CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 1 Introduction

http://www.cs.wisc.edu/~akella/C5640/F07

Goals of This Class

- · Understand principles and practice of networking
- · How are modern networks designed? Operated? Managed?
- Performance and design trade-offs in network protocols and applications
- How do network applications work? How to write applications that use the network?
 Hands-on approach to understand network internals
- How will different aspects of networking evolve in the future?

Goal of Networking

- Enable *communication* between *network applications* on different *end-points*
 - End-points? computers, cell phones....
 - Application? Web, Peer to Peer, Streaming video, IM Communication? transfer bits or information across a "network"
 - Network must understand application needs/demands
 - What data rate?Traffic pattern? (bursty or constant bit rate)

 - Traffic target? (multipoint or single destination, mobile or fixed)
 App sensitivity? (to delay, "jitter", loss)
 Difficulty: Network may not know these in the first place!
- How does the application "use" the network? Peer to peer: how to find nearest host Web: how to modulate sending rate? Coexist with other users/apps?

3

Defining a "Network"

Network = nodes + links - Will build on this soon

- Intentionally vague. There are several different networks:
 - The Internet
 - Wisc CS network
 - Telephone network
 - Home wireless networks
 - Others sensor nets, "On Star", cellular networks
- Our focus on Internet
 - Also explore important common issues and challenges

Challenges for Networking

- Accommodate different geographic scopes - The Internet vs. home network
- Enable scale
 - CS network vs. the Internet
- Seamlessly integrate different application types - Email vs. video conferencing
- Independent administration and Trust

 - Corporate network owned by one entity
 Internet owned and managed by 17,000 network providers · Independent, conflicting interests

Circuit Switching Discussion

Positives

- Fast and simple data transfer, once the circuit has been established
- Predictable performance since the circuit provides *isolation* from other users
 E.g. guaranteed max bandwidth
- Negatives

 - How about bursty traffic
 Circuit will be idle for significant periods of time
 - Also, can't send more than max rate
 - Circuit set-up/tear down is expensive - Also, reconfiguration is slow
 - Fast becoming a non-issue

Packets vs. Circuits

Efficient

- Can send from any input that is ready
 No notion of wastage of resources that could be used otherwise
- Contention (i.e. no isolation)
- Congestion - Delay

.

- Accommodates bursty traffic
 But need packet buffers
- Address look-up and forwarding
 Need optimization
- Packet switching pre-dominant - Circuit switching used on large time-scales, low granularities

"The Internet"

- Internet vs. internet
- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs) and end-networks, providing data communications services.
 - Network of internetworks, and more
 - About 17,000 different ISP networks make up the Internet
 - Many other "end" networks
 - 100,000,000s of hosts

Internet Design Issues

- Extra Slides...
 - We will cover these topics in greater detail in future lectures

18

Key Issues: Network Service Model

- What is the service model?
 - Defines what to expect from the network Best-effort: packets can get lost, no guaranteed delivery

- What if you want more?
 Performance guarantees (QoS)

 - Reliability Corruption
 - Lost packets
 - In-order delivery for file chunks
 - Etc...

Meeting Application Demands

· Sometimes network can do it

- E.g., Quality of Service
 - $\boldsymbol{\cdot}$ Benefits of circuit switching in packet-switched net
 - Hard in the Internet, easy in restricted contexts
 - Lecture 20

• OR hosts can do it

- E.g., end-to-end *Transport protocols*
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.

 - Lectures 16-19

To Summarize ...

Networks implement many functions

- Links
- Sharing/Multiplexing
- Routing
- Addressing/naming
- Reliability
- Flow control
- Fragmentation
- Etc....

27