
Scalable Packet Classification

Florin Baboescu
Dept. of Computer Science and Engineering

University of California, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114

baboescu@cs.ucsd.edu

George Varghese
Dept. of Computer Science and Engineering

University of California, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114

varghese@cs.ucsd.edu

ABSTRACT
Packet classification is important for applications such as
firewalls, intrusion detection, and differentiated services. Ex-
isting algorithms for packet classification reported in the lit-
erature scale poorly in either time or space as filter databases
grow in size. Hardware solutions such as TCAMs do not
scale to large classifiers. However, even for large classifiers
(say 100,000 rules), any packet is likely to match a few (say
10) rules. Our paper seeks to exploit this observation to
produce a scalable packet classification scheme called Ag-
gregated Bit Vector (ABV). Our paper takes the bit vector
search algorithm (BV) described in [11] (which takes lin-
ear time) and adds two new ideas, recursive aggregation of
bit maps and filter rearrangement, to create ABV (which
can take logarithmic time for many databases). We show
that ABV outperforms BV by an order of magnitude using
simulations on both industrial firewall databases and syn-
thetically generated databases.

1. INTRODUCTION
Every Internet router today can forward entering Internet

messages (packets) based on the destination address. The
32 bit IP destination address is looked up in a table which
then determines the output link on which the packet is sent.
However, for a competitive advantage, many routers today
choose to do additional processing for a specific subset of
packets. Such additional processing includes providing dif-
ferentiated output scheduling (e.g., Voice over IP packets
are routed to a high priority queue), taking security-related
actions (e.g., dropping packets sent from a certain subnet),
load balancing (e.g., routing packets to different servers) and
doing traffic measurement (e.g., measuring traffic between
subnet pairs).
Although the details of the additional processing can vary

greatly, a common requirement of all the functions above is
that routers be able to classify packets based on packet head-
ers into equivalence classes called flows. A flow is defined
by a rule — for example the set of packets whose source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

address starts with prefix bits S, whose destination address
is D, and which are sent to the server port for web traffic.
Associated with each flow is an action which defines the ad-
ditional processing — example actions include sending to a
specific queue, dropping the packet, making a copy, etc.
Thus packet classification routers have a database of rules,

one for each flow type that the router wants to process differ-
ently. The rules are explicitly ordered by a network manager
(or protocol) that creates the rule database. Thus when a
packet arrives at a router, the router must find a rule that
matches the packet headers; if more than one match is found,
the first matching rule is applied.
Scalable Packet Classification: This paper is about the

problem of performing scalable packet classification for routers
at wire speeds even as rule databases increase in size. For-
warding at wire speeds requires forwarding minimum sized
packets in the time it takes to arrive on a link; this is cru-
cial because otherwise one might drop important traffic be-
fore the router has a chance to know it is important [11].
With Internet usage doubling every 6 months, backbone
link speeds have increased from OC-48 to OC-192 (2.4 to
10 Gigabits/second), and speeds up to OC-768 (40 Giga-
bits/second) are projected. Even link speeds at the network
edge have increased from Ethernet (10 Mbit/sec) to Gigabit
Ethernet.
Further, rule databases are increasing in size. The ini-

tial usage of packet classification for security and firewalls
generally resulted in fairly small databases (e.g., the largest
database in a large number of Cisco rule sets studied by [9] is
around 1700). This makes sense because such rules are often
entered by managers. However, in the very popular Differ-
entiated Services [1] proposal, the idea is to have routers at
the edge of the backbone classify packets into a few distinct
classes that are marked by bits in the TOS field of the IP
header. Backbone routers then only look at the TOS field.
If, as seems likely, the DiffServ proposal reaches fruition, the
rule sets for edge routers can grow very large.
Similarly, rulesets for edge routers that do load balanc-

ing [2] can grow very large. Such rulesets can potentially be
installed at routers by a protocol; alternately, a router that
handles several thousand subscribers may need to handle say
10 rules per subscriber that are manually entered. It may
be that such customer aggregation is the most important
reason for creating large classifiers. Thus, we believe rule
databases of up to 100,000 rules are of practical interest.

199

2. PREVIOUS WORK
Previous work in packet classification [11, 15, 9, 16, 10]

has shown that the problem is inherently hard. Most prac-
tical solutions use linear time [11] to search through all
rules sequentially, or use a linear amount of parallelism (e.g.,
Ternary-CAMs [4]). Ternary CAMs are Content Address-
able Memories that allow wildcard bits. While Ternary-
CAMs are very common, such CAMs have smaller density
than standard memories, dissipate more power, and require
multiple entries to handle rules that specify ranges. Thus
CAM solutions are still expensive for very large rule sets
of say 100,000 rules, and are not practical for PC-based
routers [12]. Solutions based on caching [17] do not appear
to work well in practice because of poor hit rates and small
flow durations [14].
Another practical solution is provided by a seminal paper

that we refer to as the Lucent bit vector scheme [11]. The
idea is to first search for rules that match each relevant field
F of the packet header, and to represent the result of the
search as a bitmap of rules that match the packet in field F .
Then the rules that match the full header can be found by
taking the intersection of the bitmaps for all relevant fields
F . While this scheme is still linear in the size of the rule
set, in practice searching through a bitmap is fast because a
large number of bits (up to 1000 in hardware, up to 128 bits
in software) can be retrieved in one memory access. While
the Lucent scheme can scale to around a reasonably large
number of rules (say 10,000) the inherently linear worst-case
scaling makes it difficult to scale up to large rule databases.
From a theoretical standpoint, it has been shown [11] that

in its fullest generality, packet classification requires either
O(logNk−1) time and linear space, or logN time and O(Nk)
space, where N is the number of rules, and k is the number
of header fields used in rules. Thus it comes as no surprise
that the solutions reported in the literature for k > 2 either
require large worst case amounts of space (e.g., crosspro-
ducting [15], RFC [9], HiCuts [10]) or time (e.g., bit vector
search [11], backtracking [15]).
However, the papers by Gupta and McKeown [9, 10] in-

troduced a major new direction into packet classification
research. Since the problem is unsolvable in the worst case,
they look instead for heuristics that work well on common
rule sets. In particular, after surveying a large number of
rule sets [9], they find that rule intersection is very rare. In
other words, it is very rare to have a packet that matches
multiple rules. Since the examples that generate the worst
case bounds entail multiple rule sets that intersect, it is nat-
ural to wonder whether there are schemes that are prov-
ably better given some such structural assumption on real
databases.
Among the papers that report heuristics [9, 10, 16], the

results on real databases are, indeed, better than the worst
case bounds. Despite this, the RFC scheme of [9] still re-
quires comparatively large storage. The HiCuts scheme [10]
does better in storage (1 Mbyte for 1700) and requires 20
memory accesses for a database of size 1700. Thus while
these schemes do seem to exploit the characteristics of real
databases they do not appear to scale well (in time and
storage) to very large databases.
Finally, there are several algorithms that are specialized

for the case of rules on two fields (e.g., source and destina-
tion IP address only). For this special case, the lower bounds
do not apply (they apply only for k > 2); thus hardly sur-

prisingly, there are algorithms that take logarithmic time
and linear storage. These include the use of range trees
and fractional cascading [11], grid-of-tries [15], area-based
quad-trees [7], and FIS-trees [8]. While these algorithms are
useful for special cases, they do not solve the general prob-
lem. While the FIS trees paper [8] sketches an extension to
k > 2 and suggests the use of clustering to reduce memory,
there is a need to experimentally evaluate their idea on real
(even small) multidimensional classifiers.
In summary, for the general classification problem on three

or more fields, we find that existing solutions do not scale
well in one of time or storage. Our paper uses the Lucent bit
vector scheme as a point of departure since it already scales
to medium size databases, and is amenable to implementa-
tion using either hardware or software. Our Aggregated Bit
Vector scheme adds two new ideas, rule aggregation and rule
rearrangement, to enhance scalability.

3. PROBLEM STATEMENT
Assume that information relevant to lookup is contained

in k distinct packet header fields, denoted byH1, H2, . . . , Hk,
where each field is a bit string. For instance, the relevant
fields for an IPv4 packet could be the Destination Address
(32 bits), the Source Address (32 bits), the Protocol Field
(8 bits), the Destination Port (16 bits), the Source Port
(16 bits), and TCP flags (8 bits). Thus, the combination
(D,S, TCP-ACK , 80, 2500), denotes the header of an IP
packet with destination D, source S, protocol TCP, destina-
tion port 80, source port 2500, and the ACK bit set. Note
that many rule databases allow the use of other header fields
besides TCP/IP such as MAC addresses, and even Applica-
tion (e.g., http) headers.
The rule database of a router consists of a finite sequence

of rules, R1, R2 . . . RN . Each rule is a combination of k
values, one for each header field. Each field in a rule is
allowed three kinds of matches: exact match, prefix match,
or range match. In an exact match, the header field of the
packet should exactly match the rule field—for instance, this
is useful for protocol and flag fields. In a prefix match, the
rule field should be a prefix of the header field—this is useful
for blocking access from a certain subnetwork. In a range
match, the header values should lie in the range specified by
the rule—this is useful for specifying port number ranges.
Each rule Ri has an associated action act

i, which specifies
how to forward the packet matching this rule. The action
specifies if the packet should be blocked. If the packet is
to be forwarded, it specifies the outgoing link to which the
packet is sent, and perhaps also a queue within that link if
the message belongs to a flow with bandwidth guarantees.
We say that a packet P matches a rule R if each field of P

matches the corresponding field of R—the match type is im-
plicit in the specification of the field. For instance, let R =
(1010∗, ∗, TCP, 1024–1080, ∗) be a rule, with act = drop.
Then, a packet with header (10101 . . . 111, 11110 . . . 000,
TCP , 1050, 3) matches F , and is therefore dropped. The
packet (10110 . . . 000, 11110 . . . 000, TCP , 80, 3), on the
other hand, doesn’t match R. Since a packet may match
multiple rules, we define the matching rule to be the earliest
matching rule in the sequence of rules1.

1Sometime we refer to the lowest cost rule instead of the
first matching rule. The two definitions are equivalent if the
cost of a rule is its position in the sequence of rules

200

We wish to do packet classification at wire speed for min-
imum sized packets and thus speed is the dominant metric.
Because both modern hardware and software architectures
are limited by memory bandwidth, it makes sense to mea-
sure speed in terms of memory accesses. It is also important
to reduce the size of the data structure that is used to allow
it to fit into the high speed memory. The time to add or
delete rules is often ignored, but it is important for dynamic
rule sets, that can occur in real firewalls. Our scheme can
also be modified to handle fast updates at the cost of slightly
increased search time.

4. TOWARDS A NEW SCHEME
We introduce the ideas behind our scheme by first describ-

ing the Lucent bit vector scheme as our point of departure.
Then, using an example rule database, we show our two
main ideas: aggregation and rule rearrangement. In the
next section, we formally describe our new scheme.

4.1 Bit Vector Linear Search
The Lucent bit vector scheme is a form of divide-and-

conquer which divides the packet classification problem into
k subproblems, and then combines the results. To do so,
we first build k one-dimensional tries associated with each
dimension (field) in the original database. We assume that
ranges are either handled using a range tree instead of a
trie, or by converting ranges to tries as shown in [15, 16].
An N−bit vector is associated with each node of the trie cor-
responding to a valid prefix. (Recall N is the total number
of rules).
Figure 2 illustrates the construction for the simple two

dimensional example database in Figure 1. For example, in
Figure 1, the second rule F1 has 00* in the first field. Thus,
the leftmost node in the trie for the first field, corresponds
to 00*. Similarly, the Field 1 trie contains a node for all
distinct prefixes in Field 1 of Figure 1 such as 00*, 10*, 11*,
1*, and 0*.
Each node in the trie for a field is labeled with a N -bit

vector. Bit j in the vector is set if the prefix corresponding
to rule Fj in the database matches the prefix corresponding
to the node. In Figure 1, notice that the prefix 00* in Field
1 is matched by the values 00* and 0*, which correspond to
values in rules 0, 1, 4, 5 and 6. Thus the eleven bit vector
shown behind the leftmost leaf node in the top most trie of
Figure 2 is 11001110000. For now, only consider the boxed
bit vectors and ignore the smaller bit vectors below each
boxed bit vector.
When a packet header arrives with fields H1 . . . Hk, we

do a longest matching prefix lookup (or narrowest range
lookup) in each field i to get matches Mi and read off the
resulting bit vectors S(Mi) from the tries for each field i.
We then take the intersection of S(Mi) for all i, and find
the lowest cost element of the intersection set. If rules are
arranged in non-decreasing order of cost, all we need to do
is to find the index of the first bit set in the intersected bit
vector. However, these vectors have N bits in length; com-
puting the intersection requires O(N) operations. If W is
the size of a word of memory than these bit operations are re-
sponsible for N×k

W
memory accesses in the worst case. Note

that the worst case occurs very commonly when a packet
header does not match a single rule in the database.

Rule F ield1 Field2
F0 00∗ 00∗
F1 00∗ 01∗
F2 10∗ 11∗
F3 11∗ 10∗
F4 0∗ 10∗
F5 0∗ 11∗
F6 0∗ 0∗
F7 1∗ 01∗
F8 1∗ 0∗
F9 11∗ 0∗
F10 10∗ 10∗

Figure 1: A simple example with 11 rules on two fields.

4.2 Reducing Accesses by Aggregation
Recall that we are targeting the high cost in memory ac-

cesses which essentially scales linearly (O(N)) except that
the constant factor is scaled down by the word size of the
implementation. With a word size of up to 1000 in hard-
ware, such a “constant” factor improvement is a big gain
in practice. However, we want to do better by at least one
order of magnitude, and remove the linear dependence on
N . To this end, we introduce the idea of aggregation.
The main motivating idea is as follows. We hope that if

we consider the bit vectors produced by each field, the set
bits will be very sparse. For example, for a 100,000 rule
database, if there are only 5 bits set in a bit vector of size
100,000, it seems a waste to read 100,000 bits. Why do we
believe that bit vectors will be sparse? We have the following
arguments:

• Experience: In the databases we have seen, every
packet matches at most 4 rules. Similar small numbers
have been seen in [10] for a large collection of databases
up to 1700 rules.

• Extension: How will large databases be built? If
they are based on aggregating several small classifiers
for a large number of classifiers, it seems likely that
each classifier will be disjoint. If they are based on a
routing protocol that distributed classifiers based on
prefix tables, then prefix containment is quite rare in
the backbone table and is limited to at most 6 [16].
Again, if a packet matches a large number of rules, it
is difficult to make sense of the ordering rules that give
one rule priority over others.

The fact that a given packet matches only a few rules does
not imply that the packet cannot match a large number of
rules in all dimensions (because only a few matches could
align properly in all dimensions). However, assume for now
there is some dimension j whose bit vector is sparse.2. To
exploit the existence of such a sparse vector, our modified
scheme, appends the bit vector for each field in each trie with
an aggregate bit vector. First, we fix an aggregate size A. A
is a constant that can be tuned to optimize the performance
of the aggregate scheme; a convenient value for A is W the

2If this is not the case, as is common, then our second tech-
nique of rearrangements can make this assumption more ap-
plicable

201

word size. Next, a bit i is set in the aggregate vector if
there is at least one bit k set, k ∈ [i × A, (i + 1) × A]. In
other words, we simply aggregate each group of A bits in
the Lucent bit vector into a single bit (which represents the
OR of the aggregated bits) in the aggregate bit vector.
Clearly, we can repeat the aggregation process at multiple

levels, forming a tree whose leaves are the bits in the original
Lucent bit vector for a field. This can be useful for large
enough N . However, since we deal with aggregate sizes that
are at least 32, two levels of hierarchy can handle 32 ∗ 32 ∗
32 = 32K rules. Using larger aggregate sizes will increase
the N that can be handled further. Thus for much of this
paper, we will focus on one level (i.e., a single aggregate bit
vector) or 2 levels (for a few synthetically generated large
databases). We note that the only reason our results for
synthetic databases are limited to 20,000 rules is because
our current testing methodology (to check the worst-case
search time for all packet header combinations) does not
scale.
Why does aggregation help? The goal is to efficiently con-

struct the bit map intersection of all fields without examin-
ing all the leaf bit map values for each field. For example,
suppose that a given packet header matches only a small
constant number of rules in each field. This can be deter-
mined in constant time, even for large N , by examining the
top level aggregate bit maps; we then only examine the leaf
bit map values for which the aggregate bits are set. Thus,
intuitively, we only have to examine a constant number of
memory words per field to determine the intersection be-
cause the aggregate vectors allow us to quickly filter out bit
positions where there is no match. The goal is to have a
scheme that comes close to taking O(logAN) memory ac-
cesses, even for large N .
Figure 2 illustrates the construction for the example database

in Figure 1 using an aggregate size A = 4. Let’s consider
a packet with Field 1 starting with bits 0010 and Field 2
starting with bits 0100. From Figure 2 one can see that the
longest prefix match is 00 for the first field and 01 for the
second one. The associated bit vectors are: 11001110000
and 01000011110 while the aggregate ones (shown in bold
below the regular bit vectors) are: 110 and 111. The AND
operation on the two aggregate vectors yields 110, showing
that a possible matching rule must be located only in the
first 8 bits. Thus it is not necessary to retrieve the remaining
4 bits for each field.
Notice that in this small example, the cost savings (as-

suming a word size of 4) is only 2 memory accesses, and
this reduction is offset by the 2 memory accesses required to
retrieve the bit maps. Larger examples show much bigger
gains. Also, note that we have shown the memory accesses
for one particular packet header. We need to efficiently com-
pute the worst-case number of memory accesses across all
packet headers.
While aggregation does often reduce the number of mem-

ory accesses, in some cases a phenomenon known as false
matches can increase the number of memory accesses to be-
ing slightly higher (because of the time to retrieve the aggre-
gates for each field) than even the normal Lucent bit vector
search technique.
Consider the database in Figure 3 and an aggregation size

A = 2. A1, . . . , A30 are all prefixes having the first five bits
different from the first five bits of two IP addresses X and Y .
Assume the arrival of a packet from source X to destination

FIELD 1

FIELD 2

0 1

0 1

11001110000

00100001101 00010001110

10000010110 01000011110 00011000001

10 0 1

0 0 1

Aggregate Size = 4

110

111

111 111 011

00001110000

010

111

00000001100

011

00000010110

011

00100100000

110

Figure 2: Two tries associated with each of the fields in the
database of Figure 1, together with both the bit vectors (boxed)
and the aggregate vectors (bolded) associated with nodes that
correspond to valid prefixes. The aggregate bit vector has 3
bits using an aggregation size of 4. Bits are numbered from
left to right.

Y . Thus the bit vector associated with the longest matching
prefix in the Field 1 (source) trie is 1010101 . . . 101 and the
corresponding bit vector in the Field 2 (destination) trie is
0101010 . . . 011. The aggregate bit vectors for both fields
both using A = 2 are 111 . . . 1. However, notice that for all
the ones in the aggregate bit vector (except the last one) the
algorithm wrongly assumes that there might be a matching
rule in the corresponding bit positions.
This is because of what we call a false match, a situation

in which the result of an AND operation on an aggregate bit
returns a one but there is no valid match in the group of rules
identified by the aggregate. This can clearly happen because
an aggregate bit set for field 1 corresponding to positions
p, .., p + A − 1 only means that some bit in those positions
(e.g., p+ i, i < A) has a bit set. Similarly, an aggregate bit
set for field 2 corresponding to positions p, .., p+A− 1 only
means that some bit in those positions (e.g., p+j, j < A) has
a bit set. Thus a false match occurs when the two aggregate
bits are set for the two fields but i �= j. The worst case
occurs when a false match occurs for every aggregate bit
position.
For this particular example there are 30 false matches

which makes our algorithm read 31 × 2 bits more than the
Lucent bit vector linear search algorithm. We have used an
aggregation size A = 2 in our toy example, while in practice
A will be much larger. Note that for larger A, our aggregate
algorithm will only read a small number of bits more than
the Lucent bit vector algorithm even in the worst case.

4.3 Why Rearrangement of Rules Can Help
Normally, in packet classification it is assumed that rules

cannot be rearranged. In general, if Rule 1 occurs before
Rule 2, and a packet could match Rule 1 and Rule 2, one
must never rearrange Rule 2 before Rule 1. Imagine the dis-
aster if Rule 1 says “Accept”, and Rule 2 says “Deny”, and a

202

Rule F ield1 Field2
F1 X A1

F2 A1 Y
F3 X A2

F4 A2 Y
F5 X A3

F6 A3 Y
F7 X A3

.

.
F60 A30 Y
F61 X Y

Figure 3: An example of a database with two-dimensional
rules for which the aggregation technique without rearrange-
ment behaves poorly. The size of the aggregate A = 2

packet that matches both rules get dropped instead of being
accepted. Clearly, the problem is that we are rearranging
overlapping rules; two rules are said to overlap if there is at
least one packet header that can match both rules.
However, the results from [9] imply that in real databases

rule overlap is rare. Thus if we know that a packet header
can never match Rule 1 and Rule 2, then it cannot affect
correctness to rearrange Rule 2 before Rule 1; they are, so
to speak, “independent” rules. We can use this flexibility to
try to group together rules that contribute to false matches
into the same aggregation groups, so that the memory access
cost of false matches is reduced.
Better still, we can rearrange rules arbitrarily as long as

we modify the algorithm to find all matches and then com-
pute the lowest cost match. For example, suppose a packet
matched rules Rule 17, Rule 35, and Rule 50. Suppose after
rearrangement Rule 50 becomes the new Rule 1, Rule 17 be-
comes the new Rule 3, and Rule 35 becomes the new Rule
6. If we compute all matches the packet will now match
the new rules 1, 3, and 6. Suppose we have precomputed
an array that maps from new rule order number to old rule
order number (e.g., from 1 to 50, 3 to 17, etc.). Thus in time
proportional to the number of matches, we can find the “old
rule order number” for all matches, and select the earliest
rule in the original order. Once again the crucial assumption
to make this efficient is that the number of worst-case rules
that match a packet is small. Note also that it is easy (and
not much more expensive in the worst-case) to modify a bit
vector scheme to compute all matches.
For example, rearranging the rules in the database shown

in the database in Figure 3, we obtain the rearranged database
shown in Figure 4. If we return to the example of packet
header (X, Y), the bit vectors associated with the longest
matching prefix in the new database will be:111 . . . 11000 . . . 0
and 000 . . . 01111 . . . 1 having the first 31 bits 1 in the first
bit vector and the last 31 bits 1 in the second bit vector.
However, the result of the AND operation on the aggregate
has the first bit that is set in the position 16. This makes the
number of bits necessary to be read for the aggregate scheme
to be 16× 2 + 1× 2 = 34 which is less than the number of
the bits to be read for the scheme without rearrangement:
31× 2 = 62.
The main intuition in Figure 4 versus Figure 3 is that we

have “sorted” the rules by first rearranging all rules that

have X in Field 1 to be contiguous; having done so, we
can rearrange the remaining rules to have all values in Field
2 with a common value to be together (this is not really
needed in our example). What this does is to localize as
many matches as possible for the sorted field to lie within a
few aggregation groups instead of having matches dispersed
across many groups.
Thus our paper has two major contributions. Our first

contribution is the idea of using aggregation which, by it-
self, reduces the number of memory accesses by more than
an order of magnitude for real databases, and even for syn-
thetically generated databases where the number of false
matches is low. Our second contribution is to show how
can one reduce the number of false matches by a further
order of magnitude by using rule rearrangement together
with aggregation. In the rest of the paper, we describe our
schemes more precisely and provide experimental evidence
that shows their efficacy.

Rule F ield1 Field2
F1 X A1

F2 X A2

F3 X A3

.
F30 X A30

F31 X Y
F32 A1 Y
F33 A2 Y
.
F60 A29 Y
F61 A30 Y

Figure 4: An example of rearranging the database in Figure 3
in order to improve the performance of aggregation. The size
of the aggregate A = 2.

5. THE ABV ALGORITHM
In this section we describe our new ABV algorithm. We

start by describing the algorithm with aggregation only. We
then describe the algorithm with aggregation and rearrange-
ment.

5.1 Aggregated Search
We start by describing more precisely the basic algorithm

for a two level hierarchy (only one aggregate bit vector), and
without rearrangement of rules.
For the general k-dimension packet classification problem

our algorithm uses theN rules of the classifier to precompute
k tries, Ti, 1 ≤ i ≤ k. A trie Ti is associated with field i from
the rule database; it consists of a trie built on all possible
prefix values that are found in field i in any rule in the rule
database.
Thus a node in trie Ti is associated with a valid prefix

P if there is at least one rule Rl in the classifier having
Ri

l = P , where Ri
l is the prefix associated with field i of

rule Rl. For each such node two bit vectors are allocated.
The first one has N bits and is identical to the one that is
assigned in the BV algorithm. Bit j in this vector is set if
and only if rule Rj in the classifier has P as a prefix of R

i
j .

The second bit vector is computed based on the first one
using aggregation. Using an aggregation size of A, a bit k

203

in this vector is set if and only if there is at least one rule
Rn, A× k ≤ n ≤ A× k + 1− 1 for which P is a prefix of
Ri

n. The aggregate bit vector has �N
A
	 bits.

When a packet arrives at a router, a longest prefix match
is performed for each field Hi of the packet header in trie Ti

to yield a trie node Ni. Each node Ni contains both the bit
vector (Ni.bitV ector) and the aggregate vector (Ni.aggregate)
specifying the set of filters or rules which matches prefix Hi

on the dimension i. In order to identify the subset S of fil-
ters which are a match for the incoming packet, the AND of
Ni.aggregate is first computed.
Whenever position j is 1 in the AND of the aggregate

vectors, the algorithm performs an AND operation on the
regular bit vectors for each chunk of bits identified by the
aggregate bit j (bits A× j, . . . , A× (j + 1)− 1). If a value
of 1 is obtained for bit m, then the rule Rm is part of set S.
However, the algorithm selects the rule Rt with the lowest
value of t.
Thus the simplest way to do this is to compute the match-

ing rules from the smallest position to the largest, and to
stop when the first element is placed in S. We have im-
plemented this scheme. However, in what follows we prefer
to allow arbitrary rearrangement of filters. To support this,
we instead compute all matches. We also assume that each
rule is associated with a cost (that can easily be looked up
using an array indexed by the rule position) that reflects its
position before rearrangement. We only return the lowest
cost filter — i.e., the filter with the smallest position num-
ber in the original database created by the manager. As
described earlier, this simple trick allows us to rearrange fil-
ters arbitrarily without regard for whether they intersect or
not.
The pseudocode for this implementation is:

1 Get Packet P (H1, . . . , Hk);

2 for i← 1 to k do

3 Ni ← longestPrefixMatchNode(Triei, Hi);

4 Aggregate ← 11 . . . 1;

5 for i← 1 to k do

6 Aggregate← Aggregate
⋂
Ni.aggregate;

7 BestRule← Null;

8 for i← 0 to sizeof(Aggregate)− 1 do

9 if Aggregate[i] == 1 then

10 for j ← 0 to A− 1 do

11 if
⋂k

l=1Nl.bitV ect[i×A+ j] == 1 then

12 if Ri×A+j .cost < BestRule.cost then

13 BestRule = Ri×A+j ;

14 return BestRule;

5.2 A Sorting Algorithm for Rearrangement
One can see that false matches reduce the performance of

the algorithm introduced in the previous section, with lines
10 to 13 in the algorithm being executed multiple times. In
this section, we introduce a scheme which rearranges the
rules such that, wherever possible, multiple filters which
match a specific packet are placed close to each other. The
intent, of course, is that these multiple matching filters are
part of the same aggregation group. Note that the code of
the last section allows us to rearrange filters arbitrarily as
long as we retain their cost value.
Recall that Figure 4 was the result of rearranging the orig-

inal filter database from Figure 3 by grouping together the
entries having X as a prefix on the first field and then the

entries having Y as a prefix in the second field. After rear-
ranging entries, a query to identify the filter which matches
the header (X,Y) of a packet takes about half the time it
would take before rearrangement. This is because regroup-
ing the entries reduces the number of false matches to zero.
To gain some intuition into what optimal rule arrange-

ment should look like, we examined four real life firewall
databases. We noticed that there were a large number of
entries having prefixes of either length 0 or 32. This sug-
gests a simple idea: if we arbitrarily pick a field and group
together first the entries having prefixes of length 0 (such
wildcard fields are very common), then the prefixes of length
1, and so on until we reach a group of all size 32 prefixes.
Within each group of similar length prefixes, we sort by pre-
fix value, thereby grouping together all filters with the same
prefix value. For the field picked, this will clearly place all
the wildcard fields together, and all the length 32 prefixes
together, and so on. Intuitively, this rule generalizes the
transformation from Figure 3 to Figure 4. In the rest of the
paper, we refer to this process of rearrangement as sorting
on a field.
Suppose we started by sorting on field i. There may be a

number of filters with prefix X. Of course, we can continue
this process recursively on some other field j, by sorting all
entries containing entry X using the same process on field
j. This clearly leaves the sorting on field i unchanged.
Our technique of moving the entries in the database cre-

ates large areas of entries sharing a common subprefix in
one or more fields. If there are entries having fields shar-
ing a common subprefix with different lengths, it separates
them at a comfortable distance such that false matches are
reduced.
A question each rearrangement scheme should address is

correctness. In other words, for any packet P and any filter
database C which, after rearrangement is transformed into
a database C′, the result of the packet classification prob-
lem having as entries both (C,P) and (C′, P) should be the
same. One can see that the ABV algorithm guarantees this
because an entry is selected based on its cost. Note that (by
contrast) in the BV scheme an entry is selected based on its
position in the original database.
Our rearranging scheme uses a recursive procedure which

considers the entries from a subsection of the original database
identified through the first and last element. The rear-
rangement is based on the prefixes from the field col pro-
vided as an argument. The procedure groups the entries
based on the length of the prefixes; for example first it con-
siders the prefixes from field 1, and creates a number of
groups equal to the number of different prefix lengths in
field 1. Each group is then sorted so that entries having the
same prefix are now adjacent. The entries having the same
prefix then create subgroups; the procedure continues for
each subgroup using the next fields that needs to be consid-
ered; the algorithm below considers fields in order from 1 to
k. Note that one could attempt to optimize by considering
different orders of fields to sort. We have not done so yet
because our results seem good enough without this further
degree of optimization.
A pseudocode description of the algorithm is given below.

The algorithm is called initially by setting the parameters
first = 1, last = N, col = 1

204

Arrange-Entries(first, last, col)

1 if(there are no more fields) or (first == last)
then return;

2 for (each valid size of prefixes) then

3 Group together all the elements
with the same size;

4 Sort the previously created groups.

5 Create subgroups made up of elements
having the same prefixes on the field col

6 for (each subgroup S with more
than two elements) then

7 Arrange-Entries(S.first, S.last, col+ 1);

6. EVALUATION
In this section we consider how the ABV algorithm can

be implemented, and how it performs on both real firewall
databases and synthetically created databases. Note that we
need synthetically created databases to test the scalability of
our scheme because real firewall databases are quite small.
First, we consider the complexity of the preprocessing

stage and the storage requirements of the algorithm. Then,
we consider the query performance and we relate it to the
performance of the BV algorithm. The speed measure we
use is the worst case number of memory accesses for search
across all possible packet headers. This number can be com-
puted without considering all possible packets because packet
headers fall into equivalence classes based on distinct cross
products [15]; a distinct cross-product is a unique combina-
tion of longest matching prefix values for each header field.
Since each packet that has the same cross-product is matched

to the same node Ni (in trie Ti) for each field i, each packet
that has the same cross-product will behave identically in
both the BV and ABV schemes. Thus it suffices to compute
worst case search times for all possible cross-products. How-
ever, computing all crossproducts for a database of 20,000
rules took 6 hours on a modern SPARC. We improved the
testing algorithm from hours to minutes using a clever idea
used in the RFC scheme [9] to equivalence cross-products
while computing crossproducts pairwise. Note that these
large times are the times required to certify the worst-case
behavior of our algorithm, not the time for a search.
We have seen that false matches can cause our ABV algo-

rithm (in theory) to have a poorer worst behavior than BV.
However through our experiments we show that ABV out-
performs BV by more than an order of magnitude on both
real life databases and synthetic databases.

6.1 ABV Preprocessing
We consider the general case of a k dimension classifier.We

build k tries Ti, 1 ≤ i ≤ k, one for each dimension. Each
trie has two different types of nodes depending if they are
associated or not with valid prefixes. The total number of
nodes in the tries is on the order of O(N×k), where N is the
number of entries in the classifier (i.e., rule database). Two
bit vectors are associated with each valid prefix node. One
bit vector is identical with the one used in BV scheme and
requires � N

WordSize
	 words of data. The second bit vector

is the aggregate of the first one; it contains �N
A
	 bits of

data which means that it requires � N
A×WordSize

	 words of
memory (A is the size of the aggregate). Building both bit
vectors requires an O(N) pass through the rule database for
each valid node of the trie. Thus the preprocessing time is
O(N2k).

One can easily see from here that the memory require-
ments for ABV are slightly higher than that of BVS; how-
ever for an aggregate size greater than 32 (e.g., software),
ABV differs from BV by less than 3%, while for an aggregate
size of 500 (e.g., hardware), it is below 0.2%.
The time required for insertion or the deletion of a rule in

ABV is of the same complexity as BV. This is because the
aggregate bit vector is updated each time the associated bit
vector is updated. Note that updates can be expensive be-
cause adding a filter with a prefix X can potentially change
the bit maps of several nodes. However, in practice it is rare
to see more than a few bitmaps change, possibly because fil-
ter intersection is quite rare [9]. Thus incremental update,
though slow in the worst case, is quite fast on the average.

6.2 Experimental Platform
We used two different types of databases. First we used a

set of four industrial firewall databases. For privacy reasons
we are not allowed to disclose the name of the companies or
the actual databases. Each entry in the database contains
a 5 − tuple (source IP prefix, destination IP prefix, source
port number(range), destination port number(range), pro-
tocol). We call these databases DB1 . . . DB4. The database
characteristics are presented in Table 5.

Filter Number of rules specified by:
Range Prefix

DB1 266 1640
DB2 279 949
DB3 183 531
DB4 158 418

Figure 5: The sizes of the firewall databases we use in the
experiments.

The third and fourth field of the database entries are rep-
resented by either port numbers or range of port numbers.
We convert them to valid prefixes using the technique de-
scribed in [15]. The following characteristics have important
effects on the results of our experiments:

i) Most prefixes have either a length of 0 or 32. There are
some prefixes with lengths of 21, 23, 24 and 30.

ii) No prefix contains more than 4 matching subprefixes
for each dimension.

iii) The destination and source prefix fields in roughly half
the rules were wildcarded (by contrast, [8] only assumes at
most 20% of the rules have wildcards in their experiments),
and roughly half the rules have >= 1024 in the port number
fields. Thus the amount of overlap within each dimension
was large.

iv) No packet matches more than 4 rules.
The second type of databases are randomly generated two

and five field (sometimes called two and five dimensional)
databases using random selection from five publicly available
routing tables ([3]). We used the snapshot of each table
taken on September 12, 2000. An important characteristic
of these tables is the prefix length distribution, described in
the table 6.
Recall that the problem is to generate a synthetic database

that is larger than our sample industrial databases to test
ABV for scalability. The simplest way to generate a two-
dimensional classifier of size N would be to iterate the fol-

205

Routing Table Prefix Lengths:
8 9 to 15 16 17 to 23 24 25 to 32

Mae− East 10 133 1813 9235 11405 58
Mae−West 15 227 2489 11612 16290 39
AADS 12 133 2204 10144 14704 55
PacBell 12 172 2665 12808 19560 54
Paix 22 560 6584 28592 49636 60

Figure 6: Prefix Length Distribution in the routing tables, September 12, 2000.

lowing stepN times: in each step, we randomly pick a source
prefix and a destination prefix from any of the five routing
tables. This generation technique is unrealistic because real
routing databases have at most one prefix of length 0. Thus
simple random generation is very unlikely to generate rules
with zero length prefixes, whereas zero length prefixes are
very common in real firewall rule databases.
For more realistic modeling, we also allow a controlled in-

jection of rules with zero length prefixes, where the injection
is controlled by a parameter that determines the percentage
of zero length prefixes. For example, if the parameter spec-
ifies that 20% of the rules have a zero length prefix, then
in selecting a source or destination field for a rule, we first
pick a random number between 0 and 1; if the number is
less than 0.2 we simply return the zero length prefix; else,
we pick a prefix randomly from the specified routing table.
A similar construction technique is also used in [8] though

they limit wild card injection to 20%, while our experi-
ments have used up to 50% wild card injection. [8] also uses
another technique based on extracting all pairs of source-
destination prefixes from traces and using these as filters.
They show that the two methods differ considerably with
the random selection method providing better results be-
cause the trace method produces more overlapping prefix
pairs. However, rather than using an ad hoc trace, we pre-
fer to stress ABV further by adding a controlled injection
of groups of prefixes that share a common prefix to produce
more overlapping prefix pairs.
When we inject a large amount of zero length prefixes and

subprefixes, we find that ABV without rearrangement be-
gins to do quite poorly, a partial confirmation that we are
stressing the algorithm. Fortunately, ABV with rearrange-
ment still does very well. Finally, we did some limited test-
ing on synthetic five-dimensional databases. We generated
the source and destination fields of rules as in the synthetic
two-dimensional case; for the remaining fields (e.g., ports)
we picked port numbers randomly according to the distribu-
tion found in our larger real database. Once again, we find
that ABV scales very well compared to BV.

6.3 Performance Evaluation on Industrial
Firewall Databases

We experimentally evaluate ABV algorithm on four in-
dustrial firewall databases described in Figure 5. The rules
in the databases are converted into prefix format using the
technique described in [13] . The memory space that is used
by each of them can be estimated based on the number of
nodes in the tries, and the number of nodes associated with
valid prefixes. We provide these values in Figure 7. A node
associated with a valid prefix carries a bit vector of size equal
to � N

32
	 words and an aggregate bit vector of size � N

32×32
	

words. We used a word size equal to 32; we also set the size
of the aggregate to 32. We used only one level of aggregation
in this experiment.
Our performance results are summarized in Figure 8. We

consider the number of memory accesses required by the
ABV algorithm once the nodes associated with the longest
prefix match are identified in the trie in the worst case sce-
nario. The first stage of finding the nodes in the tries asso-
ciated with the longest prefix matching is identical in both
algorithms ABV and BV (and depends on the longest prefix
match algorithm used; an estimate for the fastest algorithms
is around 3− 5 memory accesses per field). Therefore we do
not consider it in our measurements. The size of a memory
word is 32 bits for all the experiments we considered.
The results show that ABV without rearrangement out-

performs BV, with the number of memory accesses being
reduced by a factor of 27% to 54%. By rearranging the el-
ements in the original database, the performance of ABV
can be increased by further reducing the number of memory
accesses by a factor of 40% to 75%. Our results also show
that for the databases we considered it was sufficient to sort
the elements using only one field.

Filter No.of Nodes No. of Valid Prefixes

DB1 980 188
DB2 1242 199
DB3 805 127
DB4 873 143

Figure 7: The total number of nodes in the tries and the
total number of nodes associated with valid prefixes for the
industrial firewall databases.

6.4 Experimental Evaluation on Synthetic
Two-Dimensional Databases

Thus on real firewall databases our ABV algorithm out-
performs the BV algorithm. In this section we evaluate how
our algorithm might behave with larger classifiers. Thus we
are forced to synthetically generate larger databases, while
injecting a controlled number of zero length prefixes as well
as a number of prefixes that have subprefixes. As described
earlier, we create our synthetic two-dimensional database of
prefixes from publically available routing tables [3] whose
characteristics are listed in Figure 6. We show results for
databases generated using MAE-EAST routing table. The
results for databases generated using the other routing ta-
bles are similar and can be found in our technical report [5].
Effect of zero-length prefixes: We first consider the effect

of prefixes of length zero on the worst case number of mem-

206

Filter BV ABV
unsorted One Field Sorted Two Fields Sorted

DB1 260 120 75 65
DB2 150 110 50 50
DB3 85 60 50 50
DB4 75 55 45 45

Figure 8: The total number of memory accesses in the worst case scenario for the industrial firewall databases. Several cases are
considered: databases with no rule rearrangement, databases sorted on one field only, and databases sorted on two fields.

ory accesses. Entries containing prefixes of length zero are
randomly generated as described earlier. The results are
displayed in Figure 9. The presence of prefixes of length
zero randomly distributed through the entire database has
a heavy impact on the number of memory accesses. If there
are no prefixes of length zero in our synthetic database, the
number of memory accesses for a query using ABV scheme
is a factor of 8 to 27 times less than the BV scheme.
However, by inserting around 20% worth of prefixes of

length zero in the database we found that the ABV scheme
(without rearrangement) needed to read all the words from
both the aggregate and the bit vector; in such a scenario,
clearly the BV scheme does better by a small amount. For-
tunately, by sorting the entries in the database using the
technique described in Section 5.2, the number of memory
accesses for the worst case scenario for ABV scheme is re-
duced to values close to the values of a database (of the
same size) without prefixes of length zero. Note that the
sorted ABV scheme reduces the number of memory accesses
by more than 20 compared to the BV scheme, with the dif-
ference growing larger as the database size gets larger.
Figure 10 graphs the distribution of the number of mem-

ory accesses as a function of number of entries in the syn-
thetic database. The databases are generated using ran-
domly picked prefixes from the MAE-East routing table,
and by random injection of prefixes of length zero. The line
with stars represents the linear scaling of the Lucent (BV)
scheme. Notice that unsorted ABV with more than 20%
injection of zero length prefixes has slightly worse overhead
than the BV scheme. However, the overhead of the sorted
ABV scheme with up to 50% zero length injection (see the
bottom lines) appears to increase very slowly, possibly indi-
cating logarithmic scaling.
Injecting Subprefixes: A second feature which directly af-

fects the overall performance of our algorithm is the presence
of entries having prefixes which share common subprefixes.
These prefix groups effectively create subtries whose root is
is the longest common subprefix of the group. Let W be the
depth of the subtrie, and consider a filter database with k
dimensions. It is not hard to see that if we wish to stress
the algorithm, we need to increase W . How do we generate
a synthetic database for a given value of W?
To do so, we first extract a set of 20 prefixes having length

equal to 24. We call this set L. L is chosen so no two el-
ements in L share the same 16−bit prefix. In the second
step, for each element in L we insert eight other elements
with prefix length in the range (24 −W) . . . 23. These ele-
ments are subprefixes of the element in L.
We generate the filter database by randomly picking pre-

fixes from both the routing table and from the newly created
set L. We can control the rate with which elements from L

0.0 5000.0 10000.0 15000.0 20000.0
num. of entries

0.0

500.0

1000.0

1500.0

nu
m

. o
f m

em
or

y
ac

ce
ss

es

Number of Memory Accesses = f (number of entries)
Percentage of wildcards injected = 0 to 50%, entries sorted/unsorted

Lucent
0% − unsort
5% − unsort
5% − sort
20% − unsort
20% − sort
50% − unsort
50% − sort

Figure 10: The number of memory accesses as a function
of the number of database entries. The ABV scheme outper-
forms the BV scheme by a factor greater than twenty on a
sorted synthetic database having prefixes of length zero ran-
domly inserted. The synthetic databases were generated using
the MAE-EAST routing table [3].

are inserted in the filter database. We measure the effect of
different tries heights W as well as the effect of having dif-
ferent ratios of such elements. The results are displayed in
Figures 11, 12, and 14. For example, Figure 14 compares
the linear scaling of the Lucent (BV) scheme to the sorted
ABV scheme. The figure shows that when the percentage
of subprefixes sharing a common prefixes increases to very
large values, the overhead of ABV also increases, though
much more slowly than the BV scheme.
The tables show that, at least for a model of random in-

sertion the height W does not have a large impact on the
number of false matches. A slight increase in this number
can be seen only when there are about 90% of such elements
inserted in the measured database. We consider next the ra-
tio of such elements to the total number of prefixes in the
database. Their impact on the total number of memory ac-
cesses is lower than the impact of prefixes of length zero.
When their percentage is roughly 50%, the number of mem-
ory accesses using the ABV algorithm (without sorting) is
about 10 times lower than the number of memory accesses
using the BV algorithm. This number is again improved

207

DB Size BV Percentage of prefixes of length zero; sorted(s)/usorted(u)
0 1u 1s 2u 2s 5u 5s 10u 10s 20u 20s 50u 50s

1K 64 8 12 10 26 10 54 10 66 12 66 12 66 10
2K 126 10 28 14 58 12 84 14 126 14 130 14 130 14
5K 314 16 50 18 76 18 216 20 298 20 324 22 324 18
10K 626 26 78 30 196 28 426 34 588 34 644 32 646 30
20K 1250 48 148 48 346 50 860 52 1212 54 1288 52 1292 52

Figure 9: The worst case total number of memory accesses for synthetic two-dimensional databases of various sizes, with a
variable percentage of zero prefixes. The databases were generated using the MAE-EAST routing table [3].

DB Size BV W = 4 W = 6 W = 8
1 10 20 50 90 1 10 20 50 90 1 10 20 50 90

1K 64 8 10 20 40 52 8 12 26 38 56 8 12 20 36 52
5K 314 16 28 56 124 144 16 32 56 126 148 16 30 50 120 162
10K 626 28 54 96 228 214 26 50 96 244 234 26 50 94 194 226
20K 1250 48 88 168 308 254 48 90 154 274 292 48 92 176 304 326

Figure 11: The worst case total number of memory accesses for synthetic two-dimensional databases having injected a variable
percentage of elements which share a common subprefix. The databases are not sorted. W is is the depth of the subtrie created
by these elements. The values below W denote the percentage of injection. The values labeled by BV estimate the number of
memory accesses using the BV scheme. All the other values are associated with the ABV scheme. The synthetic databases were
generated using the MAE-EAST routing table [3].

Word Size BV ABV
128 314 34
256 158 28
512 80 26
1024 40 20

Figure 13: ABV vs. BV scheme for a two dimensional syn-
thetic generated database with 20,000 rules. The synthetic
database was generated using the MAE-EAST routing table.
We consider an aggregate size of 32, and different word sizes
between 128 and 1024 bits.

by a factor of about 30% by sorting the original database.
These numbers were for a database with 20K entries.

6.4.1 Evaluating ABV with Different Word Sizes
Our measurements until now have compared ABV versus

BV using a word size equal to 32 bits. However, in hardware
the clear power of BV is using a larger word size of up to 1000
bits using a wide internal bus. We analyzed the worst case
scenario for both ABV and BV using different word sizes
between 128 bits and 1024 bits. In all cases ABV outper-
formed BV. The results for a 20,000 rules two-dimensional
synthetic generated database are given in Figure 13. How-
ever, it is interesting that the worst-case gain of ABV over
BV seems to decrease from a factor of nearly ten (using 128
bit words) to a factor of two (using 1024 bit words). This
makes intuitive sense because with larger bitmaps more bits
can be read in a single memory access. We suspect that
with larger word sizes one would see larger gains only when
using larger rule databases.

6.4.2 Evaluating ABV with Two Levels of Aggregation
So far our version of ABV for 2D databases has used only

1 level of aggregation. Even for a 32, 000 rule database,

we would use an aggregate bit vector of length equal to
32, 000/32 = 1000. However, if only a few bits are set in such
an aggregate vector, it is a waste of time to scan all 1000
bits. The natural solution, for aggregate bit vectors greater
than A2 (1024 in our example), is to use a second level of
hierarchy. With A = 32, a second level can handle rule
databases of size equal to 323 = 32K. Since this approaches
the limits of the largest database that we can test (for worst-
case performance), we could not examine the use of any more
levels of aggregation.
To see whether 2 levels provides any benefit versus using

1 level only, we simulated the behavior of the 2 level ABV
algorithm on our larger synthetic databases. (It makes no
sense to compare the performance of 2 levels versus one level
for our small industrial databases.). For lack of space, in
Figure 15 we only compare the performance of two versus
one level ABV on synthetic databases (of sizes 5000, 10000,
and 20000) generated from MAE-EAST by injecting 0% to
50% prefixes of zero length. In all cases we use the ABV
algorithm with rearrangement (i.e., the best case for both
one and two levels).
The results show that using an extra level of aggregation

reduces the worst number of memory accesses by 60% for
the largest databases. For the smallest database (5000) the
improvement is marginal, which accords with our intuition
— although the algorithm does not touch as many leaf bits
for the database of size 5000, this gain is offset by the need to
read another level of aggregate bits. However, at a database
size of 10,000 there is a clear gain. The results suggest that
the number of memory accesses for a general multilevel ABV
can scale logarithmically with the size of the rule database,
allowing potentially very large databases.

208

DB Size W = 4 W = 6 W = 8
1 10 20 50 90 1 10 20 50 90 1 10 20 50 90

1K 6 12 16 34 54 8 12 18 36 48 8 12 16 36 48
5K 16 26 48 106 136 16 30 44 112 136 16 30 46 116 138
10K 26 46 82 176 154 26 52 80 166 176 26 48 84 198 178
20K 48 78 146 212 138 48 100 142 224 208 48 88 136 232 170

Figure 12: The worst case total number of memory accesses for synthetic two-dimensional databases having injected a variable
percentage of elements which share a common subprefix. The databases are sorted. W is the depth of the subtrie created by
these elements. The values below W denote the percentage of injection. All the values are associated with the ABV scheme. The
synthetic databases were generated using the MAE-EAST routing table [3].

Experiment No. Of Entries = 5000 No. Of Entries = 10000 No. Of Entries = 20000
One Level Two Levels One Level Two Levels One Level Two Levels

0% stars 16 14 26 14 46 18
1% stars 18 14 30 20 52 22
5% stars 20 14 30 18 52 26
10% stars 22 20 32 22 50 22
50% stars 20 18 30 18 50 20

Figure 15: The number of memory accesses for the ABV algorithm with one and two levels of aggregation. The databases are
sorted and are generated using the MAE-EAST routing table [3] using various percentages of wildcard injection and various sizes.

6.5 Performance Evaluation using Synthetic
Five-Dimensional Databases

So far we have tested scalability only on randomly gener-
ated two-dimensional databases. However, there are existing
schemes such as grid-of-tries and FIS trees that also scale
well for this special case. Thus, in this section we briefly
describe results of our tests for synthetic five-dimensional
databases.
The industrial firewall databases we use have a maximum

size of 1640 rules, making them infeasible for scalability
tests. To avoid this limitation, we generated synthetic five-
dimensional databases using the IP prefix addresses from
MAE-EAST as in the two-dimensional case, and port num-
ber ranges and protocol fields using the distributions of val-
ues and ranges found in the industrial firewall databases.
Our results are shown in Figure 16. The ABV scheme out-

performs the BV scheme by more than one order of magni-
tude. The only results we have shown use no wildcard injec-
tion. The results for larger wildcard injections are similar to
before (though sorting on multiple fields appears to be even
more crucial). Note that for a five-dimensional database
with 21,226 rules the Lucent (BV) scheme required 3320
memory accesses while ABV with an aggregation size of 32
required only 140 memory accesses.

7. CONCLUSIONS
While the Lucent Bit Vector scheme [11] is fundamen-

tally an (O(N)) scheme, the use of an initial projection step
allows the scheme to work with compact bitmaps. Taken to-
gether with memory locality, the scheme allows a nice hard-
ware or software implementation. However, the scheme only
scales to medium size databases.
Our paper introduces the notions of aggregation and rule

rearrangement to make the Lucent bit vector (BV) scheme
more scalable, creating what we call the ABV scheme. The
resulting ABV scheme is at least an order of magnitude

faster than the BV scheme on all tests that we performed.
The ABV scheme appears to be equally simple to implement
in hardware or software. In hardware, the initial searches on
the individual tries can be pipelined with the remainder of
the search through the bitmaps. The searches in the levels
of the bitmap hierarchy can also be pipelined.
In comparing the two heuristics we used, aggregation by

itself is not powerful enough. For example, for large synthet-
ically generated databases with 20% of the rules containing
zero length prefixes, the performance of ABV without rear-
rangement grew to be slightly worse than BV. However, the
addition of sorting again made ABV faster than BV by an
order of magnitude. A similar effect was found for inject-
ing subprefixes. However, a more precise statement of the
conditions under which ABV does well is needed.
We evaluated our implementation on both industrial fire-

wall databases and synthetically generated databases. We
stressed ABV by injecting prefixes that appear to cause bad
behavior. Using only 32 bit memory accesses, we were able
to do packet classification in a 20,000 rule random two-
dimensional databases (with almost half the entries being
wild cards) using 20 accesses using 2 levels of hierarchy. By
contrast, the Lucent algorithm took 1250 memory accesses
on the same database. Similarly, for a random 5 dimen-
sional database of 20,000 rules the Lucent scheme required
3320 memory accesses while ABV with one level of hier-
archy required only 140 memory accesses. Taken together
with wider memory accesses possible using either cache lines
in software or wide busses in hardware, we believe our algo-
rithm should have sufficient speed for OC-48 links even for
large databases using SRAM.
While both BV and ABV schemes have poor worst-case

insertion times, their average insertion times are small. We
have also invented a modified version of ABV called ABVI
that allows fast worst-case update operations in exchange
for slightly increased search times. This may be helpful for

209

0.0 5000.0 10000.0 15000.0 20000.0
num. of entries

0.0

500.0

1000.0

1500.0

nu
m

. o
f m

em
or

y
ac

ce
ss

es

Number of Memory Accesses = f (number of entries)
Percentage of injections = 0 to 90%, entries sorted, W = 6

Lucent
1%
10%
20%
50%
90%

Figure 14: The number of memory accesses as a function
of the number of database entries. Synthetic databases gener-
ated using MAE-EAST routing table and by randomly insert-
ing group of elements which are sharing a common subprefix.
W = 6 is the depth of the subtrie created by these elements.
The percentage of subprefixes injected varies from 0 to 90%.
The ABV scheme outperforms the BV scheme by a factor of 2
to 7 if the databases are sorted.

Size BV ABV - 32
3722 585 40
7799 1220 65
21226 3320 140

Figure 16: ABV vs. BV scheme for five-dimensional syn-
thetically generated databases. The synthetic databases were
generated using the MAE-EAST routing table, and using port
number ranges and protocol numbers from the industrial fire-
wall databases. All results use an aggregate size of 32.

stateful filters. Please refer to the technical report [5] for
more details.
While most of the paper used only one level of hierar-

chy, we also implemented a two level hierarchy for the large
synthetically generated databases. The second level of hier-
archy does improve the number of memory accesses for large
classifiers, which suggests that the scaling of ABV is indeed
logarithmic. It also suggests that ABV is potentially useful
for the very large classifiers that may be necessary to sup-
port such applications as DiffServ and content-based Load
Balancing that are already being deployed.
Finally, the use of aggregate bitmaps may be useful in

other networking and system contexts as well. For exam-
ple, the select() mechanism in UNIX works well for small
scale applications, but does not scale to the large number
of file descriptors used by large web servers or proxies [6].
One reason for the poor performance of select() is that on
each call the application must inform the operating system
kernel about the set of descriptors of interest, where the
set is encoded using bitmaps. For a large number of de-

scriptors, searching through the bitmap for set bits can be
time consuming. Aggregate bitmaps may reduce search and
copy times. We leave verification of this hypothesis to future
work.

8. ACKNOWLEDGMENTS
The work of the first and second authors was made pos-

sible by NSF Grant ANI 0074004.

9. REFERENCES
[1] IETF - Differentiated Services (diffserv) Working

Group. http://www.ietf.org/html.charters/diffserv-
charter.html.

[2] Cisco - ArrowPoint Communications.
http://www.arrowpoint.com, 2000.

[3] IPMA Statistics. Merit Inc. -
http://nic.merit.edu/ipma, 2000.

[4] Memory-memory. http://www.memorymemory.com,
2000.

[5] F. Baboescu and G. Varghese. Aggregated bit vector
search algorithms for packet filter lookups. In UCSD
Tech. Report, cs2001-0673, June 2001.

[6] G. Banga, J. C. Mogul, and P. Druschel. A scalable
and explicit event delivery mechanism for UNIX. In
Proc. USENIX Annual Technical Conf., June 1999.

[7] M. Buddhikot, S. Suri, and M. Waldvogel. Space
decomposition techniques for fast layer-4 switching. In
Proc. Conf. on Protocols for High Speed Networks,
Aug. 1999.

[8] A. Feldman and S. Muthukrishnan. Tradeoffs for
packet classification. In Proc. Infocom, vol. 1, pages
397–413, March 2000.

[9] P. Gupta and N. McKeown. Packet classification on
multiple fields. In Proc. ACM Sigcomm’99, Sept. 1999.

[10] P. Gupta and N. McKeown. Packet classification using
hierarchical intelligent cuttings. In Proc. Hot
Interconnects VII, Aug. 1999.

[11] T. V. Lakshman and D. Stidialis. High speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In Proc. ACM
Sigcomm ’98, Sept. 1998.

[12] R. Morris, et al The Click modular router. In Proc.
17th ACM SOSP, December 1999.

[13] M.Waldvogel, et al Scalable high speed ip routing
lookups. In Proc. of ACM Sigcomm’97, Oct. 1997.

[14] C. Partridge. Locality and route caches. In Proc. of
NSF Workshop, Internet Statistics Measurement and
Analysis, Feb. 1999.

[15] V. Srinivasan, et al Fast scalable level four switching.
In Proc. ACM Sigcomm’98, Sept. 1998.

[16] V. Srinivasan, S. Suri, and G. Varghese. Packet
classification using tuple space search. In Proc. ACM
Sigcomm’99, Sept. 1999.

[17] J. Xu, M. Singhal, and J. Degroat. A novel cache
architecture to support layer-four packet classification
at memory access speeds. In Proc. Infocom, March
2000.

210

