
1

CS 640: Introduction to Computer
Networks

Yu-Chi Lai

Lecture 18 -
Peer-to-Peer

The Road Ahead
• p2p file sharing techniques

– Downloading: Whole-file vs. chunks
– Searching

• Centralized index (Napster, etc.)
• Flooding (Gnutella, etc.)
• Smarter flooding (KaZaA, …)
• Routing (Freenet, etc.)

• Challenges
– Fairness, freeloading, security, …

P2p file-sharing
• Quickly grown in popularity

– Dozens or hundreds of file sharing applications

– 35 million American adults use P2P networks --
29% of all Internet users in US!

– Audio/Video transfer now dominates traffic on the
Internet

2

What’s out there?

DHTs

eDonkey
2000

KaZaA
(bytes, not
chunks)

BitTorrentChunk

Based

FreenetGnutellaNapsterWhole

File

RouteSuper-node
flood

FloodCentral

Publishing/Searching

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data…

Client
Lookup(“title”)

?

Searching

• Needles vs. Haystacks
– Searching for top 40, or an obscure punk
track from 1981 that nobody’s heard of?

• Search expressiveness
– Whole word? Regular expressions? File
names? Attributes? Whole-text search?
• (e.g., p2p gnutella or p2p google?)

3

Framework

• Common Primitives:
– Join: how to I begin participating?

– Publish: how do I advertise my file?

– Search: how to I find a file?

– Fetch: how to I retrieve a file?

Napster: Overview
• History

– 1999: Sean Fanning launches Napster
– Peaked at 1.5 million simultaneous users
– Jul 2001: Napster shuts down

• Centralized Database:
– Join: on startup, client contacts central server
– Publish: reports list of files to central server
– Search: query the server => return someone that
stores the requested file

– Fetch: get the file directly from peer

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)
...

123.2.21.23

4

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

Napster: Discussion
• Pros:

– Simple

– Search scope is O(1)

– Controllable (pro or con?)

• Cons:
– Server maintains lot of state
– Server does all processing
– Single point of failure

Gnutella: Overview
• History:

– In 2000, J. Frankel and T. Pepper from Nullsoft released
Gnutella

– Soon many other clients: Bearshare, Morpheus, LimeWire…
– In 2001, many protocol enhancements including “ultrapeers”

• Query Flooding:
– Join: on startup, client contacts a few other nodes; these
become its “neighbors”
• Ping-Pong protocol

– Publish: no need
– Search: ask neighbors, who ask their neighbors, and so on...
when/if found, reply to sender.
• TTL limits propagation

– Fetch: get the file directly from peer

5

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

Gnutella: Discussion
• Pros:

– Fully de-centralized
– Search cost distributed
– Processing @ each node permits powerful search semantics

• Cons:
– Search scope is O(N)
– Search time is O(???)
– Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
– For scalability, does NOT search every node. May have to
re-issue query later

KaZaA: Overview
• Gnutella X Napster

– No didicated server
– But.. not all peers are equal!

• “Smart” Query Flooding:
– Join: on startup, client contacts a “supernode” ... may at some
point become one itself

– Publish: send list of files to supernode
– Search: send query to supernode, supernodes flood query
amongst themselves.

– Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

6

KaZaA: Network Design

“Super Nodes”

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)
...

123.2.21.23

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

7

KaZaA: Fetching
• More than one node may have requested file...

• How to tell?
– Must be able to identify similar files with not necessarily
same filename

– Same filename not necessarily same file...

• Use Hash of file
– KaZaA uses UUHash: fast, but not secure
– Alternatives: MD5, SHA-1

• How to fetch?
– Get bytes [0..1000] from A, [1001...2000] from B
– Alternative: Erasure Codes

Stability and Superpeers
(Supernodes)

• Why superpeers?
– Query consolidation

• Many connected nodes may have only a few files

• Propagating a query to a sub-node would take
more b/w than answering it yourself

• Superpeer selection is time-based
– How long you’ve been on is a good predictor
of how long you’ll be around.

KaZaA: Discussion
• Pros:

– Tries to take into account node heterogeneity:
• Bandwidth

• Host Computational Resources

• Host Availability (?)

• Cons:
– Mechanisms easy to circumvent

• Can freeload easily

– Still no real guarantees on search scope or search time

• Similar behavior to Gnutella, but better.

8

BitTorrent: History
• Key Motivation:

– Popularity exhibits temporal locality (Flash
Crowds)

– E.g., Slashdot effect, CNN on 9/11, new
movie/game release

• Focused on Efficient Fetching, not Searching:
– Distribute the same file to all peers
– Single publisher, multiple downloaders

• Has some “real” publishers

BitTorrent: Overview
• Swarming:

– Publish: Run a tracker server.
– Search: Out-of-band. E.g., use Google to find a tracker for
the file you want.

– Join: contact centralized “tracker” server, get a list of
peers.

– Fetch: Download chunks of the file from your peers. Upload
chunks you have to them.

• Big differences from Napster:
– Chunk based downloading
– “few large files” focus
– Anti-freeloading mechanisms

BitTorrent: Publish/Join

Tracker

9

BitTorrent: Fetch

BitTorrent: Sharing Strategy
• Employ “Tit-for-tat” sharing strategy
– A is downloading from some other people

• A will let the fastest N of those download from
him

– Be optimistic: occasionally let freeloaders
download
• Otherwise no one would ever start!
• Also allows you to discover better peers to
download from when they reciprocate

BitTorrent: Discussion

• Pros:
– Works reasonably well in practice
– Gives peers incentive to share resources; avoids
freeloaders

• Cons:
– Pareto Efficiency relatively weak condition
– Central tracker server needed to bootstrap swarm
– (Tracker is a design choice, not a requirement, as
you know from your projects. Could easily combine
with other approaches.)

10

Distrubuted Hash Table:
Overview

• Decentralized Routing:
– Join: locate at the nearest hashing area by key

– Publish: use the key to insert the document

– Search: use the key to look up the location

– Fetch: the terminal node sends a reply along the
route specified by the intermediate nodes’
records of pending requests

Locate An Object

Table in A Node

11

Add A New Node

DHT: Discussion
• Pros:

– Self-organize into a distributed, clustered
structure where nodes tend to hold data
items that are close together in key space

– All node communications are identical

– Simple data structure
• Cons:
– No guarantee on finding the piece of data

P2P: Summary
• Many different styles; remember pros and cons of
each
– centralized, flooding, swarming, unstructured and structured
routing

• Lessons learned:
– Single points of failure are very bad
– Flooding messages to everyone is bad
– Underlying network topology is important
– Not all nodes are equal
– Need incentives to discourage freeloading
– Privacy and security are important
– Structure can provide theoretical bounds and guarantees

