
Page 1

CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 4 -
Application Protocols, Performance

Applications
FTP: The File Transfer Protocol

• Transfer file to/from remote host

• Client/server model

– Client: side that initiates transfer (either to/from remote)

– Server: remote host

• ftp: RFC 959

• ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

FTP: Separate Control, Data
Connections

• Ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

• Two parallel TCP connections
opened:
– Control: exchange commands,

responses between client,
server.

“out of band control”

– Data: file data to/from server

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

• Server opens data connection to client
– Exactly one TCP connection per file requested.

– Closed at end of file

– New file requested � open a new data connection

• Ftp server maintains “state”: current directory, earlier
authentication

Page 2

HTTP Basics
• HTTP layered over bidirectional byte stream

– Almost always TCP

• Interaction
– Client sends request to server, followed by response from

server to client
– Requests/responses are encoded in text

• Contrast with FTP
– Stateless

• Server maintains no information about past client requests
– There are some caveats

– In-band control
• No separate TCP connections for data and control

Typical HTTP Workload
(Web Pages)

• Multiple (typically small) objects per
page
– Each object a separate HTTP session/TCP
connection

• File sizes
– Why different than request sizes?
– Heavy-tailed (both request and file sizes)

• “Pareto” distribution for tail
• “Lognormal” for body of distribution

Non-Persistent HTTP

1. Client initiates TCP connection
2. Client sends HTTP request for index.html
3. Server receives request, retrieves object, sends

out HTTP response
4. Server closes TCP connection
5. Client parses index.html, finds references to 10

JPEGs
6. Repeat steps 1—4 for each JPEG

(can do these in parallel)

http://www.cs.wisc.edu/index.html

Page 3

Issues with Non-Persistent HTTP

• Two “round-trip times” per object
– RTT will be defined soon

• Server and client must maintain state per
connection
– Bad for server
– Brand new TCP connection per object

• TCP has issues starting up (“slow start”)
– Each object face to face these performance issues

• HTTP/1.0

The Persistent HTTP Solution
• Server leaves TCP connection open after first
response
– W/O pipelining: client issues request only after
previous request served
• Still incur 1 RTT delay

– W/ pipelining: client sends multiple requests back
to back
• Issue requests as soon as a reference seen
• Server sends responses back to back

– One RTT for all objects!

• HTTP/1.1

HTTP Request

Page 4

HTTP Request
• Request line

– Method
• GET – return URI

• HEAD – return headers only of GET response

• POST – send data to the server (forms, etc.)

– URL
• E.g. /index.html if no proxy

• E.g. http://www.cs.cmu.edu/~akella/index.html with a
proxy

– HTTP version

HTTP Request
• Request header fields

– Authorization – authentication info

– Acceptable document types/encodings

– From – user email

– If-Modified-Since

– Referrer – what caused this page to be requested

– User-Agent – client software

• Blank-line

• Body

HTTP Request Example
GET /~akella/index.html HTTP/1.1

Host: www.cs.wisc.edu

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)

Connection: Keep-Alive

Page 5

HTTP Response
• Status-line

– HTTP version
– 3 digit response code

• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase

HTTP Response
• Headers

– Location – for redirection
– Server – server software
– WWW-Authenticate – request for authentication
– Allow – list of methods supported (get, head, etc)
– Content-Encoding – E.g x-gzip
– Content-Length
– Content-Type
– Expires
– Last-Modified

• Blank-line

• Body

HTTP Response Example
HTTP/1.1 200 OK
Date: Thu, 14 Sep 2006 03:49:38 GMT
Server: Apache/1.3.33 (Unix) mod_perl/1.29 PHP/4.3.10

mod_ssl/2.8.22 OpenSSL/0.9.7e-fips
Last-Modified: Tue, 12 Sep 2006 20:43:04 GMT
ETag: “62901bbe-161b-45071bd8"
Accept-Ranges: bytes
Content-Length: 5659
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

<data data data>

Page 6

Cookies: Keeping “state”

Four components:
1) Cookie header line in the

HTTP response message

2) Cookie header line in
HTTP request message

3) Cookie file kept on user’s
host and managed by
user’s browser

4) Back-end database at
Web site

Example:
– Susan accesses Internet

always from same PC

– She visits a specific e-
commerce site for the
first time

– When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for ID

Many major Web sites use cookies
� keep track of users

� Also for convenience: personalization, passwords etc.

Cookies: Keeping “State” (Cont.)

client Amazon server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend

database

acce
ss

ac
ce
ss

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Performance Measures
• Latency or delay

– How long does it take a bit to traverse the
network

• Bandwidth
– How many bits can be crammed over the network in
one second?

• Delay-bandwidth product as a measure of
capacity

Page 7

Packet Delay: One Way and Round Trip

• Sum of a number of different delay components.

• Propagation delay on each link.
– Proportional to the length of the link

• Transmission delay on each link.
– Proportional to the packet size and 1/link speed

• Processing delay on each router.
– Depends on the speed of the router

• Queuing delay on each router.
– Depends on the traffic load and queue size

• This is one-way delay
– Round trip time (RTT) = sum of these delays on forward and

reverse path

Ignoring processing and queuing…�� ���� �� �� Prop + xmit

2*(Prop + xmit)

2*prop + xmit

Aside: When does cut-through matter?

Routers have finite speed (processing delay)

Routers may buffer packets (queueing delay)

�� �� ��Store &
Forward

Cut-through

Delay of
one packet

Average
sustained
throughput

Delay* +
Size

Throughput

* For first bit to arrive

Units: seconds +
bits/(bits/seconds)

Ignoring processing and queuing…

Page 8

0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

Some Examples
• How long does it take to send a 100 Kbit file?
10Kbit file?

Throughput
Latency 100 Kbit/s

500 µsec

10 msec

100 msec

1 Mbit/s

1.0005 0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

100 Mbit/s

0.1005 0.0105

0.11 0.02

0.2 0.11

0.0006

0.0101

0.1001

Bandwidth-Delay Product

• Product of bandwidth and delay (duh!)
– What is it above?

• What does this indicate?
– #bytes sender can xmit before first byte reaches receiver
– Amount of “in flight data”

• Another view point
– B-D product == “capacity” of network from the sending

applications point of view
– Bw-delay amount of data “in flight” at all time � network

“fully” utilized

50ms latency

1 Gbps bandwidth

TCP’s view of BW-delay product

• TCP expects receiver to acknowledge
receipt of packets

• Sender can keep up to RTT * BW bytes
outstanding
– Assuming full duplex link
– When no losses:

• 0.5RTT * BW bytes “in flight”, unacknowledged
• 05RTT * BW bytes acknowledges, acks “in
flight”

Page 9

Extra slides

Internet Architecture
• Background

– “The Design Philosophy of the DARPA Internet Protocols”
(David Clark, 1988).

• Fundamental goal: “Effective techniques for
multiplexed utilization of existing interconnected
networks”

• “Effective” � sub-goals; in order of priority:
1. Continue despite loss of networks or gateways
2. Support multiple types of communication service
3. Accommodate a variety of networks
4. Permit distributed management of Internet resources
5. Cost effective
6. Host attachment should be easy
7. Resource accountability

Survivability
• If network disrupted and reconfigured

– Communicating entities should not care!
– This means:

• Transport interface only knows “working” and “not working”
• Not working == complete partition.
• Mask all transient failures

• How to achieve such reliability?
– State info for on-going conversation must be protected
– Where can communication state be stored?

• If lower layers lose it � app gets affected
• Store at lower layers and replicate

– But effective replication is hard

Page 10

Fate Sharing

• Lose state information for an entity if (and
only if?) the entity itself is lost
– Protects from intermediate failures

– Easier to engineer than replication

– Switches are stateless

• Examples:
– OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots

Connection
State State

No State

