CS640: Introduction to Computer Networks

Aditya Akella

Lecture 18 -Improving Web Experience: Caching and CDNs

HTTP Caching

- Why caching?
- Clients often cache documents
 - Challenge: update of documentsIf-Modified-Since requests to check
 - HTTP 0.9/1.0 used just date
 - HTTP 1.1 has an opaque "entity tag" (could be a file signature, etc.) as well
- When/how often should the original be checked for changes?
 - Check every time?
 - Check each session? Day? Etc?
 - Use "Expires" header
 - If no Expires, often use Last-Modified as estimate

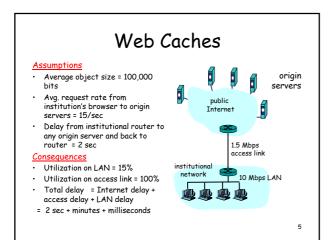
Example Cache Check Request

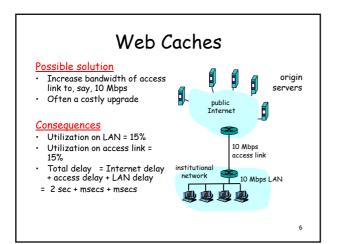
GET / HTTP/1.1

Accept: */*

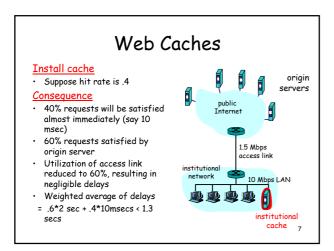
Accept-Language: en-us

Accept-Encoding: gzip, deflate

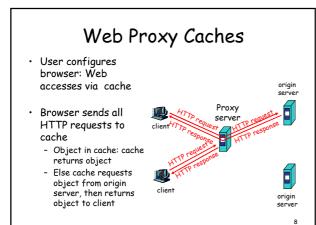

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT


If-None-Match: "7a11f-10ed-3a75ae4a" User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0) Host: www.intel-iris.net Connection: Keep-Alive

3


Example Cache Check Response

HTTP/1.1 304 Not Modified Date: Tue, 27 Mar 2001 03:50:51 GMT Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24 Connection: Keep-Alive Keep-Alive: timeout=15, max=100 ETag: "7a11f-10ed-3a75ae4a"



Problems

- Over 50% of all HTTP objects are uncacheable - why?
- Not easily solvable
 - Dynamic data \rightarrow stock prices, scores, web cams
 - CGI scripts → results based on passed parameters
 - SSL \rightarrow encrypted data is not cacheable Most web clients don't handle mixed pages well →many generic objects transferred with SSL
 - Cookies \rightarrow results may be based on passed data -
 - Hit metering \rightarrow owner wants to measure # of hits for revenue, etc.

Server Selection

- Replicate content on many servers

 Load and latency savings
- Challenges
 - Which content to replicate
 - How to replicate content
 - Where to place replicas
 - How to find replicated content
 - How to choose among know replicas
 - How to direct clients towards replica

10

Server Selection

- Which server?
 - Lowest load ightarrow to balance load on servers
 - Best performance → to improve client performance
 Based on Geography? RTT? Throughput? Load?
 - Any alive node \rightarrow to provide fault tolerance
- How to direct clients to a particular server?
 As part of routing → anycast, cluster load balancing
 - Not covered today...
 - As part of application \rightarrow HTTP redirect
 - As part of naming \rightarrow DNS

11

Application-Based Redirection

- HTTP supports simple way to indicate that Web page has moved (30X responses)
- Server receives Get request from client
 Decides which server is best suited for particular client and object
 - Returns HTTP redirect to that server
- Can make informed application specific decision
- May introduce additional overhead → multiple connection setup, name lookups, etc.

Naming Based

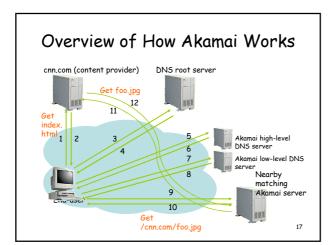
- Client does name lookup for service
- Name server chooses appropriate server address
 - A-record returned is "best" one for the client
- What information can name server base decision on?
 - Server load/location \rightarrow must be collected
 - Information in the name lookup request
 - Name service client \rightarrow typically the local name server for client $_{13}$

Content Distribution Networks (CDNs)

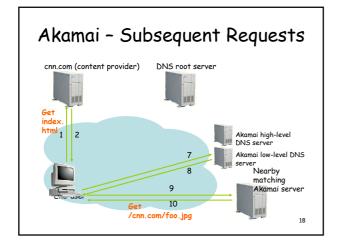
• The content providers are the CDN customers.

Content replication

- CDN company installs hundreds of CDN servers throughout Internet
 - Close to users
- CDN replicates its customers' content on CDN servers in an *on demand* fashion.
- Example: Akamai networks


14


How Akamai Works


- Clients fetch html document from primary server
 - E.g. fetch index.html from cnn.com
- "Akamaized" URLs for replicated content are replaced in html
 - E.g. replaced with
- Client is forced to resolve aXYZ.g.akamaitech.net hostname

How Akamai Works

- Only static content is "Akamaized"
- Modified name contains original file name and content provider ID
- Akamai server is asked for content
 - First checks local cache
 - If not in cache, requests file from primary server; caches file

Recap: How Akamai Works

- Root server gives NS record for akamai.net
- Akamai.net name server returns NS record
- for g.akamaitech.net - Name server chosen to be in region of client's name server
 - Out-of-band measurements to obtain this
- G.akamaitech.net nameserver chooses server in region
 - A collection of serves in each region
 - Which server to choose?
 - Uses aXYZ name

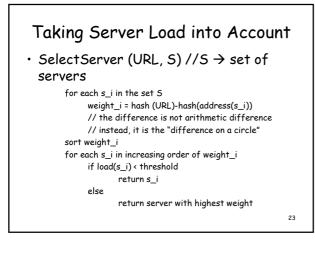
19

Simple Hashing

- Given document XYZ, we need to choose a server to use
- Suppose we use the "mod" function
- Number servers from 1...n
 - Place document XYZ on server (XYZ mod n)
 - What happens when a servers fails? $\mathsf{n} \rightarrow \mathsf{n}\text{-}1$
 - Why might this be bad?

20

Consistent Hash


- Desired features
 - Balanced load is equal across buckets
 - Smoothness little impact on hash bucket contents when buckets are added/removed
 - Spread small set of hash buckets that may hold a set of object
 - Load # of objects assigned to hash bucket is small

Consistent Hash - Example

- Construction
 - Assign each of C hash buckets to random points on mod 2ⁿ circle, where, hash key size = n.

- Map object to random position on circle
 Hash of object = closest clockwise bucket
- Smoothness \rightarrow addition of bucket does not cause movement between existing buckets
- Spread & Load → small set of buckets that lie near object
- Balance → no bucket is responsible for large number of objects

Proximity

- · How to select servers closest to client?
 - Same ISP as client?
 - Same AS as client?
 - Use BGP to identify network aware clusters
 - Localize client location by using ping triangulation