CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 5 -Encoding and Data Link Basics

Binary data to Signals

- Modulation: changing attributes of signal to effect information transmissions
- Encoding
 - How to convert bits to "digital" signals
 - Very complex, actually
 - Error recovery, clock recovery,...

Why Do We Need Encoding?

- Meet certain electrical constraints. Receiver needs enough "transitions" to keep track of the transmit clock
 - -Avoid receiver saturation
- Create control symbols, besides regular data symbols. E.g. start or end of frame, escape, ... Important in packet switching
- Error detection or error corrections.
- Some codes are illegal so receiver can detect certain classes of errors Minor errors can be corrected by having multiple adjacent signals mapped to the same data symbol -
- Encoding can be very complex, e.g. wireless.

Encoding

- Use two signals, high and low, to encode 0 and 1.
- Transmission is synchronous, i.e., a clock is used to sample the signal.
 - In general, the duration of one bit is equal to one or two clock ticks
 - Receiver's clock must be synchronized with the sender's clock
- Encoding can be done one bit at a time or in blocks of, e.g., 4 or 8 bits.

4B/5B Encoding

- Data coded as symbols of 5 line bits => 4 data bits, so 100 Mbps uses 125 MHz.
 - Uses less frequency space than Manchester encoding
- Each valid symbol has no more than one leading zero and no more than two trailing zeros
- At least two 1s → Get dense transitions
 Uses NRZI to encode the 5 code bits
- What happens if there are consecutive 1s?
- Example: FDDI.

4B/5B Encoding

16 data symbols, 8 control symbols

 Control symbols: idle, begin frame, etc.
 Remaining 8 are invalid

2			
Data	Code	Data	Code
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Other Encodings

- 8B/10B: Fiber Channel and Gigabit Ethernet
 - DC balance
- 64B/66B: 10 Gbit Ethernet
- B8ZS: T1 signaling (bit stuffing)

- Framing: encapsulating a network layer
 Add header, mark and detect frame boundaries, ...
- 2. Error control: error detection and correction to deal with bit errors. May also include other reliability support, e.g. retransmission .
- 3. Error correction: Correct bit errors if possible
- 4. Flow control: avoid sender outrunning the receiver.
- **Media access:** controlling which frame should be sent over the link next 5.

 - Easy for point-to-point links Half versus full duplex Harder for multi-access links Who gets to send?
- 6. Switching: How to send frames to the eventual destination?

