
CS640: Introduction to Computer Networks

Aditya Akella

Lecture 14 TCP - I -Transport Protocols: TCP Segments, Flow control and Connection Setup

Transport Protocols

- Lowest level endto-end protocol.
 - Header generated by sender is interpreted only
 - by the destination - Routers view transport header
 - transport header as part of the payload

2

3

Functionality Split

- $\boldsymbol{\cdot}$ Network provides best-effort delivery
- End-systems implement many functions
 - Reliability
 - In-order delivery
 - De-multiplexing
 - Message boundaries
 - Connection abstraction
 - Congestion control
 - ...

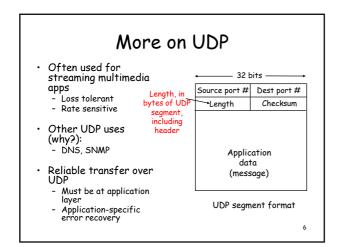
Transport Protocols

• UDP provides just integrity and demux

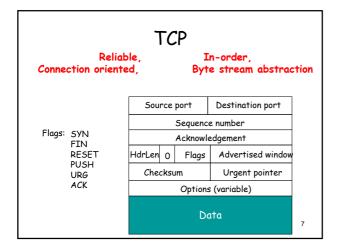
TCP adds...

- Connection-oriented
 Reliable
- Ordered
- Point-to-point
- Byte-stream
- Full duplex
 Flow and congestion controlled

Request-reply service PPC-like


- Not covered here

UDP: User Datagram Protocol


- "No frills," "bare bones" . Internet transport protocol
- "Best effort" service, UDP segments may be:
 - Lost
 - Delivered out of order to app
- Connectionless:
- No handshaking between
- UDP sender, receiver Each UDP segment handled independently of others

Why is there a UDP?

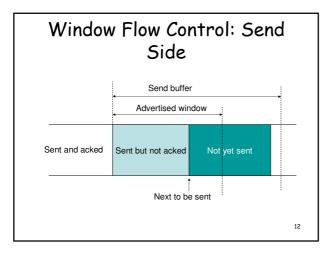
- No connection establishment (which can add delay) Simple: no connection state at sender, receiver
- . Small header
- .
- No congestion control: UDP can blast away as fast as desired

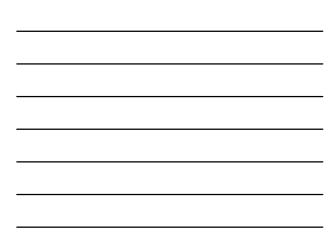
Sequence and Acknowledge Numbers

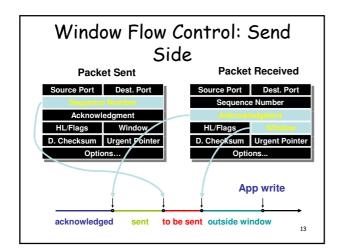
- Sequence number \rightarrow byte num of first byte in payload
- Acknowledgement number
 - TCP is full duplex
 - Sequence number of next byte expected in reverse direction

Advertised Window

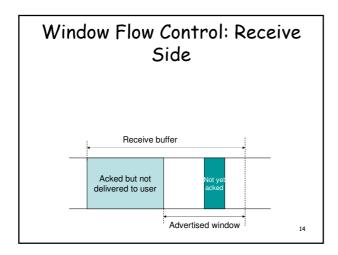
- Used for "flow control"
 - Prevent receing app from getting overwhelmed
- Both sender and receiver advertise window
 - Sender action:
 - lastSent lastACK <= Receiver's advertised window
- Flow control coming up...


9


Sliding Window Again


- Sliding buffer at sender and receiver
 - Packets in transit ≤ sender buffer size
 - Advance when sender and receiver agree packets at beginning have been received
- Receiver has to buffer a packet until all prior packets have arrived
 - Also accommodates slow applications
- Goal: provides reliable, ordered delivery, and flow control
- Same as link layer sliding window algorithm, except that flow control is crucial and challenging

TCP Flow Control


- TCP is a sliding window protocol
 - For window size *n*, can send up to *n* bytes without receiving an acknowledgement
 - When the data is acknowledged then the window slides forward
- Each packet advertises a window size
 Indicates number of bytes the receiver has space for
- Original TCP always sent entire window
 Congestion control now limits this

TCP Persist

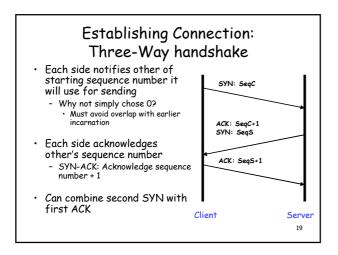
- What happens if window is 0?
 - Receiver updates window when application reads data
 - What if this update is lost?
- TCP Persist state
 - Sender periodically sends 1 byte packets
 - Receiver responds with ACK even if it can't store the packet

Performance Considerations

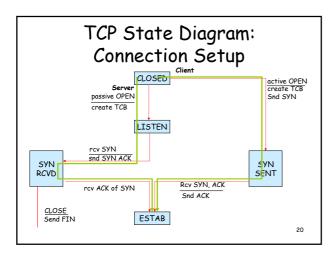
- The window size can be controlled by receiving application
 - Can change the socket buffer size from a default (e.g. 8Kbytes) to a maximum value (e.g. 64 Kbytes)
- The window size field in the TCP header limits the window that the receiver can advertise
 - 16 bits \rightarrow 64 KBytes
 - 10 msec RTT \rightarrow 51 Mbit/second
 - 100 msec RTT \rightarrow 5 Mbit/second
 - TCP options to get around 64KB limit

Sequence Numbers

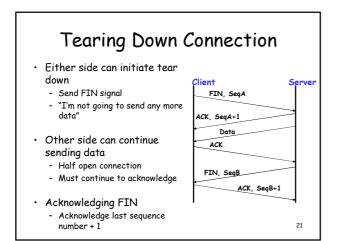
How large do sequence numbers need to be?
 Depends on sender/receiver window size


- E.g.
 - Max seq = 7, window_size = 7
 - If pkts 0..6 are sent successfully and all acks lost
 Receiver expects 7,0..5, sender retransmits old 0..6!!!
- Max sequence must be ≥ 2 * window_size
- TCP uses 32 bit sequence numbers - Window size limited to 16 bits
 - Window size limited to 16 bits
 - Sequence number space is ample

17


16

TCP Sequence Numbers


- Sequence Number Space
 - Each byte in byte stream is numbered.
 - 32 bit value
 - Wraps around
- Initial values selected at start up time
 TCP breaks up the byte stream in packets.
- Packet size is limited to the Maximum Segment Size
 - Each packet has a sequence number.
 - Indicates where it fits in the byte stream

