
1

CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 15
TCP – III

Reliability and Implementation Issues

2

Reliability
• TCP provides a “reliable byte stream”

– “Loss recovery” key to ensuring this abstraction
– Sender must retransmit lost packets

• Challenges:
– When is a packet lost?

• Congestion related losses
• Reordering of packets

– How to tell the difference between a delayed packet and
lost one?

– Variable packet delays
• What should the timeout be?

– How to recover from losses?

3

Loss Recovery in a Sliding Window
setup

• Sliding window with cumulative acks
– Receiver can only return a single “ack” sequence number to

the sender.
– Acknowledges all bytes with a lower sequence number
– Starting point for retransmission
– Duplicate acks sent when out-of-order packet received

• Sender only retransmits a single packet.
– Only one that it knows is lost

• Sent after timeout

• Choice of timeout interval � crucial

2

4

Round-trip Time Estimation
• Reception success known only after one RTT

– Wait at least one RTT before retransmitting

• Importance of accurate RTT estimators:
– Low RTT estimate

• unneeded retransmissions

– High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
– But not too fast, or too slow!

5

Jacobson’s Retransmission
Timeout (RTO)

• Original setting:
– Round trip times exponentially averaged:

• New RTT = α (old RTT) + (1 - α) (new sample)
• Recommended value for α: 0.8 - 0.9

– Retransmit timer set to (2 * RTT)
– But this can lead to spurious retransmissions

• Key observation:
– At high loads round trip variance is high

• Solution:
– Base RTO on RTT and deviation

• RTO = RTT + 4 * rttvar
– new_rttvar = β * dev + (1- β) old_rttvar

• Dev = linear deviation
• Inappropriately named – actually smoothed linear deviation

6

AIMD Implementation
• If loss occurs when cwnd = W

– Network can handle < W segments
– Set cwnd to 0.5W (multiplicative decrease)
– Known as “congestion control”

• Upon receiving ACK
– Increase cwnd by (1 packet)/cwnd

• What is 1 packet? � 1 MSS worth of bytes
• MSS = maximum segment size

– After cwnd packets have passed by � approximately
increase of 1 MSS

– Known as “congestion avoidance”

• Together these implement AIMD

3

7

Control/Avoidance Behavior in
the presence of timeouts

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion
Window
and Rate

8

Improving Loss Recovery:
Fast Retransmit

• Waiting for timeout to retransmit is inefficient

• Are there quicker recovery schemes?
– Use duplicate acknowledgements as an indication
– Fast retransmit

• What are duplicate acks (dupacks)?
– Repeated acks for the same sequence

• When can duplicate acks occur?
– Loss
– Packet re-ordering

• Assume re-ordering is infrequent and not of large magnitude
– Use receipt of 3 or more duplicate acks as indication of loss
– Don’t wait for timeout to retransmit packet

9

Fast Retransmit

Time

Sequence No Duplicate Acks

Retransmission
X

Packets

Acks

Note: Timeouts can still
happen (burst losses in
a window)

4

10

How to Change Window
• When a loss occurs have W packets
outstanding
– A bunch of dupacks arrive
– Rexmit on 3rd dupack
– But dupacks keep arriving
– Must wait for a new ack to send new packets

• New cwnd = 0.5 * cwnd
– Send new cwnd packets in a burst when new ack
arrives

– Risk losing “self clocking” or “packet pacing”

11

• In steady state, a packet is sent when an ack is
received
– Data transmission remains smooth, once it is smooth (steady

state)

– “Self-clocking” behavior

– When self clocking is lost � send packets in a burst � could
momentarily overflow network capacity

Packet Pacing

12

Preserving Clocking:
Fast Recovery

• Each duplicate ack notifies sender that single
packet has cleared network

• When < cwnd packets are outstanding
– Allow new packets out with each new duplicate
acknowledgement

• Behavior
– Sender is idle for some time – waiting for ½ cwnd
worth of dupacks

– Transmits at original rate after wait
• Ack clocking rate is same as before loss

5

13

Fast Recovery (Reno)

Time

Sequence No

Sent for each dupack after
W/2 dupacks arrive

X

Packets

Acks

14

Dupacks may not be enough:
Timeouts can still happen!

Time

Sequence No
X

X

X
X

Now what? - timeout

Packets

Acks

X

15

Reaching Steady State
• Doing AIMD is fine in steady state…

– But how to get to steady state?

• How does TCP know what is a good initial rate to start with?

• Quick initial phase to help get up to speed
– Called “slow” start (!!)
– Losts of packets sent back to back
– Paced out by the bottleneck link
– Eventually, self clocking is established!

Pr

Pb

Ar
Ab

ReceiverSender

As

6

16

Slow Start

• Slow start
– Initialize cwnd = 1

– Upon receipt of every
ack, cwnd = cwnd + 1

• Implications
– Window actually
increases to W in RTT
* log2(W)

– Can overshoot window
and cause packet loss

17

Slow Start Example

1

One RTT

One pkt time

0R

2

1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

18

Return to Slow Start
• If too many packets are lost self
clocking is lost as well
– Need to implement slow-start and
congestion avoidance together

• When timeout occurs set ssthresh to
0.5w
– If cwnd < ssthresh, use slow start

– Else use congestion avoidance

7

19

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit
and Recovery

Slowstart
to pace
packets

Timeouts
may still
occur

The Whole TCP “Saw Tooth”

20

TCP Performance and Role of
Buffering

• Can TCP saturate a link? Depends on buffering in network

• Congestion control
– Increase utilization until… link becomes congested

– React by decreasing window by 50%

– Window is proportional to rate * RTT

• Unbuffered link
– The router can’t fully utilize the link

• If the window is too small, link is not full

• If the link is full, next window increase causes drop

• With no buffer TCP achieves 75% utilization

t

W Minimum window
for full
utilization

21

TCP Performance
• In the real world, router queues play important role

– Role of Buffers � If window is larger, packets sit in queue on
bottleneck link

• If we have a large router queue � can get 100% utilization
– But, router queues can cause large delays

• How big does the queue need to be?
– Windows vary from W � W/2

• To make sure that link is always full
W/2 > RTT * BW

• W = RTT * BW + Qsize
� Qsize > RTT * BW

– Ensures 100% utilization
– Delay?

• Varies between RTT and 2 * RTT
• Queuing between 0 and RTT

8

22

Buffered Link

t

W

Minimum window
for full
utilization

• With sufficient buffering we achieve full link
utilization
– The window is always above the “critical” threshold
– Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

– This is the origin of the rule-of-thumb

Buffer

