
1

CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 14
TCP – I -

Transport Protocols: TCP Segments, Flow control
and Connection Setup

2

Transport Protocols

• Lowest level end-
to-end protocol.
– Header generated

by sender is
interpreted only
by the destination

– Routers view
transport header
as part of the
payload

7

6

5

7

6

5

Transport

IP

Datalink

Physical

Transport

IP

Datalink

Physical

IP

router

2 2

1 1

3

Functionality Split

• Network provides best-effort delivery

• End-systems implement many functions
– Reliability

– In-order delivery

– De-multiplexing

– Message boundaries

– Connection abstraction

– Congestion control

– …

2

4

Transport Protocols
• UDP provides just integrity and demux

• TCP adds…
– Connection-oriented
– Reliable
– Ordered
– Point-to-point
– Byte-stream
– Full duplex
– Flow and congestion controlled

• Request-reply service
– RPC-like
– Not covered here

5

UDP: User Datagram Protocol

• “No frills,” “bare bones”
Internet transport
protocol

• “Best effort” service, UDP
segments may be:
– Lost

– Delivered out of order to
app

• Connectionless:
– No handshaking between

UDP sender, receiver

– Each UDP segment handled
independently of others

Why is there a UDP?
• No connection establishment

(which can add delay)
• Simple: no connection state at

sender, receiver
• Small header
• No congestion control: UDP

can blast away as fast as
desired

6

More on UDP
• Often used for

streaming multimedia
apps
– Loss tolerant
– Rate sensitive

• Other UDP uses
(why?):
– DNS, SNMP

• Reliable transfer over
UDP
– Must be at application

layer
– Application-specific

error recovery

Source port # Dest port #

32 bits

Application
data

(message)

UDP segment format

Length Checksum
Length, in

bytes of UDP
segment,
including
header

3

7

TCP

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Reliable, In-order,
Connection oriented, Byte stream abstraction

8

Sequence and Acknowledge Numbers

• Sequence number � byte num of first byte in
payload

• Acknowledgement number
– TCP is full duplex

– Sequence number of next byte expected in reverse
direction

9

Advertised Window
• Used for “flow control”

– Prevent receing app from getting
overwhelmed

• Both sender and receiver advertise
window
– Sender action:

lastSent – lastACK <= Receiver’s advertised window

• Flow control coming up…

4

10

Sliding Window Again

• Sliding buffer at sender and receiver
– Packets in transit ≤ sender buffer size
– Advance when sender and receiver agree packets at

beginning have been received

• Receiver has to buffer a packet until all prior packets
have arrived
– Also accommodates slow applications

• Goal: provides reliable, ordered delivery, and flow
control

• Same as link layer sliding window algorithm, except
that flow control is crucial and challenging

11

TCP Flow Control
• TCP is a sliding window protocol

– For window size n, can send up to n bytes without
receiving an acknowledgement

– When the data is acknowledged then the window
slides forward

• Each packet advertises a window size
– Indicates number of bytes the receiver has space

for

• Original TCP always sent entire window
– Congestion control now limits this

12

Window Flow Control: Send
Side

Sent but not acked Not yet sent

Advertised window

Next to be sent

Sent and acked

Send buffer

5

13
acknowledged sent to be sent outside window

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options…Options…

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options...Options...

Packet Sent Packet Received

App write

Window Flow Control: Send
Side

14

Acked but not

delivered to user
Not yet

acked

Receive buffer

Advertised window

Window Flow Control: Receive
Side

15

TCP Persist

• What happens if window is 0?
– Receiver updates window when application
reads data

– What if this update is lost?

• TCP Persist state
– Sender periodically sends 1 byte packets

– Receiver responds with ACK even if it can’t
store the packet

6

16

Performance Considerations
• The window size can be controlled by
receiving application
– Can change the socket buffer size from a
default (e.g. 8Kbytes) to a maximum value
(e.g. 64 Kbytes)

• The window size field in the TCP header
limits the window that the receiver can
advertise
– 16 bits � 64 KBytes
– 10 msec RTT � 51 Mbit/second
– 100 msec RTT � 5 Mbit/second
– TCP options to get around 64KB limit

17

Sequence Numbers
• How large do sequence numbers need to be?

– Depends on sender/receiver window size
– E.g.

• Max seq = 7, window_size = 7
• If pkts 0..6 are sent successfully and all acks lost

– Receiver expects 7,0..5, sender retransmits old 0..6!!!

• Max sequence must be ≥ 2 * window_size

• TCP uses 32 bit sequence numbers
– Window size limited to 16 bits
– Sequence number space is ample

18

TCP Sequence Numbers
• Sequence Number Space

– Each byte in byte stream is numbered.
– 32 bit value
– Wraps around

• Initial values selected at start up time
– TCP breaks up the byte stream in packets.

• Packet size is limited to the Maximum
Segment Size
– Each packet has a sequence number.
– Indicates where it fits in the byte stream

7

19

Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it
will use for sending
– Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Each side acknowledges
other’s sequence number
– SYN-ACK: Acknowledge sequence

number + 1

• Can combine second SYN with
first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

20

TCP State Diagram:
Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

Client

Server

21

Tearing Down Connection
• Either side can initiate tear

down
– Send FIN signal

– “I’m not going to send any more
data”

• Other side can continue
sending data
– Half open connection

– Must continue to acknowledge

• Acknowledging FIN
– Acknowledge last sequence

number + 1

Client Server
FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

8

22

State Diagram: Connection
Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN
WAIT-2

snd ACK

rcv FIN

delete TCB

Timeout=2msl

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

rcv ACK

Active Close

Passive Close

Time_Wait state is necessary in case the final ack was lost.

