

## Hop-by-hop Model

- BGP advertises to neighbors only those routes that it uses
  - Consistent with the hop-by-hop Internet paradigm
  - Consequence: hear only one route from neighbor
    - (although neighbor may have chosen this from a large set of choices)
    - $\boldsymbol{\cdot}$  Could impact view into availability of paths

10

## Policy with BGP

- BGP provides capability for enforcing various policies
- Policies are <u>not</u> part of BGP: they are provided to BGP as configuration information
- Enforces policies by
  - *Choosing appropriate paths* from multiple alternatives
  - Controlling advertisement to other AS's

11

## Examples of BGP Policies

- A multi-homed AS refuses to act as transit - Limit path advertisement
- A multi-homed AS can become transit for some AS's
  - Only advertise paths to some AS's
- An AS can favor or disfavor certain AS's for traffic transit from itself

#### **BGP** Messages

#### • Open

- Announces AS ID
- Determines hold timer interval between keep\_alive or update messages, zero interval implies no keep\_alive
- Keep\_alive
  - Sent periodically (but before hold timer expires) to peers to ensure connectivity.
    Sent in place of an UPDATE message
- Notification
  - Used for error notification
    TCP connection is closed *immediately* after notification

13

14

## BGP UPDATE Message

- List of withdrawn routes
- Network layer reachability information - List of reachable prefixes
- Path attributes
  - Origin
  - Path
  - Local\_pref  $\rightarrow$  this is set locally
  - MED  $\rightarrow$  this is set externally
  - Metrics
- All prefixes advertised in message have same path attributes

# Path Selection Criteria

- Attributes + external (policy) information
- Examples:
  - Policy considerations
  - Preference for AS
  - Presence or absence of certain AS
  - Hop count
  - Path origin









#### Multi-Exit Discriminator (MED)

- Hint to external neighbors about the preferred path *into* an AS
  - Different AS choose different scales
- Used when two AS's connect to each other in more than one place
  - More useful in a customer provider setting
  - Not honored in other settings
     Will see later why

































# Policy II: Valley-Free Routes

- "Valley-free" routing

   Number links as (+1, 0, -1) for provider, peer and customer
   In any valid path should only see sequence of +1, followed by at most one 0, followed by sequence of -1
  - Why?
    - Consider the economics of the situation

#### How to make these choices?

- Prefer-customer routing: LOCAL\_PREF
- Valley-free routes: control route advertisements (see previous slide)

