Follow-up from last class
- How do you know if a host supports IPv6?
 - Look whether it has an IPv4 mapped vs. IPv4 compatible IP address
 - Check whether it sends any IPv6 packets
 - See if there is an AAAA record for it when you do a DNS query

Roadmap
- Today: DNS
- Tuesday, Nov 4: HTTP and web
- Thursday, Nov 6: Clouds & Data Centers
- Tuesday, Nov 11: CDNs
- Thursday, Nov 13: Congestion control

Naming Hosts
- Thus far we have identified hosts using IP addresses and MAC address
 - Hard for humans to remember these identifiers
- Want to assign human readable names to hosts
 - Routing still needs IP addresses
 - Need a way to define and lookup the mapping between a hostname and an IP address
- Early Internet: a file mapping IP addresses to hostnames was manually updated and manually copied to all hosts in the Internet
 - Problem: does not scale
 - Still useful for small local networks -- look at the /etc/hosts file on a CS dept machine
- Domain name system (DNS)
 - Distributed name resolution system
 - Many name servers (NSs) distributed throughout the Internet -- in ISPs, in campus/enterprise networks, in department networks, etc.
 - Domain names (DNs) are hierarchical
 - A single NS doesn’t need to store the name for every host in the Internet
 - DNAs can be mapped to IPv4 addresses, IPv6 addresses, and other DNAs
 - Mapping can be changed over time, or based on other factors (e.g., geo location)
 - Queries are issued to a sequence of NSs
 - Each knows about a different part of the DN hierarchy
 - Answers can be cached to avoid the overhead of frequent lookups

Domain Name Hierarchy
- DNAs are processed right to left, with periods as the separator
 - Rightmost name is at the top of the hierarchy, and leftmost is at the bottom
- Rightmost name is referred to as the top-level domain (TLD)
 - Since DNS was invented in the US, originally TLDs were designed for the US -- edu, com, gov, mil, org, net
 - Expanded to include TLDs for countries -- uk, cn, etc.
 - Sometimes TLDs from other countries are used such that the full DN is a specific word or phrase -- e.g., bit.ly uses the ly TLD for the country Libya,
- Expanded to address high demand for .com -- .biz, .info, .tv, etc.
- Recently expanded to include arbitrary TLDs
 - Lots of contention over who should have the rights to a specific TLD
- Second from right is the second-level domain (SLD)
- DN consisting of 3+ names is often referred to as a subdomain
 - E.g., cs.wisc.edu is a subdomain of wisc.edu
- Example

 - Complete hierarchy only exists conceptually -- no single DNS server stores the entire hierarchy
 - How do we divide responsibility for different parts of the hierarchy to different DNS servers?

Zones
- Zone: a portion of the hierarchy that is managed by administrative entity
 - Internet Corporation for Assigned Names and Numbers (ICANN) is responsible for zone containing all TLDs
 - UW (DoIT) is responsible for zone containing wisc.edu and some subdomains (e.g., doit.wisc.edu)
 - CS department is responsible for zone containing cs.wisc.edu and all subdomains (e.g., cardinal.cs.wisc.edu, www.cs.wisc.edu, etc.)
 - Google is responsible for zone containing google.com and all subdomains (e.g., maps.google.com, scholar.google.com, mail.google.com, etc.)
- Two or more name servers (NSs) are responsible for each zone
 - Multiple NSs per zone to ensure availability in case of a failure
 - Each stores information for all domain names in the zone
 - Example

DNS Records
- Record has: name, type, value, and TTL
- Name = DN
- Types
 - A -- value is an IPv4 address
- AAAA -- value is an IPv6 address
- NS -- value is domain name for a DNS server that is responsible for the zone containing the DN
- CNAME -- value is another domain name for a particular host
- MX -- value is the domain name for a mail server that accepts messages for the DN
- TTL specifies how long another DNS server can cache the record
- Example
 - Root NS
 - edu, NS, a.edu-servers.net
 - edu, NS, c.edu-servers.net
 - ...
 - a.edu-servers.net, A, 192.5.6.30
 - c.edu-servers.net, A, 192.26.92.30
 - ...
 - edu NS
 - wisc.edu, NS, adns1.doit.wisc.edu
 - wisc.edu, NS, adns3.doit.wisc.edu
 - wisc.edu, NS, dns2.itd.umich.edu
 - ...
 - adns1.doit.wisc.edu, A, 144.92.9.21
 - adns3.doit.wisc.edu, A, 144.92.104.21
 - adns3.doit.wisc.edu, AAAA, 2607:f388::a53:3
 - dns2.itd.umich.edu, A, 192.12.80.222
 - ...
 - cmu.edu, NS, NSAUTH1.net.cmu.edu
 - ...
 - NSAUTH1.net.cmu.edu, A, 128.2.1.8
 - NSAUTH1.net.cmu.edu, AAAA, 2607:fb28::4
 - ...
 - wisc NS
 - cs.wisc.edu, NS, dns.cs.wisc.edu.
 - cs.wisc.edu, NS, dns2.cs.wisc.edu
 - ...
 - dns.cs.wisc.edu, A, 128.105.2.10
 - dns2.cs.wisc.edu, A, 128.105.6.12
 - ...
 - cs NS
 - www.cs.wisc.edu, A, 128.105.7.31
 - cs.wisc.edu, MX, granite.cs.wisc.edu
 - cs.wisc.edu, MX, obsidian.cs.wisc.edu
 - ...
 - granite.cs.wisc.edu, A, 128.105.6.24
 - obsidian.cs.wisc.edu, A, 128.105.6.13
 - ...

Name resolution
- Algorithm
 - Client contacts local NS
Local NSIs provided to client by DHCP or set in client configuration

- Local NS contacts root name server
- Root NS provides NS & A records for NS that can resolve TLD
- Local NS contacts NS for TLD
- NS for TLD provides NS & A record for NS that can resolve SLD
- Local NS contacts NS for SLD
- NS for SLD provides A record for domain, or NS & A for NS that can resolve domain
- ...

- Local DNS server will cache any records it receives

Example:

- Resolve cardinal.cs.wisc.edu
- Resolve stat.cmu.edu
- Resolve mail.google.com

Google NS

- mail.google.com, CNAME, googlemail.l.google.com
- googlemail.l.google.com, A, 74.125.225.53
- googlemail.l.google.com, A, 74.125.225.54
- ...
- maps.google.com, A, 64.15.120.20
- maps.google.com, A, 64.15.120.21
- ...

- Resolve email server for cs.wisc.edu

Assume query for cardinal.cs.wisc.edu has already happened and local NS has cached some records

- May be fewer/more interactions with NSs depending on
 - How many parts there are to the DN (e.g., wisc.edu vs. cardinal.cs.wisc.edu)
 - How many levels in the name hierarchy are in the same zone (e.g., wisc.edu and doit.wisc.edu are in the same zone, while wisc.edu and cs.wisc.edu are in different zones)
 - Whether there are CNAMEs that require contacting a different NS
 - What records the local NS has already cached

Advanced Name Resolution

- NS can return different sets of records for different queries
 - Use for load balancing or geo-based server selection

Load balancing

- Assign short TTL to records
- Return different A records for each query for a DN -- cycle through A records in weighted round-robin order; weight is based on server load

Geo-based server selection

- Used by content distribution networks (CDNs)
- CDN’s NS is configured with approximate geo-location of certain IP blocks
- Address of NS that issued query is compared against IP blocks to determine rough location of client that issued query
- Based on location, CDN’s NS returns CNAME record whose value is DN for server close to client
- Example: google.com
 - Local NS contacts root NS
 - Root NS provides NS & A records for com NS
Local NS contacts com NS
com NS provides NS & A record for Google NS -- e.g., ns1.google.com, 216.239.32.10
Local NS contacts Google NS
Google NS looks at source IP for query and provides different address based on estimated location of source IP
- from home (Charter): 64.15.120.52
- from Milwaukee (AT&T DSL): 74.125.225.32
- from Los Angeles: 74.125.239.161

Content Centric Networking
- Emerging research focuses on naming content rather than naming hosts
- Same content (e.g. a specific research paper) could reside in multiple different locations (e.g., on a conference website, on the author’s website, and on a digital library website)
- Any host with the content can provide it to the user
- Challenges
 - How do we address the content?
 - How do we determine where the content is located?
 - How do we determine if two pieces of data have the same content? -- e.g., is a video on YouTube and a video on Vimeo the same, but just encoded differently?
 - Can we performing routing based on content identifiers instead of based on IP addresses?