
Page 1

Yu-Chi Lai

Lecture 3
Network Programming

CS 640: Computer Networking

• Client-server model
• Sockets interface
• Socket primitives
• Example code for echoclient and 
echoserver

• Debugging With GDB
• Programming Assignment 1 (MNS)

Topics

Client/server model
• Client asks (request) – server provides (response)
• Typically: single server - multiple clients 
• The server does not need to know anything about the 

client
– even that it exists

• The client should always know something about the 
server
– at least where it is located

Client
process

Server
process

1. Client sends request

2. Server 
handles
request

3. Server sends response4. Client 
handles
response

Resource

Note: clients and servers are processes running on hosts 
(can be the same or different hosts).



Page 2

Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

• Address the machine on the network
– By IP address 

• Address the process
– By the “port”-number

• The pair of IP-address + port – makes up a “socket-address”

Note: 3479 is an
ephemeral port allocated

by the kernel 

Note: 80 is a well-known port
associated with Web servers

Clients
• Examples of client programs

– Web browsers, ftp, telnet, ssh

• How does a client find the server?
– The IP address in the server socket address identifies the 

host

– The (well-known) port in the server socket address identifies 
the service, and thus implicitly identifies the server process 
that performs that service.

– Examples of well known ports
• Port 7: Echo server

• Port 23: Telnet server

• Port 25: Mail server

• Port 80: Web server

Using Ports to Identify 
Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client



Page 3

Servers
• Servers are long-running processes (daemons).

– Created at boot-time (typically) by the init process 
(process 1)

– Run continuously until the machine is turned off.

• Each server waits for requests to arrive on a 
well-known port associated with a particular 
service.
– Port 7: echo server
– Port 23: telnet server
– Port 25: mail server
– Port 80: HTTP server

• Other applications should choose between 1024 and 
65535

See /etc/services for a 
comprehensive list of the 
services available on a 
Linux machine.

The interface that the OS provides to its networking 
subsystem

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

physical layer

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

physical layer

OS network

stack

Sockets as means for inter-process 
communication (IPC)

Client Process Server Process

Socket

OS network

stack

Socket

Internet

Internet

Internet

Sockets

• What is a socket?
– To the kernel, a socket is an endpoint of communication.
– To an application, a socket is a file descriptor that lets the 

application read/write from/to the network.
• Remember: All Unix I/O devices, including networks, are 

modeled as files.

• Clients and servers communicate with each by reading 
from and writing to socket descriptors.

• The main distinction between regular file I/O and 
socket I/O is how the application “opens” the socket 
descriptors.



Page 4

Socket Programming Cliches
• Network Byte Ordering

– Network is big-endian, host may be big- or little-endian

– Functions work on 16-bit (short) and 32-bit (long) values 

– htons() / htonl() : convert host byte order to network byte order

– ntohs() / ntohl(): convert network byte order to host byte order

– Use these to convert network addresses, ports, …

• Structure Casts
– You will see a lot of ‘structure casts’

struct sockaddr_in serveraddr; 
/* fill in serveraddr with an address */
…
/* Connect takes (struct sockaddr *) as its second argument */ 
connect(clientfd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr)); 
…

Socket primitives
• SOCKET: int socket(int domain, int type, int 

protocol);
– domain := AF_INET (IPv4 protocol) 
– type := (SOCK_DGRAM or SOCK_STREAM )
– protocol := 0 (IPPROTO_UDP or IPPROTO_TCP)
– returned: socket descriptor (sockfd), -1 is an error

• BIND: int bind(int sockfd, struct sockaddr 
*my_addr, int addrlen);
– sockfd - socket descriptor (returned from socket())
– my_addr: socket address, struct sockaddr_in is used
– addrlen := sizeof(struct sockaddr)

struct sockaddr_in { 

unsigned short  sin_family;  /* address family (always AF_INET) */ 

unsigned short  sin_port;    /* port num in network byte order */ 

struct in_addr sin_addr;    /* IP addr in network byte order */ 

unsigned char   sin_zero[8]; /* pad to sizeof(struct sockaddr) */ 

}; 

• LISTEN: int listen(int sockfd, int backlog); 
– backlog: how many connections we want to queue

• ACCEPT: int accept(int sockfd, void *addr, int *addrlen);
– addr: here the socket-address of the caller will be written
– returned: a new socket descriptor (for the temporal socket)

• CONNECT: int connect(int sockfd, struct sockaddr 
*serv_addr, int addrlen); //used by TCP client
– parameters are same as for bind()

• SEND: int send(int sockfd, const void *msg, int len, int 
flags);
– msg: message you want to send
– len: length of the message
– flags := 0
– returned: the number of bytes actually sent

• RECEIVE: int recv(int sockfd, void *buf, int len, unsigned int 
flags);
– buf: buffer to receive the message
– len: length of the buffer (“don’t give me more!”)
– flags := 0
– returned: the number of bytes received



Page 5

• SEND (DGRAM-style): int sendto(int sockfd, const void *msg, 
int len, int flags, const struct sockaddr *to, int tolen);
– msg: message you want to send
– len: length of the message
– flags := 0
– to: socket address of the remote process
– tolen: = sizeof(struct sockaddr)
– returned: the number of bytes actually sent

• RECEIVE (DGRAM-style): int recvfrom(int sockfd, void *buf, 
int len, unsigned int flags, struct sockaddr *from, int 
*fromlen);
– buf: buffer to receive the message
– len: length of the buffer (“don’t give me more!”)
– from: socket address of the process that sent the data
– fromlen:= sizeof(struct sockaddr)
– flags := 0
– returned: the number of bytes received

• CLOSE: close (socketfd);

Client+server: connectionless

CREATE

BIND

SEND

SEND

CLOSE

RECEIVE

Client+server: connection-oriented

Concurrent server

SOCKET

BIND

LISTEN

CONNECT

ACCEPT

RECEIVE

RECEIVE

SEND

SEND

CLOSE

TCP three-way 
handshake



Page 6

Echo Client-Server

#include’s

#include <stdio.h>      /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(),          

sendto(), and recvfrom() */
#include <arpa/inet.h>  /* for sockaddr_in and 

inet_addr() */
#include <stdlib.h>     /* for atoi() and exit() */
#include <string.h>     /* for memset() */
#include <unistd.h>     /* for close() */

#include <netdb.h> /* Transform the ip address 

string to real uint_32 */

#define ECHOMAX 255     /* Longest string to echo */

EchoClient.cpp -variable declarations

int main(int argc, char *argv[])
{

int sock;                        /* Socket descriptor */
struct sockaddr_in echoServAddr; /* Echo server address */
struct sockaddr_in fromAddr;     /* Source address of echo */
unsigned short echoServPort =2000;     /* Echo server port */
unsigned int fromSize;           /* address size for recvfrom() */
char *servIP=“172.24.23.4”;   /* IP address of server */
char *echoString=“I hope this works”;    /* String to send to 
echo server */
char echoBuffer[ECHOMAX+1];      /* Buffer for receiving 
echoed string */
int echoStringLen;               /* Length of string to echo */
int respStringLen;               /* Length of received response */



Page 7

EchoClient.c - creating the socket

/* Create a datagram/UDP socket and 
error check */ 

sock = socket(AF_INET, SOCK_DGRAM, 
0);

if(sock <= 0){ 

printf("Socket open error\n");

exit(1);

}

/* Construct the server address structure */ 
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out 

structure */
echoServAddr.sin_family = AF_INET; /* Internet addr family */ 
inet_pton(AF_INET, servIP, &echoServAddr.sin_addr); /* Server IP 

address */ 
echoServAddr.sin_port = htons(echoServPort); /* Server port */

/* Send the string to the server */ 
echoStringLen = strlen(echoString);
sendto(sock, echoString, echoStringLen, 0, (struct sockaddr *) 

&echoServAddr, sizeof(echoServAddr);

EchoClient.cpp – sending

EchoClient.cpp – receiving and printing

/* Recv a response */ 
fromSize = sizeof(fromAddr); 
recvfrom(sock, echoBuffer, ECHOMAX, 0, (struct sockaddr *) 

&fromAddr, &fromSize);

/* Error checks like packet is received from the same server*/
…

/* null-terminate the received data */ 
echoBuffer[echoStringLen] = '\0'; 
printf("Received: %s\n", echoBuffer); /* Print the echoed arg */
close(sock); 
exit(0);
} /* end of main () */



Page 8

EchoServer.cpp – creating socket
int main(int argc, char *argv[])
{

int sock;                        /* Socket */
struct sockaddr_in echoServAddr; /* Local address */
struct sockaddr_in echoClntAddr; /* Client address */
unsigned int cliAddrLen;         /* Length of incoming message */
char echoBuffer[ECHOMAX];        /* Buffer for echo string */
unsigned short echoServPort =2000; /* Server port */
int recvMsgSize;                 /* Size of received message */

/* Create socket for sending/receiving datagrams */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if(sock <= 0){ 

printf("Socket open error\n");
exit(1);

}

/* Construct local address structure*/
memset(&echoServAddr, 0, sizeof(echoServAddr));  /* Zero out structure 
*/
echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr =htonl(INADDR_ANY); 
echoServAddr.sin_port = htons((uint16_t) echoServPort); /* Local port */

/* Bind to the local address */
int error_test = bind(sock, (struct sockaddr *) &echoServAddr, 
sizeof(echoServAddr));
if(error_test < 0){
printf("Binding error\n");
exit(1);

}

EchoServer.cpp – binding

for (;;) /* Run forever */
{

cliAddrLen = sizeof(echoClntAddr);

/* Block until receive message from a client */
recvMsgSize = recvfrom(sock, echoBuffer, ECHOMAX, 0,

(struct sockaddr *) &echoClntAddr, &cliAddrLen);

printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));

/* Send received datagram back to the client */
sendto(sock, echoBuffer, recvMsgSize, 0, 

(struct sockaddr *) &echoClntAddr, sizeof(echoClntAddr);
}

} /* end of main () */

Error handling is must

EchoServer.cpp – receiving and echoing



Page 9

Socket Programming Help
• man is your friend

– man accept

– man sendto

– Etc. 

• The manual page will tell you:
– What #include<> directives you need at the 
top of your source code

– The type of each argument

– The possible return values

– The possible errors (in errno)

Debugging with gdb
• Prepare program for debugging

– Compile with “-g” (keep full symbol table)
– Don’t use compiler optimization (“-O”, “–O2”, …)

• Two main ways to run gdb
– On program directly

• gdb progname

• Once gdb is executing we can execute the program with:
– run args

– On a core (post-mortem)
• gdb progname core

• Useful for examining program state at the point of crash

• Extensive in-program documentation exists
– help (or  help <topic> or  help <command> )

More information…

• Socket programming
– W. Richard Stevens, UNIX Network Programming 
– Infinite number of online resources
– http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

• GDB
– Official GDB homepage: 

http://www.gnu.org/software/gdb/gdb.html
– GDB primer: http://www.cs.pitt.edu/~mosse/gdb-note.html



Page 10

Project Partners

• If you don’t have a partner
– Stay back after class

• Now…
– Overview of PA 1


