### CS 640: Computer Networks

#### Aditya Akella

Lecture 6 -Error/Flow Control &

Intro to Switching and Medium Access Control

# Error Coding

- Transmission process may introduce errors into a message.
  - Single bit errors versus burst errors
- · Detection: e.g. CRC
  - Requires a check that some messages are invalid
  - Hence requires extra bits
  - "redundant check bits"
- Correction
  - Forward error correction: many related code words map to the same data word
  - Detect errors and retry transmission



## 2-D Parity

- Make each byte even parity
- Finally, a parity byte for all bytes of the packet
- Example: five 7-bit character packet, even parity





• 2-bit errors can also be detected

0110100 1 1011010 0

1110101 1 1001011 0 1000110 1 odd number of 1's

• Example:

error bits-



### Cyclic Redundancy Codes (CRC)

- Commonly used codes that have good error detection properties

   Can catch many error combinations with a small number or redundant bits
- · Based on division of polynomials Errors can be viewed as adding terms to the polynomial
   Should be unlikely that the division will still work
- · Can be implemented very efficiently in hardware
- Examples:

  - CRC-32: Ethernet
     CRC-8, CRC-10, CRC-32: ATM

### Link Flow Control and Error Control

- Dealing with receiver overflow: flow control.
- Dealing with packet loss and corruption: error control.
- · Actually these issues are relevant at many layers.
  - Link layer: sender and receiver attached to the same "wire"
  - End-to-end: transmission control protocol (TCP) sender and receiver are the end points of a connection
- · How can we implement flow control?
  - "You may send" (windows, stop-and-wait, etc.)
  - "Please shut up" (source quench, 802.3x pause frames, etc.)

## Flow Control: A Naïve Protocol · Sender simply sends to the receiver whenever it has packets. • Potential problem: sender can outrun the receiver. - Receiver too slow, small buffer overflow, ... • Not always a problem: receiver might be fast enough. Sender Receiver











## What is Used in Practice?

- No flow or error control.
  - E.g. regular Ethernet, just uses CRC for error detection
- Flow control only.
  - E.g. Gigabit Ethernet
- Flow and error control.
  - E.g. X.25 (older connection-based service at 64 Kbs that guarantees reliable in order delivery of data)

#### Switching and Media Access Control

- How do we transfer packets between two hosts connected to the a switched network?
- Switches connected by point-to-point links -- store-and-forward.

  - Multiplexing and forwarding
     Used in WAN, LAN, and for home connections
  - Conceptually similar to "routing"
     But at the datalink layer instead of the network layer
- · Multiple access networks -- contention based.
- Multiple hosts are sharing the same transmission medium
   Used in LANs and wireless
  - Need to control access to the medium





### Three techniques for switching

- Global addresses connection-less
  - Routers keep next hop for destination
  - Packets carry destination address
- Virtual circuits connection oriented
  - Connection routed through network to set up state
  - Packets forwarded using connection state
- Source routing
  - Packet carries path





## **Global** Addresses

- Advantages
  - Stateless simple error recovery
- Disadvantages
  - Every switch knows about every destination Potentially large tables
  - All packets to destination take same route
  - Need special approach to fill table



## Virtual Circuits

#### Advantages

- Efficient lookup (simple table lookup)
- Can reserve bandwidth at connection setup
- Easier for hardware implementations
- Disadvantages
  - Still need to route connection setup request
  - More complex failure recovery must recreate connection state
- · Typical use  $\rightarrow$  fast router implementations
  - ATM combined with fix sized cells
    MPLS tag switching for IP networks





## Source Routing

- Advantages
  - Switches can be very simple and fast
- Disadvantages
  - Variable (unbounded) header size
  - Sources must know or discover topology (e.g., failures)
- Typical uses
  - Ad-hoc networks (DSR)
  - Machine room networks (Myrinet)

| Comparison        |                |                    |                                                           |
|-------------------|----------------|--------------------|-----------------------------------------------------------|
|                   | Source Routing | Global Addresses   | Virtual Circuits                                          |
| Header Size       | Worst          | OK – Large address | Best                                                      |
| Router Table Size | None           | Number of hosts    | Number of circuits                                        |
| Forward Overhead  | Best           | Table lookup       | Pretty Good                                               |
| Setup Overhead    | None           | None               | Connection Setur                                          |
| Error Recovery    | Tell all hosts | Tell all switches  | Tell all switches<br>and Tear down<br>circuit and re-rout |







### **Multiple Access Protocols**

- Prevent two or more nodes from transmitting at the same time over a broadcast channel.
  - If they do, we have a collision, and receivers will not be able to interpret the signal
- · Several classes of multiple access protocols.
  - Partitioning the channel, e.g. frequency-division or time division multiplexing
    - With fixed partitioning of bandwidth not flexible
  - Taking turns, e.g. token-based, reservation-based protocols, polling based
  - Contention based protocols, e.g. Aloha, Ethernet Next lecture

### Fiber Distributed Data Interface (FDDI) One token holder may send, with a time limit. • - known upper bound on delay. Optical version of 802.5 token ring, but multiple packets may travel in train: token released at end of frame. • 100 Mbps, 100km.

Optional dual ring for fault tolerance. CDDI: FDDI over unshielded twisted pair, shorter range



### Other "Taking Turn" Protocols

- Protocols
   Central entity polls stations, inviting them to transmit.
  - Simple design no conflicts
  - Not very efficient overhead of polling operation
- Stations reserve a slot for transmission.
  - For example, break up the transmission time in contention-based and reservation based slots
     Contention based slots can be used for short messages or
    - to reserve time • Communication in reservation based slots only allowed
    - after a reservation is made
  - Issues: fairness, efficiency