
Page 1

1

CS 640: Introduction to
Computer Networks

Aditya Akella

Lecture 2
Layering, Protocol Stacks,

and Standards

2

Today’s Lecture

• Layers and Protocols

• A bit about applications

3

Network Communication:
Lots of Functions Needed

• Links
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation

How do you implement these functions?
Key: Layering and protocols

Page 2

4

What is Layering?
• A way to deal with complexity

– Add multiple levels of abstraction

– Each level encapsulates some key functionality

– And exports an interface to other components

– Example?

• Layering: Modular approach to implementing
network functionality by introducing
abstractions

• Challenge: how to come up with the “right”
abstractions?

5

Example of Layering
• Software and hardware for communication

between two hosts

• Advantages:
– Simplifies design and implementation
– Easy to modify/evolve

Link hardware

Host-to-host connectivity

Application-to-application channels

Application semantics

6

What is a Protocol?

• Could be multiple abstractions at a given level
– Build on the same lower level
– But provide diferent service to higher layers

• Protocol: Abstract object or module in layered
structure

Link hardware

Host-to-host connectivity

Request-Reply

Application

Message stream

Page 3

7

1. Protocols Offer Interfaces

• Each protocol offers interfaces
– One to higher-level protocols on the same end

hosts
• Expects one from the layers on which it builds
• Interface characteristics, e.g. IP service model

– A “peer interface” to a counterpart on destinations
• Syntax and semantics of communications
• (Assumptions about) data formats

• Protocols build upon each other
– Adds value, improves functionality overall

• E.g., a reliable protocol running on top of IP

– Reuse, avoid re-writing
• E.g., OS provides TCP, so apps don’t have to rewrite

8

2. Protocols Necessary for
Interoperability

• Protocols are the key to interoperability.
– Networks are very heterogenous:

– The hardware/software of communicating parties are often
not built by the same vendor

– Yet they can communicate because they use the same
protocol

• Actually implementations could be different
• But must adhere to same specification

• Protocols exist at many levels.
– Application level protocols
– Protocols at the hardware level

Hardware/link

Network

Application

Ethernet: 3com, etc.

Routers: cisco, juniper etc.

App: Email, AIM, IE etc.

9

OSI Model

• One of the first standards for layering: OSI

• Breaks up network functionality into seven
layers

• This is a “reference model”
– For ease of thinking and implementation

• A different model, TCP/IP, used in practice

Page 4

10

The OSI Standard: 7 Layers
1. Physical: transmit bits (link)

2. Data link: collect bits into frames and transmit frames
(adaptor/device driver)

3. Network: route packets in a packet switched network

4. Transport: send messages across processes end2end

5. Session: tie related flows together

6. Presentation: format of app data (byte ordering, video
format)

7. Application: application protocols (e.g. FTP)

• OSI very successful at shaping thought

• TCP/IP standard has been amazingly successful, and it’s not
based on a rigid OSI model

11

OSI Layers and Locations

Bridge/
Switch

Full fledged
packet switch:
use dst addr
to route

Router/
Gateway

Forward using
network layer
addresses

Host Host

Application

Transport

Network

Data Link

Presentation

Session

Physical

Repeater/
Hub

Simply copy
packets out

12

The Reality: TCP/IP Model

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn… Network protocols implemented by a
comb of hw and sw.

Interconnection of n/w technologies
into a single logical n/w

Two transport protocols: provide logical
channels to apps

App protocols

Note: No strict layering.

App writers can define apps that run on any lower level protocols.

Page 5

13

The Thin Waist

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist: minimal, carefully chosen functions.
Facilitates interoperability and rapid evolution

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

14

TCP/IP vs OSI

Application
(plus

libraries)

TCP/UDP
IP

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

15

TCP/IP Layering

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical

Page 6

16

Layers & Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

Header

17

Protocol Demultiplexing
• Multiple choices at each layer

• How to know which one to pick?

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP
Many

Networks

18

Multiplexing & Demultiplexing

• Multiple implementations
of each layer
– How does the receiver know

what version/module of a
layer to use?

• Packet header includes a
demultiplexing field
– Used to identify the right

module for next layer
– Filled in by the sender
– Used by the receiver

• Multiplexing occurs at
multiple layers. E.g., IP,
TCP, …

IP

TCP

IP

TCP

V/HL TOS Length

ID Flags/Offset

TTL Prot. H. Checksum

Source IP address

Destination IP address

Options..

Page 7

19

Layering vs Not
• Layer N may duplicate layer N-1 functionality

– E.g., error recovery

• Layers may need same info (timestamp, MTU)

• Strict adherence to layering may hurt performance

• Some layers are not always cleanly separated
– Inter-layer dependencies in implementations for performance

reasons
– Many cross-layer assumptions, e.g. buffer management

• Layer interfaces are not really standardized.
– It would be hard to mix and match layers from independent

implementations, e.g., windows network apps on unix (w/o
compatibility library)

20

Applications;
Application-Layer Protocols

• Application: communicating,
distributed processes

– Running in network hosts in
“user space”

– N/w functionality in kernel
space

– Exchange messages to
implement app

– e.g., email, file transfer, the
Web

• Application-layer protocols
– One “piece” of an app

– Define messages exchanged by
apps and actions taken

– Use services provided by lower
layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

21

Writing Applications: Some
Design Choices

• Communication model:
– Client-server or peer-to-peer

– Depends on economic and usage models

• Transport service to use?
– “TCP” vs “UDP”

– Depends on application requirements

Page 8

22

Client-Server Paradigm vs. P2P

Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
• Initiates contact with server

(“speaks first”)

• Typically requests service from
server,

• For Web, client is implemented in
browser; for e-mail, in mail reader

Server:
• Provides requested service to client

• e.g., Web server sends requested
Web page, mail server delivers e-
mail

• P2P is a very different model
– No notion of client or server

request

reply

23

Choosing the Transport
Service

Data loss
• Some applications (e.g.,

audio) can tolerate some
loss

• Other applications (e.g.,
file transfer, telnet)
require 100% reliable data

transfer

Timing
• Some applications (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
• Some applications (e.g., multimedia) require a minimum

amount of bandwidth to be “effective”

• Other applications (“elastic apps”) will make use of whatever

bandwidth they get

24

Transmission Control
Protocol (TCP)

TCP
• Reliable – guarantee delivery
• Byte stream – in-order

delivery
• Connection-oriented – single

socket per connection
• Setup connection followed

by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented
• Setup connection followed

by conversation

Example TCP applications
Web, Email, Telnet

Page 9

25

User Datagram Protocol (UDP)

Example UDP applications
Multimedia, voice over IP

UDP
• No guarantee of delivery
• Not necessarily in-order

delivery
• Datagram – independent

packets; connectionless
• Must address each packet

Postal Mail
• Unreliable
• Not necessarily in-order

delivery
• Letters sent independently
• Must address each reply

26

Transport Service Requirements
of Common Applications

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

file transfer
e-mail

web documents
real-time audio/

video
stored audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

