
Page 1

CS 640: Introduction to
Computer Networks

Aditya Akella

Lecture 5 -
Encoding and Data Link Basics

Signals, Data and Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets
0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

Binary data to Signals
• Modulation: changing attributes of
signal to effect information
transmissions

• Encoding
– How to convert bits to “digital” signals

– Very complex, actually

– Error recovery, clock recovery,…

Page 2

Modulation Schemes

Data

Amplitude
Modulation

Frequency
Modulation

Phase
Modulation

Why Do We Need Encoding?
• Meet certain electrical constraints.

– Receiver needs enough “transitions” to keep track of the transmit
clock

– Avoid receiver saturation

• Create control symbols, besides regular data symbols.
– E.g. start or end of frame, escape, ...
– Important in packet switching

• Error detection or error corrections.
– Some codes are illegal so receiver can detect certain classes of

errors
– Minor errors can be corrected by having multiple adjacent signals

mapped to the same data symbol

• Encoding can be very complex, e.g. wireless.

Encoding
• Use two signals, high and low, to encode 0 and 1.

• Transmission is synchronous, i.e., a clock is used to
sample the signal.
– In general, the duration of one bit is equal to one or two

clock ticks

– Receiver’s clock must be synchronized with the sender’s
clock

• Encoding can be done one bit at a time or in blocks of,
e.g., 4 or 8 bits.

Page 3

Non-Return to Zero (NRZ)

• 1 -> high signal; 0 -> low signal

• Long sequences of 1’s or 0’s can cause problems:
– Hard to recover clock

– Difficult to interpret 0’s and 1’s

V 0

.85

-.85

0 0 0 11 0 1 0 1

Non-Return to Zero Inverted (NRZI)

• 1 -> make transition; 0 -> signal stays the same

• Solves the problem for long sequences of 1’s, but
not for 0’s.

V 0

.85

-.85

0 0 0 11 0 1 0 1

Ethernet Manchester Encoding

• Positive transition for 0, negative for 1

• XOR of NRZ with clock

• Transition every cycle communicates clock (but need 2 transition times
per bit)

• Problem: doubles the rate at which signal transitions are made
– Less efficient
– Receiver has half the time to detect the pulse

V 0

.85

-.85

0 1 1 0

.1µs

Page 4

4B/5B Encoding
• Data coded as symbols of 5 line bits => 4 data
bits, so 100 Mbps uses 125 MHz.
– Uses less frequency space than Manchester
encoding

• Each valid symbol has no more than one
leading zero and no more than two trailing
zeros
– At least two 1s � Get dense transitions

• Uses NRZI to encode the 5 code bits
– What happens if there are consecutive 1s?

• Example: FDDI.

4B/5B Encoding

0000
0001
0010
0011
0100
0101
0110
0111

11110
01001
10100
10101
01010
01011
01110
01111

Data Code

1000
1001
1010
1011
1100
1101
1110
1111

10010
10011
10110
10111
11010
11011
11100
11101

Data Code

•16 data symbols, 8 control symbols
–Control symbols: idle, begin frame, etc.
–Remaining 8 are invalid

Other Encodings
• 8B/10B: Fiber Channel and Gigabit
Ethernet
– DC balance

• 64B/66B: 10 Gbit Ethernet

• B8ZS: T1 signaling (bit stuffing)

Page 5

Datalink Protocol Functions
1. Framing: encapsulating a network layer

• Add header, mark and detect frame boundaries, …

2. Error control: error detection and correction to deal with bit
errors.

• May also include other reliability support, e.g. retransmission

3. Error correction: Correct bit errors if possible

4. Flow control: avoid sender outrunning the receiver.

5. Media access: controlling which frame should be sent over the
link next

– Easy for point-to-point links
• Half versus full duplex

– Harder for multi-access links
• Who gets to send?

6. Switching: How to send frames to the eventual destination?

Preamble Postamble

Framing

• A link layer function, defining which bits have which function

• Minimal functionality: mark the beginning and end of packets (or
frames).

• Some techniques:
– frame delimiter characters with character stuffing
– frame delimiter codes with bit stuffing
– synchronous transmission (e.g. SONET) out of band delimiters

Body

Byte Stuffing

• Mark end of frame with special character
– BISYNC uses “ETX”
– What happens when the user sends this character?

• Use escape character when controls appear in data

– Very common on serial lines; old technique
– View frame as a collection of bytes

Body

S
Y
N

S
Y
N

S
O
H

Header

S
T
X

E
T
X

C
R
C

Page 6

Byte Counting

• An alternative is to include a count of number of
bytes
– Next to the start of frame
– E.g. DDCMP
– Corruptions of count field may cause receiver to receive

incorrectly
– Include an error-check to help receiver realize this

BodyHeader

S
Y
N

S
Y
N

C
la
ss

Count

C
R
C

Bit Stuffing

• Treat frames as a sequence of bits

• Mark frames with special bit sequence
– Example, HDLC: 01111110 is a special sequence or “flag”

• Used at the beginning and end of frame
– But, must ensure data containing this sequence can be transmitted

• Flag can cross byte boundaries
– transmitter inserts a 0 when this is likely to appear in the data:

• 111111 -> 1111101
• must stuff a zero any time five 1s appear:

– receiver unstuffs.

• Problem with stuffing techniques: frame size depends on data
– Frames can be of different size
– Could lead to some inefficiencies

BodyHeader

C
R
CBeginning

Sequence
Ending

Sequence

