
11/29/2007

1

CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 20 -
Queuing and Basics of QoS

2

Queuing Disciplines
• Each router must implement some queuing
discipline
– Scheduling discipline
– Drop policy

• Queuing allocates both bandwidth and buffer
space:
– Bandwidth: which packet to serve (transmit) next
– Buffer space: which packet to drop next (when
required)

• Queuing also affects latency

3

Typical Internet Queuing
• FIFO + drop-tail

– Simplest choice
– Used widely in the Internet
– FIFO: scheduling discipline
– Drop-tail: drop policy

• FIFO (first-in-first-out)
– Implies single class of traffic, no priority

• Drop-tail
– Arriving packets get dropped when queue is full regardless

of flow or importance

11/29/2007

2

4

• Lock-out problem
– Allows a few flows to monopolize the queue space
– Send more, get more � No implicit policing

• Full queues
– TCP detects congestion from loss
– Forces network to have long standing queues in
steady-state

– Queueing delays – bad for time sensitive traffic
– Synchronization: end hosts react to same events

• Full queue � empty � Full � empty…

• Poor support for bursty traffic

FIFO + Drop-tail Problems

5

Lock-out Problem
• Priority queueing can solve some problems

– Starvation
– Determining priorities is hard

• Simpler techniques: Random drop
– Packet arriving when queue is full causes some
random packet to be dropped

• Drop front
– On full queue, drop packet at head of queue

• Random drop and drop front solve the lock-
out problem but not the full-queues problem

6

Random Early Detection (RED)
• Drop packets before queue becomes full
(early drop)

• Detect incipient congestion

• Avoid window synchronization
– Randomly mark packets

• Random drop helps avoid bias against bursty
traffic

11/29/2007

3

7

RED Algorithm
• Maintain running average of queue length

• If avg < minth do nothing
– Low queuing, send packets through

• If avg > maxth, drop packet
– Protection from misbehaving sources

• Else mark packet in a manner proportional to
queue length
– Notify sources of incipient congestion

8

RED Operation
Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

9

Fair Queuing: Goals
• How do you protect the most important packets?

– How do you provide some isolation in general?
– Simple priority queuing does not help

• Two approaches:
– Fair Queuing (in itself is sufficient)
– Leaky bucket (with other techniques which we will cover next class)

• FQ key goal: Allocate resources “fairly”
– Keep separate queue for each flow

• Isolate ill-behaved users

• Still achieve statistical muxing
– One flow can fill entire pipe if no contenders
– Work conserving � scheduler never idles link if it has a packet

11/29/2007

4

10

What is “Fairness”?
• At what granularity?

– Flows, connections, domains?

• What if users have different RTTs/links/etc.
– TCP is “RTT-Fair”

• BW inversely proportional to RTT of flow

– Should they share a link equally or be TCP-fair?

• Maximize fairness index?
– Fairness = (Σxi)

2/n(Σxi
2) 0<fairness<1

11

Max-min Fairness
• Allocate user with “small” demand what it
wants, evenly divide unused resources to “big”
users

• Formally:
– Resources allocated in terms of increasing demand

– No source gets resource share larger than its
demand

– Sources with unsatisfied demands get equal share
of resource

12

Implementing Max-min Fairness

• Use separate queues per flow
– Round-robin scheduling across queues

• Why not simple round robin at packet level?
– Variable packet length � can get more service by
sending bigger packets

• Ideally: Bitwise round robin among all queues

11/29/2007

5

13

Bit-by-bit RR Illustration

• Not feasible to
interleave bits on
real networks
– FQ simulates bit-
by-bit RR

14

Bit-by-bit RR Simulation
• Single flow: clock ticks when a bit is
transmitted. For packet i:
– Pi = length, Ai = arrival time, Si = begin transmit
time, Fi = finish transmit time

– Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all
active flows is transmitted � round number
– Can calculate Fi for each packet if number of flows
is know at all times
• Why do we need to know flow count? � need to know A �
This can be complicated

15

Fair Queuing
• Mapping bit-by-bit schedule onto packet
transmission schedule

• Transmit packet with the lowest Fi at any
given time

11/29/2007

6

16

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ) � Flows can have weight
Key to QoS, as we will see in next class.

17

No Pre-emption

F=10

Flow 1
(arriving)

Flow 2
transmitting

F=2

OutputF=5

F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

18

Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

– Need flows to be adaptive to avoid congestion collapse

• Complex state
– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
– Classification into flows may be hard
– Must keep queues sorted by finish times
– Must track number of flows at fine time scales

11/29/2007

7

19

Token Bucket for Traffic Policing
at the Network Edge

Tokens enter
bucket at rate r

Bucket depth
b: capacity of
bucket

Overflow

Tokens

Tokens

Packet

Enough tokens ����
packet goes through,
tokens removed

Tokens

Packet

Not enough
tokens ���� wait
for tokens to
accumulate

20

Token Bucket Characteristics
• On the long run, rate is limited to r

• On the short run, a burst of size b can be
sent

• Amount of traffic entering at interval T is
bounded by:
– Traffic = b + r*T
– Can provide a lose sense of isolation among flows.

• Especially because the send rate of each flow is throttled
at the source

• Still need some mechanism within the network to ensure
performance guarantees

