End-to-End Internet Packet Dynamics

Vern Paxson
Network Research Group
Lawrence Berkeley National Laboratdry
University of California, Berkeley
vern@ee.lbl.gov

Abstract to-end Internet packet dynamitsOur analysis is based on mea-

surements of TCP bulk transfers conducted between 35 NPD sites
We discuss findings from a large-scale study of Internet packet dynamics (§ 2). Using TCP—rather than fixed-rate UDP or ICMP “echo”
conducted by tracing 20,000 TCP bulk transfers between 35 Internet sites.packets as done in [Bo93, CPB93, Mu94]—reaps significant ben-
Because we traced each 100 Kbyte transfer at both the sender and the reefits. First, TCP traffic is “real world,” since TCP is widely used
ceiver, the measurements allow us to distinguish between the end-to-endin today's Internet. Consequently, any network path properties we
behaviors due to the different directions of the Internet paths, which often can derive from measurements of a TCP transfer can potentially be
exhibit asymmetries. We characterize the prevalence of unusual network directly applied to tuning TCP performance. Second, TCP packet
events such as out-of-order delivery and packet corruption; discuss a robuststreams allow fine-scale probing without unduly loading the net-
receiver-based algorithm for estimating “bottleneck bandwidth” that ad- work, since TCP adapts its transmission rate to current congestion
dresses deficiencies discovered in techniques based on “packet pair”; inves{evels.

tigate patterns of packet loss, finding that loss events are not well-modeled Using TCP, however, also incurs two serious analysis headaches.

as independent and, furthermore, that the distribution of the duration of loss First, we need to distinguish between the apparently intertwined ef-

events exhibits infinite variance; and analyze variations in packet transit de- focts of the transport protocol and the network. To do so, we de-

lays as indicators of congestion periods, finding that congestion periods alsovelopedtcpanaly , a program that understands the specifics of

span a wide range of time scales. the different TCP implementations in our study and thus can sep-
arate TCP behavior from network behavior [Pa97&panaly

. also forms the basis for the analysis in this paper: after removing

1 Introduction TCP effects, it then computes a wide range of statistics concerning
network dynamics.

As the Internet grows larger, measuring and characterizing its dy- Second, TCP packets are sent over a wide range of time scales,

namics grows harder. Part of the problem is how quickly the net- ¢o milliseconds to many seconds between consecutive pack-

work changes. Another part, though, is its increasing heterogeneity. ets. Such irregular spacing greatly complicates correlational and

It is more gnd more difﬁcglt to measure a plausibly representative frequency-domain analysis, because a stream of TCP packets does
cross-section of its behavior. The few studies to date of end-to-end ' give s a traditional time series of constant-rate observations

packet dynamics have all been confined to measuring a handful ofto work with. Consequently, in this paper we do not attempt these
Internet paths, because of the great logistical difficulties presentedsorts of analyses, though we hope to pursue them in future work
by larger-scale measurement [M092, Bo93, CPBI3, Mu94]. Con- geq 5150 [Mu94] for previous work in applying frequency-domain
sequently, it is hard to gauge how representative their findings areanalysis to Internet paths

for today's Internet. Recently, we devised a measurement frame- In &3 h . | K behavior- t-ord
work in which a number of sites run special measurement daemons n § 3 we ¢ aracterlze unusua netwqr enhavior. out-o.-or er
delivery, replication, and packet corruption. Then§id we dis-

(“NPDs”) to facilitate measurement. With this framework, the num- ! . . “ " .
ber of Internet paths available for measurement grows agor N' cuss a robust algorithm for estimating the “bottleneck” bandwidth
that limits a connection's maximum rate. This estimation is cru-

sites, yielding an attractive scaling. We previously used the frame- ™ . .
work with N = 37 sites to study end-to-end routing dynamics of cial for subsequent analysis because knowing the bottleneck rate

about 1,000 Internet paths [Pag6]. lets us determine when the closely-spaced TCP data packets used

. : for our network probes areorrelatedwith each other. (We note
In this study we report on a large-scale experiment to study end- I
y P 9 P y that the stream of ack packets returned by the TCP data receiver in

“The work was supported by the Director, Office of Energy Research, general isnot correlated, due to the small size and larger spacing
Scientific Computing Staff, of the U.S. Department of Energy under Con- Of the acks.) Once we can determine which probes were correlated
tract No. DE-AC03-76SF00098. and which not, we then can turn to analysis of end-to-end Internet

packet loss{ 5) and delay § 6). In§ 7 we briefly summarize our
findings, a number of which challenge commonly-held assumptions
about network behavior.

I This paper is necessarily terse due to space limitations. A longer ver-
sion is available [Pa97b].

2 The Measurements count its arrival as an instance of a network reordering. So, for ex-
ample, if a flight of ten packets all arrive in the order sent except the
We gathered our measurements using the “NPD” measurementlast one arrives before all of the others, we consider this to reflect
framework we developed and discussed in [Pa96]. 35 sites partic-9 reordered packets rather than 1. Using this definition emphasizes
ipated in two experimental runs. The sites include educational in- “late” arrivals rather than “premature” arrivals. It turns out that
stitutes, research labs, network service providers, and commercialcounting late arrivals gives somewhat higher {-25%) numbers
companies, in 9 countries. We conducted the first Aip, during than counting premature arrivals—not a big difference, though.
Dec. 1994, and the secondf;, during Nov—Dec. 1995. Thus, dif- Observations of reordering. Out-of-order delivery is fairly
ferences betweeN; and V> give an indication how Internet packet prevalent in the Internet. IV;, 36% of the traces included at least
dynamics changed during the course of 1995. Throughout this pa-one packet (data or ack) delivered out of order, whilevin 12%
per, when discussing such differences, we always limit discussion did. Overall, 2.0% ofall of the A, data packets and 0.6% of the
to the 21 sites that participated in both and\. acks arrived out of order (0.3% and 0.1%Af%). Data packets
Each measurement was made by instructing daemons running atre no doubt more often reordered than acks because they are fre-
two of the sites to send or receive a 100 Kbyte TCP bulk transfer, quently sent closer together (due to ack-every-other policies), so
and to trace the results usitgpdump [JLM89]. Measurements their reordering requires less of a difference in transit times.
occurred at Poisson intervals, which, in principle, results in un- we shouldnot infer from the differences between reordering in
biased measurement, even if the sampling rate varies [Pa98},In A/, and A, that reordering became less likely over the course of
the mean per-site sampling interval was about 2 hours, with each 1995, because out-of-order delivery varies greatly from site-to-site.
site randomly paired with another. Sites typically participated in For example, fully 15% of the data packets sent by treot " site?
about 200 measurements, and we gathered a total of 2,800 pairs ofjuring A; arrived out of order, much higher than the 2.0% overall
traces. InV2, we sampled pairs of sites in a seriegafupedmea- average. As discussed in [Pa96], we do not claim that the individ-
surements, varying the sampling rate from minutes to days, with yal sites participating in the measurement framework are plausibly
most rates on the order of 4-30 minutes. These groups then giverepresentative of Internet sites in general, so site-specific behavior
us observations of the path between the site pair over a wide rangecannot be argued to reflect general Internet behavior.
of time scales. Sites typically participated in about 1,200 measure- Reordering is also highly asymmetric. For example, only 1.5%
ments, for a total of 18,000 trace pairs. In addition to the different of the data packets setd ucol during NV arrived out of order.
sampling rates, the other difference betwgénand.\> is that in This means a sender cannot soundly infer whether the packets it
N> we used Unix socket options to assure that the sending and re-sengds are likely to be reordered, based on observations of the acks it
ceiving TCPs had big “windows,” to prevent window limitations yeceives, which is too bad, as otherwise the reordering information

from throttling the transfer's throughput. would aid in determining the optimal duplicate ack threshold to use
We limited measurements to a total of 10 minutes. This limit for fast retransmission (see below).

leads tounder-representationf those times during which network The site-to-site variation in reordering coincides with our earlier
conditions were poor enough to make it difficult to complete a findings concerning route flutter among the same sites [Pa96]. We

100 Kbyte transfer in that much time. Thus, our measurements jjentified two sites as particularly exhibiting fluttecol and the
arebiasedtowards more favorable network conditions. In [Pa97b] «ustl ” site. For the part ofV; during whichwustl exhibited

we show that the bias is negligible for North American sites, but qyte flutter, 24% of all of the data packets it sent arrived out of
noticeable for European sites. order, a rather stunning degree of reordering. If we eliminats
andwustl from the analysis, then the proportion of all of thé
. data packets delivered out-of-order falls by a factor of two. We also
3 Network Pathologles note that in\V>, packets sent bycol were reordered only 25 times
out of nearly 100,000 sent, though 3.3% of the data packets®ent
We begin with an analysis of network behavior we might consider cq| arrived out of order, dramatizing how over long time scales,
“pathological,” meaning unusual or unexpected: out-of-order de- site-specific effects can completely change.
livery, packet replication, and packet corruption. It is important to Thus, we should not interpret the prevalence of out-of-order de-
recognize pathological behaviors so subsequent analysis of packefier, summarized above as giving representative numbers for the
loss and delay is not skewed by their presence. For example, itiS|nernet, but instead form the rule of thumb: Internet paths are
very difficult to perform any sort of sound queueing delay analysis gqmetimesubject to a high incidence of reordering, but the effect is

in the presence of out-of-order deIFvery, since the latter indicates strongly site-dependent, and apparently correlated with route flut-
that a first-in-first-out (FIFO) queueing model of the network does yorjng which makes sense since route fluttering provides a mecha-

not apply. nism for frequently reordering packets.
We observed reordering rates as high as 36% of all packets arriv-
3.1 Out-of-order delivery ing in a single connection. Interestingly, some of the most highly re-

ordered connections did not suffamy packet loss, and no needless
Even though Internet routers employ FIFO queueing, any time a retransmissions due to false signals from duplicate acks. We also
route changes, if the new route offers a lower delay than the old occasionally observed humongous reordering “gaps.” However, the
one, then reordering can occur [Mo92]. Since we recorded packetsevidence suggests that these gaps are not due to route changes, but
at both ends of each TCP connection, we can detect network re-a different effect. Figure 1 shows a sequence plot exhibiting a mas-
ordering, as follows. First, we remove from our analysis any trace sive reordering event. This plot reflects packet arrivals at the TCP

pairs suffering packet filter errors [Pa97a]. Then, for each arriving receiver, where each square marks the upper sequence number of an
packetp;, we check whether it was sent after the last non-reordered

packet. If so, then it becomes the new such packet. Otherwise, we 2See [Pa96] for specifics concerning the sites mentioned in this paper.

Sequence #
75000 80000 85000 90000 95000 100000

T
1.74

Time

T
1.76

T
1.77

T
1.78

reorderings do not affect the fast retransmission process. We find
a wide range of times between an out-of-order arrival and the later
arrival of the last packet sent before it. One noteworthy artifact in
the distribution is the presence of “spikes” at particular values, the
strongest at 81 msec. This turns out to be due to a 56 Kbit/sec
link, which has a bottleneck bandwidth of about 6,320 user data
bytes/sec. Consequently, transmitting a 512 byte packet across the
link requires 81.0 msec, so data packets of this size can arrive no
closer, even if reordered. Thus we see that reordering can have
associated with it aninimumtime, which can be quite large.

Inspecting theV; distributions further, we find that a strategy of
waiting 20 msec would identify 70% of the out-of-order deliveries.
For V>, the same proportion can be achieved waiting 8 msec, due
to its overall shorter reordering times (presumably due to overall
arriving data packet. All packets were sent in increasing sequencehigher bandwidths). Thus, even though the upper end of the distri-
order. bution is very large (12 seconds!), a generally modest wait serves

Fitting a line to the upper points yields a data rate of a little to disambiguate most sequence holes.
over 170 Kbyte/sec, which was indeed the true (T1) bottleneck rate We now look at the degree to which false fast retransmit sig-
(§ 4). The slope of the packets deliverkde, though, is just un- nals due to reordering are actually a problem. We classify each
der 1 Mbyte/sec, consistent with an Ethernet bottleneck. What hassequence of dups as eittgodor bad, depending on whether a re-
apparently happened is that a router with Ethernet-limited connec- transmission in response to it was necessary or unnecessary. When
tivity to the receiver stopped forwarding packets for 110 msec just considering a refinement to the fast retransmission mechanism, our
as sequence 72,705 arrived, most likely because at that point it pro-interest lies in the resulting ratio gbodto bad R, controlled by
cessed a routing update [FJ94]. It finished between the arrival of both the dup ack threshold valuié; we consider, and theaiting
91,137 and 91,649, and began forwarding packets normally againtime 1, observed by the receiver before generating a dup upon the
at their arrival rate, namely T1 speed. Meanwhile, it had queued advent of a sequence hole.

35 packets while processing the update, and these it now finally For current TCP)V; = 3 dups andiv’ = 0. For these values,
forwarded whenever it had a chance, so they went out as quickly we find in A4, Ry, = 22, and inAN>, Ry, = 300! The order of
as possible, namely at Ethernet speed, but interspersed with newnagnitude improvement betwegvi, and A is due to the use in
arrivals. N> of bigger windows § 2), and hence more opportunity for gen-

We observed this pattern a number of times in our data—not eratinggooddups. Clearly, the current scheme works well. While
frequent enough to conclude that it is anything but a pathology, N, = 4 improvesR,., by about a factor of 2.5, it also diminishes
but often enough to suggest that significant momentary increasesfast retransmit opportunities by about 30%, a significant loss.
in networking delay can be due to effects different from both route For V; = 2, we gain about 65-70% more fast retransmit op-
changes and queueing; most likely due to router forwarding lulls. portunities, a hefty improvement, each generally saving a connec-

Impact of reordering. While out-of-order delivery can violate tion from an expensive timeout retransmission. The cost, however,
one's assumptions about the network—in particular, the abstractionis that R,., falls by about a factor of three. If the receiving TCP
that it is well-modeled as a series of FIFO queueing servers—we waited 1V = 20 msec before generating a second dup, tRen
find it often has little impact on TCP performance. One way it falls only slightly (30% forNi, not at all for2). Unfortunately,
can make a difference, however, is in determining the TCP “dup- adding to TCPsV,; = 2 coupled with thé¥/ = 20 msec delay re-
licate ack” threshold a sender uses to infer that a packet requiresquires both sender and receiver modifications, greatly increasing
retransmission. If the network never exhibited reordering, then as the problem ofdeployingthe change. Since partial deployment of
soon as the receiver observed a packet arriving that created a seenly the sender changéV; = 2) significantly increases spurious
quence “hole,” it would know that the expected in-sequence packet retransmissions, we conclude that, due to the size of the Internet's
was dropped, and could signal to the sender calling for prompt re- installed base, safely lowering, is impractical.
transmission. Because of reordering, however, the receivemdbes We note that the TCBelective acknowledgemgh8ACK”) op-
know whether the packet in fact was dropped; it may instead just be tion, now pending standardization, also holds promise for honing
late. Presently, TCP senders retransmiVif = 3 “dups” arrive, a TCP retransmission [MMSR96]. SACK provides sufficiently fine-
value chosen so that “false” dups caused by out-of-order delivery grained acknowledgement information that the sending TCP can
are unlikely to lead to spurious retransmissions. generally tell which packets require retransmission and which have

The value of Ny = 3 was chosen primarily to assure that the safely arrived § 5.4). To gain any benefits from SACK, however,
threshold was conservative. Large-scale measurement studies wereequires that both the sender and the receiver support the option,
not available to further guide the selection of the threshold. We so the deployment problems are similar to those discussed above.
now examine two possible ways to improve the fast retransmit Furthermore, use of SACK aids a TCP in determinivigat to re-
mechanism: by delaying the generation of dups to better disam- transmit, but notvhento retransmit. Because these considerations
biguate packet loss from reordering, and by altering the threshold are orthogonal, investigating the effects of loweriNg to 2 merits
to improve the balance between seizing retransmission opportuni-investigation, even in face of impending deployment of SACK.
ties, versus avoiding unneeded retransmissions. We observed one other form of dup ack series potentially leading

We first look at packet reordering time scales to determine how to unnecessary retransmission. Sometimes a series occurs for which
long a receiver needs to wait to disambiguate reordering from loss. the original ack (of which the others are dups) had acknowledged
We only look at the time scales of data packet reorderings, since ackall of the outstanding data. When this occurs, the subsequent dups

Figure 1: Out-of-order delivery with two distinct slopes

arealwaysdue to an unnecessary retransmission arriving at the re-

ceiving TCP, until at least a round-trip time (RTT) after the sending
TCP sends new data. F&¥; = 3, these sorts of series are 2-15
times more frequent thaad series, which is why they merit dis-
cussion. They are about 10 times rarer tgandseries. They occur

was much more prone to checksum errors than any other. Since
Ibli 'sInternetlink is via an ISDN link, it appears quite likely that
these are due to noise on the ISDN channels.

After eliminatinglbli , the proportion of corrupted packets is
about 0.02% in both datasets. No other single site strongly domi-

during retransmission periods when the sender has already filled allnated in suffering from corrupted packets, and\ip, most of the

of the sequence holes and is now retransmitting unnecessarily. Usesites receiving corrupted packets had fast (T1 or greater) Internet
of SACK eliminates these series. So would the following heuristic: connectivity, so the corruptions are not primarily due to noisy, slow
whenever a TCP receives an ack, it notes whether the ack coverdinks. Thus, this evidence suggests that, as a rule of thumb, the
all of the data sent so far. If so, it then ignores any duplicates it proportion of Internet data packets corrupted in transit is around
receives for the ack, otherwise it acts on them in accordance with 1 in 5,000 (but see below).

the usual fast retransmission mechanism. A corruption rate of 1 packet in 5,000 is certainly not negligi-
ble, because TCP protects its data with a 16-bit checksum. Con-
sequently, on average one bad packet out of 65,536 will be erro-
neously accepted by the receiving TCP, resultingridetected data

In this section we look gtacket replicationthe network delivering ~ corruption If the 1in 5,000 rate is indeed correct, then about one
multiple copies of the same packet. Unlike reordering, it is difficult in €very 300 million Internet packets is accepted with corruption—
to see how replication can occur. Our imaginations notwithstand- certainly, many each day. In this case, we argue that TCP's 16-
ing, it does happen, albeit rarely. We suspect one mechanism maybit checksum is no longer adequate, if the goal is that globally in
involve links whose link-level technology includes a notion of re- the Internet there are very few corrupted packets accepted by TCP
transmission, and for which the sender of a packet on the link incor- implementations. If the checksum were instead 32 bits, then only
rectly believes the packet was not successfully received, so it sendsaPout one ir2 - 10** packets would be accepted with corruption.
the packet again. Finally, we note that the data checksum error rate of 0.02% of the
In N1, we observed only once instance of packet replication, in packets is much higher than that measured directly (by verifying the
which a pair of acks, sent once, arrived 9 times, each copy com- checksum) for pure apks. For pure ackg, we f(.)und.only 1 corruption
ing 32 msec after the last. The fact that two packets were togetherOUt of 300,000 acks iV, and, after eliminatinpli , 1 out of
replicated does not fit with the explanation offered above for how 1.6 million acks inV. This discrepancy can be partially addressed
a single packet could be replicated, since link-layer effects should PY accounting for the different lengths of data packets versus pure
only replicate one packet at a time.Af, we observed 65 instances acks. It can be further reconciled if “header compression” such as
of the network infrastructure replicating a packet, all of a single CSLIP is used along the Internet paths in our study [Ja90], as that
packet, the most striking being 23 copies of a data packet arriving would greatly increase the relative size of data packets to that of
in a short blur at the receiver. Several sites dominatecMheepli- pure acks. But it seems unlikely that header compression is widely
cation events: in particular, the two Trondheim sitesintefl " used for high-speed links, and most of the inferfégdata packet
and ‘sintef2 ”, accounted for half of the events (almost all of ~corruptions occurred for T1 and faster network paths.
these involvingsintefl), and the two British sites,utl ” and One possibility is that the packets inferredtopanaly infer
“uke ", for half the remainder. After eliminating these, we still ob- @S arriving corrupted—because the receiving TCP did not respond
served replication events among connections between 7 differentt® them in any fashion—actually were never received by the TCP
sites, so the effect is somewhat widespread. for a different reason, such as inadequate buffer space. We partially
Surprisingly, packets can also be replicated at the sender, beforel€sted for this possibility by computing corruption rates for only
the network has had much of a chance to perturb them. We know those traces monitored by a packet filter running on machine sepa-
these are true replications and not packet filter duplications, as dis-ate from the receiver (but on the same local network), versus those
cussed in [Pa97a], because the copies have had their TTL fields'Unning on the receiver's machine. The former resulted in slightly
decremented. There were no sender-replicated packets,ibut higher inferred corruption rates, but not significantly so, so if the

17 instances inVa, involving two sites (so the phenomenon is TCP is failing to receive the packets in question, it must be due to
clearly site-specific). a mechanism that still enables the packet filter on the receiving ma-

chine to receive a copy. One can imagine such mechanisms, but it
seems unlikely they would lead to drop rates of 1 in 5,000.

Another possibility is that data packets are indeed much more
likely to be corrupted than the small pure ack packets, because of
. .) . some artifact in how the corruption occurs. For example, it may
network delivers to the receiver an imperfect copy of the original be that corruption primarily occurmside routers, where it goes

packet. For data packetB;pangly canqot directly verify the undetected by any link-layer checksum, and that the mechanism
checksum because the packet filter used in our study only recorded(e_g_, botched DMA, cache inconsistencies) only manifests itself
the packet headers, and qot the payload. (For. pure acks, ie, ack-for packets larger than a particular size.

nowledgement packets with no data payload, it directly verifies the Finally, we note that bit errors in packets transmitted using
checksum.) Consequenttgpanaly includes algorithms to infer '

. T . . . CSLIP can result in surprising artifacts when the CSLIP receiver
whether data packets arrive with invalid checksums, discussed mreconstructs the packet header—such as introducing the appearance
[Pa97a]. Using that analysis, we first found that one sit#i “ " P g PP

of in-sequence data, when none was actually sent!

3We have observed traces (not part of this study) in which more than [N SUmmary, we cannot offer a definitive answer as to overall
10% of the packets were replicated. The problem was traced to an improp- Internet packet corruption rates: but the conflicting evidence that
erly configured bridging device. corruption may occur fairly frequently argues for further study in

3.2 Packet replication

3.3 Packet corruption

The final pathology we look at ipacket corruptionin which the

order to resolve the question. the “self-clocking” mechanism. Keshav formally analyzed the be-
havior of packet pair for a network of routers that all obey the “fair
gueueing” scheduling discipline (not presently used in the Inter-

4 Bottleneck Bandwidth net), and developed a provably stable flow control scheme based on
packet pair measurements [Ke91]. Both Jacobson and Keshav were

In this section we discuss how to estimate a fundamental property interested in estimatingvailablerather tharbottleneckbandwidth,

of a network connection, theottleneck bandwidtthat sets the up- ~ and for thisvariationsfrom @, due to queueing are of primary con-

per limit on how quickly the network can deliver the sender's data cern § 6.3). But if, as for us, the goal is to estimatg, then these

to the receiver. The bottleneck comes from the slowest forwarding variations instead become noise we must deal with.

element in the end-to-end chain that comprises the network path. Bolot used a stream of packets sent at fixed intervals to probe

We make a crucial distinction betwe&ottleneckbandwidth and several Internet paths in order to characterize delay and loss [Bo93].

availablebandwidth. The former gives an upper bound on how fast He measured round-trip delay of UDP echo packets and, among

a connection capossiblytransmit data, while the less-well-defined ~ other analysis, applied the packet pair technique to form estimates

latter term denotes how fast the connectitrouldtransmit to pre- of bottleneck bandwidths. He found good agreement with known
serve network stability. Thus, available bandwidth never exceeds link capacities, though a limitation of his study is that the measure-
bottleneck bandwidth, and can in fact be much smafj&.g). ments were confined to a small number of Internet paths.

We will denote a path's bottleneck bandwidthgas For mea- Recent work by Carter and Crovella also investigates the utility
surement analysig; is a fundamental quantity because it deter- Of using packet pair in the Internet for estimatjng [CC96]. Their
mines what we term theelf-interference time-constar®,. Q. work focusses omprobe , a tool they devised for estimating
measures the amount of time required to forward a given packet by transmitting 10 consecutive ICMP echo packets and recording
through the bottleneck element. If a packet carries a totabytes the interarrival times of the consecutive replies. Much of the ef-
and the bottleneck bandwidth gs; byte/sec, then: fort in developingbprobe concerns how to filter the resulting raw

measurements in order to form a solid estimagaobe currently
b filters by first widening each estimate into an interval by adding
Q= —, @ o , , .
B an error term, and then finding the point at which the most intervals

overlap. The authors also undertook to calibigieobe by testing
in units of seconds. From a queueing theory perspectgis its performance for a number of Internet paths with known bottle-
simply the service time of &byte packet at the bottleneck link. We ocks. They found in general it works well, though some paths ex-
use the term “self-interference” because if the sender transmits twopjpited sufficient noise to sometimes produce erroneous estimates.
b-byte packets with an interval s < @, between them, then the One limitation of both studies is that they were based on mea-
second one is guaranteed to have to wait behind the first one at they;;;ements made only at the data sender. (This is not an intrinsic
bottleneck element (hence the use ¢f*to denote “queueing”). limitation of the techniques used in either study). Since in both

We will always discus), in terms ofuser data bytesi.e., TCP studies, the packets echoed back from the remote end were the
packet payload, and for ease of discussion will asskimeonstant. same size as those sent to it, neither analysis was able to distin-

We will not use the term for acks. guish whether the bottleneck along the forward and reverse paths

For our measurement analysis, accurate assessm@ptitrit- was the same. The bottleneck could differ in the two directions due
ical. Suppose we observe a sender transmitting pagkeasidp» to asymmetric routing, for example [Pa96], or because some media,
an interval AT apart. Then ifAT. < Q, the delays experienced gych as satellite links, can have significant bandwidth asymmetries
by p1 andp, areperforce correlatedand if AT, > Q, their de- depending on the direction traversed [DMT96].

lays, if correlated, are not due to self-interference but some other g estimating bottleneck bandwidth by measuring TCP traffic,
source (such as additional traffic from other connections, or pro- 4 second problem arises: if the only measurements available are
cessing delays). Thus, we need to knQwso we can distinguish those at the sender, then “ack compressi@r6.{) can significantly
those measurements that are necessarily correlated from those tha{jter the spacing of the small ack packets as they return through

are not. If we do not do so, then we will skew our analysis by the network, distorting the bandwidth estimate. We investigate the
mixing together measurements with built-in delays (due to queue- gegree of this problem below.

ing at the bottleneck) with measurements that do not reflect built-in -~ o, oyr analysis, we consider what we tereceiverbased

delays. packet pair (RBPP), in which we look at the pattern of data packet
arrivals at the receiver. We also assume that the receiver has full
4.1 Packet pair timing information available to it. In particular, we assume that

the receiver knows when the packets sent vmettestretched out by

The bottleneck estimation technique used in previous work is basedthe network, and can reject these as candidates for RBPP analysis.
on “packet pair’ [Ke91, Bo93, CC96]. The fundamental idea is RBPP is considerably more accurate than sender-based packet pair
that if two packets are transmitted by the sender with an interval (SBPP), since it eliminates the additional noise and possible asym-
AT, < Q, between them, then when they arrive at the bottleneck metry of the return path, as well as noise due to delays in generating
they will be spread out in time by the transmission delay of the first the acks themselves. We find in practice this additional noise can
packet across the bottleneck: after completing transmission throughbe quite large.
the bottleneck, their spacing will be exacfly. Barring subsequent
delay variations, they will then arrive at the receiver spacedvy¥at
apart, buAT, = @Q,. We then compute via Eqn 1.

The principle of the bottleneck spacing effect was noted in Ja- As shown in [Bo93] and [CC96], packet pair techniques often pro-
cobson's classic congestion paper [Ja88], where it in turn leads tovide good estimates of bottleneck bandwidth. We find, however,

4.2 Difficulties with packet pair

Sequence #
20000 40000 60000 80000 100000

0

Sequence #

T T
(o) 2

a

6

10

12

52000 54000 56000 58000 60000

T
8.4

T
8.6

T
8.8

T
9.0

Time

Figure 2: Bottleneck bandwidth change

four potential problems (in addition to noise on the return path

Time

Figure 3: Enlargement of part of previous figure's right half

What has happened is that the bottleneck ISDN link uses two

for SBPP). Three of these problem can often be addressed, but thehannelghat operate iparallel. When the link is idle and a packet

fourth is more fundamental.

Out-of-order delivery. The first problem stems from the fact
that for some Internet paths, out-of-order packet delivery occurs
quite frequently § 3.1). Clearly, packet pairs delivered out of order
completely destroy the packet pair technique, since they result in
AT, < 0, which then leads to a negative estimategdgr. Out-of-
order delivery is symptomatic of a more general problem, namely

arrives, it goes out over the first channel, and when another packet
arrives shortly after, it goes out over théher channel.They don't
gueue behind each otheMulti-channel links violate the assump-
tion that there is aingle end-to-end forwarding path, with dis-
astrous results for packet-pair, since in their presence it can form
completely misleading overestimates fof.

We stress that the problem is more general than the circum-

that the two packets in a pair may not take the same route throughStances shown in this example. First, while in this example the
the network, which then violates the assumption that the second parallelism leading to the estimation error came from a single link

queues behind the first at the bottleneck.

Limitations due to clock resolution. Another problem relates
to the receiver's clock resolutio@)., meaning the minimum differ-
ence in time the clock can report:,. can introduce large margins
of error around estimates @fs. For example, ifC,, = 10 msec,
then forb = 512 bytes, packet pair cannot distinguish between
ps = 51,200 byte/sec, anes = co.

We had several sites in our study with = 10 msec. A tech-
nique for coping with large”;. is to use packebunch in which
k > 2 back-to-back packets are used, rather than just two. Thus,
the overall arrival interva\T* spanned by thé& packets will be
aboutk — 1 times larger than that spanned by a single packet pair,
diminishing the uncertainty due 1, .

Changes in bottleneck bandwidth. Another problem thahny
bottleneck bandwidth estimation must deal with is the possibility
that the bottleneckhangesover the course of the connection. Fig-

ure 2 shows a sequence plot of data packets arriving at the receive

for a trace in which this happened. The eye immediately picks out
a transition between one overall slope to another, just @fter 6.

The first slope corresponds to 6,600 byte/sec, while the second is
13,300 byte/sec, and increase of a factor of two. Here, the change

is due tolbli ‘s ISDN link activating a seconchannelto double
the link bandwidth, but in general bottleneck shifts can occur due
to other mechanisms, such as routing changes.

Multi-channel bottleneck links. A more fundamental problem
with packet-pair techniques arises from the effectsiofti-channel
links, for which packet pair can yieldcorrect overestimatesven

in the absence of any delay noise. Figure 3 expands a portion of

Figure 2. The slope of the large linear trend in the plot corresponds

to 13,300 byte/sec, as earlier noted. However, we see that the line

with two separate physical channels, the exact same effect could
come from a router that balances its outgoing load across two dif-
ferent links. Second, it may be tempting to dismiss this problem
as correctable by using packet bunch witk= 3 instead of packet
pair. This argument is not compelling without further investigation,
however, because packet bunch could be more prone to error for
regular bottlenecks; and, more fundamentally= 3 only works

if the parallelism comes frortwo channels. If it came fronthree
channels (or load-balancing links), then= 3 will still yield mis-
leading estimates.

4.3 Robust bottleneck estimation

Motivated by the shortcomings of packet pair, we developed a sig-
nificantly more robust procedure, “packet bunch modes” (PBM).
The main observation behind PBM is that we can deal with packet-

Ipair's shortcomings by forming estimates foramge of packet

bunch sizes, and by allowing fonultiple bottleneck values or ap-
parent bottleneck values. By considering different bunch sizes, we
can accommodate limited receiver clock resolutions and the possi-
bility of multiple channels or load-balancing across multiple links,
while still avoiding the risk of underestimation due to noise diluting
larger bunches, since we also consider small bunch sizes. By allow-
ing for finding multiple bottleneck values, we again accommodate
multi-channel (and multi-link) effects, and also the possibility of a
bottleneckchange

Allowing for multiple bottleneck values rules out use of the most
common robust estimator, the median, since it presupposes uni-
modality. We instead focus on identifyimgodesi.e., local maxima
in the density function of the distribution of the estimates. We then
observe that:

is actually made up of pairs of packets. The slope between the pairs)))
corresponds to a data rate of 160 Kbyte/sec. However, this trace () If we find two strong modes, for which one is found only at

involved Ibli , a site with an ISDN link that has a hard limit of
128 Kbhit/sec = 16 Kbyte/sec, a factor of ten smaller! Clearly, an
estimate ofpp ~ 160 Kbyte/sec must be wrong, yet that is what a
packet-pair calculation will yield.

the beginning of the connection and one at the end, then we
have evidence of a bottlenechange

(i) If we find two strong modes which span the same portion of
the connection, and if one is found only for a packet bunch

T1

E1

ETHER
2Tl 311

T
500

64 Kbps

]

128 Kbps

h 256 Kbps
T
10

5E1

0 1000 2000 3000 4000 5000 6000

T T
100 1000

KBytes/sec

50
Figure 4: Histogram of single-bottleneck estimatesXar

size ofm and the other only for bunch sizes m, then we
have evidence for am-channel bottleneck link.

(i) We can find both situations, for a link that exhibits both a
change and a multi-channel link, such as shown in Figure 2.

Turning these observations into a working algorithm entails a great
degree of niggling detail, as well as the use of a number of heuris-
tics. Due to space limitations, we defer the particulars to [Pa97b].
We note, though, that one salient aspect of PBM is that it forms
its final estimates in terms @frror barsthat nominally encompass
+20% around the bottleneck estimate, but might be narrower if es-
timates cluster sharply around a particular value, or wider if limited
clock resolution prevents finer bounds. PBM always tries bunch
sizes ranging from two packets to five packets. If required by lim-
ited clock resolution or the failure to find a compelling bandwidth
estimate (about one quarter of all of the traces, usually due to lim-
ited clock resolution), it tries progressively larger bunch sizes, up
to a maximum of 21 packets. We also note that nothing in PBM is
specific to analyzing TCP traffic. All it requires is knowing when
packets were sent relative to one another, how they arrived relative
to one another, and their size.

We applied PBM toN; and N> for those traces for which
tcpanaly ‘s packet filter and clock analysis did not uncover any
uncorrectable problems [Pa97a, Pa97b]. After removinlg ,
which frequently exhibited both bottleneck changes and multi-
channel effects, PBM detected a single bottleneck 95-98% of the
time; failed to produce an estimate 0-2% of the time (due to ex-

We speculate that the 330 Kbyte/sec peak reflects use of two
T1 circuits in parallel, 500 Kbyte/sec reflects three T1 circuits (not
half an Ethernet, since there is no easy way to subdivide an Ether-
net's bandwidth), and 80 Kbyte/sec comes from use of half of a T1.
Similarly, the 100 Kbyte/sec peak most likely is due to splitting
a single E1 circuit in half. Indeed, we find non-North American
sites predominating these connections, as well exhibiting peaks at
200-220 Kbyte/sec, above the T1 rate and just a bit below E1. This
peak is absent from North American connections.

In summary, we believe we can offer plausible explanations for
all of the peaks. Passing this self-consistency test in turn argues that
PBM is indeed detecting true bottleneck bandwidths.

We next investigate the stability of bottleneck bandwidth
over time. If we consider successive estimates for the same
sender/receiver pair, then we find that 50% differ by less than
1.75%; 80%, by less than 10%; and 98% differ by less than a factor
of two. Clearly, bottlenecks change infrequently.

The last property of bottleneck bandwidth we investigate is sym-
metry: how often is the bottleneck from ha4tto hostB the same
as that fromB to A? Bottleneck asymmetries are an important con-
sideration for sender-based “echo” measurement techniques, since
these will observe theninimumbottleneck of the two directions
[Bo93, CC96]. We find that for a given pair of hosts, the median es-
timates in the two directions differ by more than20% about 20%
of the time. This finding agrees with the observation that Internet
paths often exhibit major routing asymmetries [Pa96]. The bottle-
neck differences can be quite large, with for example some paths
T1-limited in one direction but Ethernet-limited in the other. In
light of these variations, we see that sender-based bottleneck mea-
surement will sometimes yield quite inaccurate results.

4.4 Efficacy of packet-pair

We finish with a look at how packet pair performs compared to
PBM. We confine our analysis to those traces for which PBM
found a single bottleneck. If packet pair produces an estimate lying
within + 20% of PBM's, then we consider it agreeing with PBM,
otherwise not.

We evaluate “receiver-based packet pair’ (RBPP,{pérl) by
considering it as PBM limited to packet bunch sizes of 2 packets

cessive noise or reordering); detected a bottleneck change in aboufOr 1arger, if needed to resolve limited clock resolutions). We find

1 connection out of 250; and inferred a multi-channel bottleneck in

1-2% of the connections (though some of these appear spurious).

Since all but single bottlenecks are rare, we defer discussion of the
others to [Pa97b], and focus here on the usual case of finding a
single bottleneck.

Unlike [CC96], we do not knowa priori the bottleneck band-
widths for many of the paths in our study. We thus must fall

back on self-consistency checks in order to gauge the accuracy

of PBM. Figure 4 shows a histogram of the estimates formed for
Na. (TheN; estimates are similar, though lower bandwidth esti-
mates are more common.) The 170 Kbyte/sec peak clearly dom-
inates, and corresponds to the speed of a T1 circuit after remov-
ing overhead. The 7.5 Kbyte/sec corresponds to 64 Kbit/sec
links and the 13-14 Kbyte/sec peak reflects 128 Kbit/sec links.
The 30 Kbyte/sec peak corresponds to a 256 Kbit/sec link, seen
almost exclusively for connections involving a U.K. site. The
1 Mbyte/sec peaks are due to Ethernet bottlenecks, and likely re-
flect T3-connectivity beyond the limiting Ethernet.

4Recall that we computep in terms of TCPpayloadbytes.

RBPP estimates almost always (97-98%) agree with PBM. Thus, if
(1) PBM's general clustering and filtering algorithms are applied to
packet pair, (2) we do packet pair estimation atréeeiver (3) the
receiver benefits from sender timing information, so it can reliably
detect out-of-order delivery and lack of bottleneck “expansion,” and
(4) we are not concerned with multi-channel effects, then packet
pair is a viable and relatively simple means to estimate the bottle-
neck bandwidth.

We also evaluate “sender-based packet pair” (SBPP), in which
the sender makes measurements by itself. SBPP is of consider-
able interest because a sender can use it without any cooperation
from the receiver, making it easy to deploy in the Internet. To
fairly evaluate SBPP, we assume use by the sender of a number
of considerations for forming sound bandwidth estimates, detailed
in [Pa97b]. Even so, we find, unfortunately, that SBPP does not
work especially well. In both datasets, the SBPP bottleneck esti-
mate agrees with PBM only about 60% of the time. About one
third of the estimates are too low, reflecting inaccuracies induced by
excessive delays incurred by the acks on their return. The remain-
ing 5-6% are overestimates (typically 50% too high), reflecting ack

compression§(6.1). | Region [Quies | Quies || Busy: [Busy, | A

Europe 48% 58% 53% | 59% | +11%
uU.S. 66% 69% 3.6% | 4.4% | +21%
5 Packet Loss into Europe || 40% | 31% || 9.8% | 16.9% | +73%
Into U.S. 35% 52% 49% | 6.0% | +22%
In this section we look at what our measurements tell us about [~ Allregions 53% 52% || 5.6% | 8.7% | +54%

packet loss in the Internet: how frequently it occurs and with what
general patterng 6.1); differences between loss rates of data pack-
ets and acks5(5.2); the degree to which loss occurs in bur§ts.8); Table 1: Conditional ack loss rates for different regions
and how well TCP retransmission matches genuine K5s4).

5.1 Loss rates are generated by the receiver. Hence, “Into Europe” loss rates re-
flect those experienced by packet streams traveling from the U.S.
A fundamental issue in measuring packet loss is to avoid confus- into Europe. Similarly, “Into U.S.” are connections with U.S. data
ing measurement drops with genuine losses. Here is where the efsenders and European receivers.
fort to ensure thatcpanaly understands the details of the TCP Table 1 summarizes loss rates for the different regions, condi-
implementations in our study pays off [Pad7a]. Because we can joning on whether any acks were lost (“quiescent” or “busy”). The
determine whether traces suffer from measurement drops, we Carse g and third columns give the proportion of all connections that
exclude those that do from our packet loss analysis and avoid what,, o e quiescent iV, and.\z, respectively. We see that except for
could otherwise be significant inaccuracies. the trans-Atlantic links going into the U.S., the proportion of qui-
For the sites in common, iy, 2.7% of the packets were lost, egcent connections is fairly stable. Hence, loss rate increases are
while in A, 5.2%, nearly twice as many. However, we need to pimarily due to higher loss rates during the already-loaded “busy”
address the question of whether the increase was due to the use Gferiggs. The fourth and fifth columns give the proportion of acks
bigger windows i\ (§ 2). With bigger windows, transfers will | for “husy” periods, and the final column summarizes the rela-
often have more data in flight and, consequently, load router queuestjye change of these figures. None of the busy loss rates is especially

much more. _ _ _ _ heartening, and the trends aiéincreasing. The 17%/; loss rate
We can assess the impact of bigger windows by looking at loss going into Europe is particularly glum.

rates ofdata packets versus those fack packets. Data packets - .) : . . L
Within regions, we find considerable site-to-site variation in loss
stress the forward path much more than the smaller ack packets o .
rates, as well as variation between loss rates for packets inbound to

stress the reverse path, especially since acks are usually sent atthe site and those outboungl%.2). We did not, however, find any
half the rate of data packets due to ack-every-other-packet policies. . - e ! ' '
sites that seriously skewed the above figures.

On the other hand, the rate at which a TCP transmits data packets
adaptsto current conditions, while the ack transmission rate does " [Pa97b] we also analyze loss rates over the course of the day,
not unless an entire flight of acks is lost, causing a sender timeout, "€re omitted due to limited space. We find an unsurprising diurnal
Thus, we argue that ack losses give a clearer picture of overall In- Pattern of “busy” periods corresponding to working hours and “qui-
ternet loss patterns, while data losses tell us specifically about the€SCeNt” periods to late night and especially early morning hours.
conditions as perceived by TCP connections. However, we also find that owuccessfueasurements involving

In A\, 2.88% of the acks were lost and 2.65% of the data packets, Eu.ropean sitgs exhibit a definite s!<ew towards oversampling the
while in A, the figures are 5.14% and 5.28%. Clearly, the bulk duiescent periods, due to effects discusseg 2 Consequently,
of the difference between th&, and A loss rates is not due to the European loss rates given aboveuargerestimates
the use of bigger windows iv>. Thus we conclude that, overall, We finish with a brief look at how loss rates evolve over time. We
packet loss rates nearly doubled during 1995. We can refine thesdind that observing a zero-loss connection at a given point in time is
figures in a significant way, by conditioning on observing at least quite a good predictor of observing zero-loss connections up to sev-
one loss during a connection. Here we make a tacit assumption thateral hours in the future, and remains a useful predictor, though not
the network has two states, “quiescent” and “busy,” and that we can as strong, even for time scales of days and weeks [Pa97b]. Simi-
distinguish between the two because when itis quiescent, we do notlarly, observing a connection that suffered loss is also a good predic-

observeany (ack) loss. tor that future connections will suffer loss. The fact that prediction
In both A, andA», about half the connections had no ack loss. 10ses some power after a few hours supports the notion developed
For “busy” connections, the loss rates jump to 5.7%jinand 9.2% above that network paths have two general states, “quiescent” and
in N>. Thus, even inV;, if the network was busy (using our sim- ~ “busy,” and provides evidence that both states are long-lived, on
plistic definition above), loss rates were quite high, and\ferthey time scales of hours. This again is not surprising, since we dis-
shot upward to a level that in general will seriously impede TCP cussed earlier how these states exhibit clear diurnal patterns. That
performance. they are long-lived, though, means that caching loss information

So far, we have treated the Internet as a single aggregated netshould prove beneficial.

work in our loss analysis. Geography, however, plays a crucial role. Finally, we note that the predictive power of observing a specific
To study geographic effects, we partition the connections into four lossrate is much lower than that of observing the presence of zero
groups: “Europe,” “U.S.,” “Into Europe,” and “Into U.S.” European or non-zero loss. That s, even if we know it is a “busy” or a “quies-
connections have both a European sender and receiver, U.S. haveent” period, the loss rate measured at a given time only somewhat
both in the United States. “Into Europe” connections have Eu- helps us predict loss rates at times not very far (minutes) in the fu-
ropean datasendersand U.S. dataeceivers The terminology is ture, and is of little help in predicting loss rates a number of hours
backwards here because what we asseszcatess rates, and these in the future.

1.0

0.8

0.6

- Loaded data pkts

=]
—— Unloaded data pkts <
— — Acks

0.4

0.2

0.0

T
o 10 20 30 40 (0] 10 20 30 40
Per-Connection Packet Loss Rate (%) Unloaded Data Packet Loss Rate (%)

Figure 5:N; loss rates for data packets and acks

5.2 Data packet loss vs. ack loss |
We now turn to evaluating how patterns of packet loss differ among < |
data packets (those carrying any user data) and ack packets. We
make a key distinction between “loaded” and “unloaded” data pack- S A
ets. A “loaded” data packet is one that presumably had to queue at

the bottleneck link behind one of the connection's previous pack- S
ets, while an unloaded data packet is one that we know did not have o |
to queue at the bottleneck behind a predecessor. We distinguish o 20 20 00
between the two by computing each pack&ies], as follows. Ack Loss Rate (%6)

Suppose the methodology §¥ estimates the bottleneck band-
width aspp. It also providesooundson the estimate, i.e., a min- Figure 6: Distribution of\, unloaded data packet and ack
imum valuep,, and a maximunpy;,. We can then determine the non-zero loss rates (solid), with fitted exponential distribu-
maximum amount of time required foebyte packet to transitthe tions (dotted)
bottleneck, namely<;$ljr =b/pz sec.

Let 77 be the time at which the sender transmits itte data

packet. We then sequentially associateaximum load\;” with ack stream presents a much lighter load to the network than a data

each packet (assume for simplicity thiais constant). The first packet stream, the ack stream doesadapt to the current network

packet's load is: conditions, while the data packet stream does, lowering its trans-
A= ¢{f- mission rate in an attempt to diminish its loss rate.

Subsequent packets have a load: It is interesting to note the extremes to which packet loss can

reach. In\>, the largest unloaded data packet loss rate we observed
was 47%. For loaded packets it climbed to 65%, and for acks, 68%.
AF thus reflects the maximum amount of extra delayithepacket As we would expect, these connections all suffered egregiously.
incurs due to its own transmission time across the bottleneck link, However, theydid manage to successfully complete their transfers
plus the time required to first transmit any preceding packets acrosswithin their alloted ten minutes, a testimony to TCP's tenacity. For
the bottleneck link, ifi will arrive at the bottleneck before they all of these extremesio packets were lost in the reverse direction!
completed transmission. In queueing theory temjs,reﬂects the Clearly packet loss on the forward and reverse paths is sometimes
ith packet's (maximum) waiting time at the bottleneck queue, in the completely independent. Indeed, the coefficient of correlation be-
absence of competing traffic from exogenous sources. tween combined (loaded and unloaded) data packet loss rates and
IfTF <T5 +)\;r_1, then we will term packet“loaded,” mean- ack loss rates iV; is 0.21, and inV>, the loss rates appear uncor-
ing that it had to wait for pending transmission of earlier packets. related (coefficient 0£-0.02), perhaps due to the greater prevalence
Otherwise, we term it “unloaded.” (We can also develop “central” of significant routing asymmetry [Pa96].
estimates rather than maximum estimates ugipgnstead ofp Further investigating the loss rate distributions, one interesting
in this chain of reasoning. These are the values usé®i8.) feature we find is that the non-zero portions of both the unloaded
Using this terminology, in bott\; and A, about 2/3's of the and loaded data packet loss rates agree closely with exponential dis-
data packets were loaded. Figure 5 shows the distributions of losstributions, while that for acks is not so persuasive a match. Figure 6
rates duringVs for unloaded data packets, loaded data packets, and shows the distributions of the per-connection loss rates for unloaded
acks. All three distributions show considerable probability of zero data packets (top) and acks (bottom)\iia, for those connections
loss. We immediately see that loaded packets are much more likelythat suffered at least one loss. In both plots we have added an expo-
to be lost than unloaded packets, as we would expect. In addi- nential distribution fitted to the mean of the loss rate (dotted). We
tion, acks are consistently more likely than unloaded packets to be see that for unloaded data packets (and also for loaded packets, not
lost, but generally less likely to be lost than loaded packets, ex- shown), the loss rate distribution is quite close to exponential, with
cept during times of severe loss. We interpret the difference be- the only significant disagreement in the lower tail. (This tail is sub-
tween ack and data loss rates as reflecting the fact that, while anject to granularity effects, since for a trace wijtpackets, the mini-

)\:r = ¢l? “+ max I:(Tis_l +)\:r_l) - Tis70] .

Type of loss P PF

N N[Mi] s
Loaded data pkt || 2.8% | 4.5% || 49% | 50%
Unloaded data pki| 3.3% | 5.3% || 20% | 25%
Ack 3.2% | 4.3% || 25% | 31%

-- N1 Data
— — N1 Acks
7| — N2Data
N2 Acks

00 02 04 06 08 10

Table 2: Unconditional and conditional loss rates os 10 so0 100 so0.0

Outage Duration (sec)

mum non-zero loss rate will be.) The close fitis widespread—not ~ Figure 7: Distribution of packet loss outage durations ex-
dominated by a few sites. For ack loss rates, however, we see thaceeding 200 msec
the fit is considerably less compelling.

While striking, interpreting the fit to the exponential distribution
is difficult. If, for example, packet loss occurs independently and
with a constant probability, then we would expect the loss rate to
reflect a binomial distribution, but that it what we observe. (We
also know from the results if5.1 that there isot a single Internet
packet loss rate, or anything approaching such a situation.)

It seems likely that the better exponential fit for data loss rates
than ack loss rates holds a clue. The most salient difference be-
tween the transmission of data packets and that of acks is that the
rate at which the sender transmits data pacad#ptsto the current
network conditions, and furthermore it adap&sed on observing
data packet loss Thus, if we passively measure the loss rate by Figure 8: Log-log complementary distribution ploto$ ack
observing the fate of a connection’s TCP data packets, then we ingytage durations
fact are making measurements using a mechanism whose goal is
to lower the value of what we are measuring (by spacing out the

measurements). Consequently, we need to take care to distinguisRjious packets, as well as any additional traffic, and indeed this is
between measuring overall Internet packet loss rates, which is besknhe case. We find the effect least strong for unloaded data packets,

=)

P(X >
0.0001 0.0010 0.0100 0.1000 1.0000
.

T T T T T
5 10 50 100 500
Ack Outage Duration (sec)

done usingion-adaptivesampling, versus measuring loss ra#8s \hich accords with these not having to contend with the connec-
pgrlencedoy atransport connection’s packets—the two can be quite tjon's previous packets, and having their rate diminished in the face
different. of previous loss.

~ Finally: the link between the adaptive sampling and the strik- The relative differences betweétt and Py in Table 2 all exceed
ing exponential distribution eludes us. We suspect it will prove an those computed by Bolot by a large factor. His greatest observed

interesting area for further study. ratio of P to P;* was about 2.5:1. However, hi3* were all much
higher than those in Table 2, even fbr= 500 msec, suggesting

53 Loss bursts .that the path he measured differed considerably from a typical path
in our study.

In this section we look at the degree to which packet loss occurs in ~ Given that packet losses occur in bursts, the next natural question

burstsof more than one consecutive loss. is: how big? To address this question, we group successive packet

The first question we address is the degree to which packet lossedosses intmutages Figure 7 shows the distribution of outage dura-
are well-modeled as independent. In [Bo93], Bolot investigated this tions for those lasting more than 200 msec (the majority). We see

question by comparing the unconditional loss probabily, with that all four distributions agree fairly closely.

the conditional loss probabilityP’, where P/ is conditioned on It is clear from Figure 7 that outage durations span several or-
the fact that the previous packet was also lost. He investigated theders of magnitude. For example, 10% of thie ack outages were
relationship betwee® and P for different packet spacings, 33 msec or shorter (not shown in the plot), while another 10% were
ranging from 8 msec to 500 msec. He found tRatapproache®;* 3.2 sec or longer, a factor of a hundred larger. Furthermore, the up-

asd increases, indicating that loss correlations are short-lived, and per tail of the distributions are consistent with Pareto distributions.
concluded that “losses of probe packets are essentially random ag~igure 8 shows a complementary distribution plot of the duration
long as the probe traffic uses less than 10% of the available capacityof N> ack outages, for those lasting more than 2 sec (about 16%
of the connection over which the probes are sent.” The path he of all the outages). Both axes are log-scaled. A straight line on
analyzed, though, included a heavily loaded trans-Atlantic link, so such a plot corresponds to a Pareto distribution. We have added a
the patterns he observed might not be typical. least-squares fit. We see the long outages fit quite well to a Pareto
Table 2 summarizeB* and PF for the different types of packets distribution with shape parameter= 1.06, except for the extreme
and the two datasets. Clearly, for TCP packets we must discard the
assumption that loss events are well-modeled as independent. Even 51t is interesting that loaded packets are unconditionally less likely to be

for the low-burden, relatively low-rate ack packets, the loss proba- Iost_ than unloaded packets. We suspect th|s_reflects the fact_thgt lengthy
periods of heavy loss or outages will lead to timeout retransmissions, and

bility jumps by a factor of seven if the previous ack was 0st. We hese are unloaded. Note that these statistics differ from the distributions
would expect to find the disparity strongest for loaded data packets, shown in Figure 5 because those are fer-connectionioss rates, while
as these must contend for buffer with the connection's own pre- Table 2 summarizes loss probabilities oaéiithe packetsn each dataset.

Type of RR || Solaris | Solaris [Otheri | Other, | Solaris 2.3/2.4 TCP, as noted above. Fixing the Solaris RTO calcu-

% all packets 6% 6% 1% 2% lation eliminates about 4-5% @il of the data traffic generated by
% retrans. 66% 59% 26% 28% the TCP For non-Solaris TCPs, bad RTO RRs are rare, providing
Unavoidable 14% 33% 44% 17% solid evidence that the standard TCP RTO estimation algorithm de-
Coarse feed. 1% 1% 51% 80% veloped in [Ja88] performs quite well for avoiding RRs. A separate
Bad RTO 84% 66% 4% 3% question is whether the RTO estimation is overly conservative. A

thorough investigation of this question is complex because a revised
estimator might take advantage of both higher-resolution clocks and
Table 3: Proportion of redundant retransmissions (RRs) duethe opportunity to time multiple packets per flight. Thus, we leave
to different causes this interesting question for future work.
In summary: ensuring standard-conformant RTO calculations
and deploying the SACK option together eliminate virtually all of
upper tail, which is subject to truncation because of the 600 sec the avoidable redundant retransmissions. The remaining RRs are

limit on connection durations}2). rare enough to not present serious performance problems.
A shape parameter < 2 means that the distribution hasinite

variance indicating immense variability. Pareto distributions for
activity and inactivity periods play key roles in some models of 6 Packet Delay
self-similar network traffic [WTSW95], suggesting that packet loss
outages could contribute to how TCP network traffic might fit to The final aspect of Internet packet dynamics we analyze is that of
ON/OFF-based self-similarity models. packet delay. Here we focus on network dynamics rather than trans-

Finally, we note that the patterns of loss bursts we observe might port protocol dynamics. Consequently, we confine our analysis to
be greatly shaped by use of “drop tail” queueing. In particular, Variations in one-way transit times (OTTs) and omit discussion of
deployment of Random Early Detection could significantly affect RTT variation, since RTT measurements conflate delays along the
these patterns and the corresponding connection dynamics [FJ93]. forward and reverse path.

For reasons noted i1 1, we do not attempt frequency-domain
. .. analysis of packet delay. We also do not summarize the marginal

5.4 Efficacy of TCP retransmission distribution of packet delays. Mukherjee found that packet delay

The final aspect of packet loss we investigate is how efficiently TCp &/0ng @ particular Internet path is well-modeled using a shifted
deals with it. Ideally, TCP retransmits if and only if the retrans- gamma distribution, but the parameters of the distribution vary from

mitted data was indeed lost. However, the transmitting TCP lacks Path to path and over the course of the day [Mu94]. Since we have
perfect information, and consequently can retransmit unnecessarily, 200Ut 1,000 distinct paths in our study, measured at all hours of the
We analyzed each TCP transmission in our measurements to deterd2y: @nd since the gamma distribution varies considerably as its pa-
mine whether it was edundant retransmissiofRR), meaning that rameters are varied, it is difficult to see how to summarize the delay
the data sent had already arrived at the receiver, or was in flight anddistributions in a useful fashion. We hope to revisit this problem in

would successfully arrive. We classify three types of RRs: future work. , , .
Any accurate assessment of delay must first deal with the issue

unavoidable because all of the acks for the data were lost; of clock accuracy. This problem is particularly pronounced when
measuring OTTSs since doing so involves comparing measurements
from two separate clocks. Accordingly, we developed robust algo-
rithms for detecting clocldjustmentsndrelative skewby inspect-
ing sets of OTT measurements, described in [Pa97b]. The analysis
bad RTO meaning that had the TCP simply waited longer, it in this section assumes these algorithms have first been used to re-
would have received an ack for the data (bad retransmission ject or adjust traces with clock errors.
timeout). OTT variation was previously analyzed by Claffy and colleagues
) . in a study of four Internet paths [CPB93]. They found that mean
Table 3 summarizes the prevalence of the different types of OTTs are oftemot well approximated by dividing RTTs in half,

RRs in N7 and NV>. We divide the analysis into Solaris 2.3/2.4 o . \ .
TCP senders and others because in [Pa97a] we identified the S0 nd that variations in the paths' OTTS are often asymmetric. Our

laris 2.3/2.4 TCP as suffering from significant errors in comput- measurements confirm this latter finding. If we compute the inter-

ing RTO, which the other implementations do not exhibit. We see quartile range (75th percentile minus 25th) of OT.TS for a connec-
. . . : tion's unloaded data packets versus the acks coming batk, tine

that in A1, a fair proportion of the RRs were unavoidable. (Some - . : . .

of these might however have been avoided had the receiving TCPcoe_fflment of correlation between the two is an anemic 0.10, and in

generated more acks.) But faf,, only about 1/6 of the RRs for N it drops to 0.006.

non-Solaris TCPs were unavoidable, the difference no doubt due to

N2's use of bigger windows; (2) increasing the mean number of 6.1 Timing compression

acks in flight.

“Coarse feedback” RRs would presumably all be fixed using
SACK, and these are the majority of RRs for non-Solaris TCPs.
Solaris TCPs would not immediately benefit from SACK because
many of their RRs occur before a SACK ack could arrive, anyway.

“Bad RTO” RRs indicate that the TCP's computation of the
retransmission timeout was erroneous. These are the bane of 6We note that this problem has been fixed in Solaris 2.5.1.

coarse feedbackmeaning that had earlier acks conveyed finer in-
formation about sequence holes (such as provided by SACK),
then the retransmission could have been avoided; and

Packet timingcompressiomccurs when a flight of packets sent over
an intervalAT arrives at the receiver over an intervsll’, < AT%.

To first order, compression should not occur, since the main mecha-
nism at work in the network for altering the spacing between pack-
ets is queueing, which in generekpandsflights of packets (cf.

Sequence #
35000 40000 45000 50000 55000

12 13 14 15 16 17

Time

Figure 9: Data packet timing compression

§ 4.1). However, compression can occur if a flight of packets is at
some pointheld upby the network, such that transmission of the
first packet stalls and the later packets have time to catch up to it.
Zhang et al. predicted from theory and simulation that acks
could be compressed (“ack compression”) if a flight arrived at a
router without any intervening packets from cross traffic (hence, the
router's queue idraining) [ZSC91]. Mogul subsequently analyzed

Data packet timing compression.For data packet timing com-
pression, our concerns are different. Sometimes a flight of data
packets is sent at a high rate due to a sudden advance in the re-
ceiver's offered window. Normally these flights are spread out by
the bottleneck and arrive at the receiver with a distapgbetween
each packet§(4). If after the bottleneck their timing is compressed,
then use of Eqn 2 wilhot detect this fact unless they are com-
pressed to a greater degree than their sending rate. Figure 9 illus-
trates this concern: the flights of data packets arrived at the receiver
at 170 Kbyte/sec (T1 rate), except for the central flight, which ar-
rived at Ethernet speed. However, it was also sent at Ethernet speed,
so forit,§ = 1.

Consequently, we consider a group of data packets as “com-
pressed” if they arrive at greater than twice the upper bound on
the estimated bottleneck bandwidg,. We only consider groups
of at least four data packets, as these, coupled with ack-every-other
policies, have the potential to then elicit a pair of acks reflecting the
compressed timing, leading to bogus self-clocking.

These compression events are rarer than ack compression, occur-
ring in only 3% of theN; traces and 7% of those iK.. We were
interested in whether some paths might be plagued by repeated

a trace of Internet traffic and confirmed the presence of ack com- compression events due to either peculiar router architectures or
pression [M092]. His definition of ack compression is somewhat network dynamics. Only 25-30% of the traces with an event had

complex since he had to infer endpoint behavior from an observa- more than one, and just 3% had more than five, suggesting that such
tion point inside the network. Since we can compute from our data phenomena are rare. But those connections with multiple events are
both AT, and AT,., we can instead directly evaluate the presence dominated by a few host pairs, indicating that the phenomenon does

of compression. He found compression was correlated with packetoccur repeatedly, and is sometimes due to specific routers.

loss but considerably more rare. His study was limited, however, to
a single 5-hour traffic trace.

Ack compression.To detect ack compression, for each group of
at least 3 acks we compute:

_ AT+ G,

5_ATS—C’S’

@)

whereC, andC; are the receiver and sender's clock resolutions,

so¢ is a conservative estimate of the degree of compression. We

consider a group compressecif< 0.75. We term such a group

a compression eventin A, 50% of the connections experienced
at least one compression event, and\in, 60% did. In both, the
mean number of events was around 2, and 1% of the connection

experienced 15 or more. Almost all compression events are small,

with only 5% spanning five or more acks. Finally, a significant mi-

nority (10—-25%) of the compression events occurred for dup acks.
These are sent with less spacing between them than regular ack
sent by ack-every-other policies, so it takes less timing perturbation

to compress them.

Were ack compression frequent, it would present two problems.
First, as acks arrive they advance TCP's sliding window and “clock
out” new data packets at the rate reflected by their arrival [Ja88].
For compressed acks, this means that the data packets tastart

than previously, which can resultin network stress. Second, sender-

based measurement techniques such as SBRPLY can misin-
terpret compressed acks as reflecting greater bandwidth than trul

and small in magnitude, the first problem is not seribas)d the
second can be dealt with by judiciously removing upper extremes
from sender-based measurements.

7Indeed, it has been argued that occasional ack compression is benefi-

cial, since it provides an opportunity for self-clocking to discover newly-
available bandwidth.

S

S

It appears that data packet timing compression is rare enough not
to present a problem. That it does occur, though, again highlights
the necessity for outlier-filtering when conducting timing measure-
ments. (It also has a measurement benefit: from the arrival rate of
the compressed packets, we can estimate the downstream bottle-
neck rate.)

6.2 Queueing time scales

In this section we briefly develop a rough estimate of the time scales
over which queueing occurs. If we take care to eliminate suspect
clocks, reordered packets, compressed timing, and traces exhibiting
TTL shifts (which indicate routing changes), then we argue that the
remaining measured OTT variation reflects queueing delays.

We compute th@ueueing variation on the time scateas fol-
lows. We partition the packets sent by a TCP into intervals of
length 7. For each interval, let;; and n, be the number of
successfully-arriving packets in the left and right halves of the inter-
val. If either is zero, or ify; < inr or vice versa, then we reject the
interval as containing too few measurements or too much imbalance
between the halves. Otherwise, et andm, be the median OTTs
of the two halves. We then define the interval's queueing variation
as|m; — m,|. Finally, letAQ, be the median ofim; — m, | over
all such intervals.

Thus,AQ reflects the “average” variation we observe in packet
delays over a time scale of By using medians, this estimate is ro-

. X . . . Youst in the presence of noise due to non-queueing effects, or queue-
available. Since, however, we find ack compression relatively rare

ing spikes. By dividing intervals in two and comparing only varia-
tion between the two halves, we confing) - to only variations on

the time scale of. Shorter or longer lived variations are in general
not included.

We now analyzeAQ, for different values ofr, confining our-
selves to variations in ack OTTs, as these are not clouded by self-
interference and adaptive transmission rate effects. The question is:

Normalized Proportion
0.15 0.10 0.05 0.0 0.5 0.10

@
=4

© < o < ©
8 8] 3 8
8 3

<

o
S
=

0.016
0.032
0.064

.384

= 8 5] >
=] S = - ©

32.768
65.536

Time Scale of Maximum Sustained Variation (sec)

Figure 10: Proportion (normalized) of connections with
given timescale of maximum delay variatior)

are their particular's on which most queueing variation occurs?
If so, then we can hope to engineer for those time scales. For ex-
ample, if the dominant is less than a connection's RTT, then it is
pointless for the connection to try to adapt to queueing fluctuations,
since it cannot acquire feedback quickly enough to do so.

For each connection, we range throizfh2°, ..., 2'° msec to
find 7, the value ofr for which AQ, is greatest.T reflects the
time scale for which the connection experienced the greatest OTT
variation. Figure 10 shows the normalized proportion of the con-
nections inV; andA> exhibiting different values of. Normaliza-
tion is done by dividing the number of connections that exhibited
with the number that had durations at least as long.aSor both
datasets, time scales of 128-2048 msec primarily dominate. This
range, though, spans more than an order of magnitude, and als
exceeds typical RTT values. Furthermore, while less prevafent,
values all the way up to 65 sec remain common, withhaving a

%

0.4 0.6 0.8 1.0

Inferred Available Bandwidth

g 4

g 4

=

o

N

=

0‘.0 012 0‘.4 0‘.6 018 110
Inferred Available Bandwidth
Figure 11: Density and cumulative distribution of,

inferred available bandwidths]

More generally,y . (¢ + ¢:) reflects the resources consumed

&y the connection, whilezj (vi+¢;) — >, Wi+ i) =

_Ej v — Zz ¢, reflects the resources consumed by the compet-
ing connections.

strong peak at 65 sec (which appears genuine; perhaps due to pe- Thus, captures the proportion of the total resources that were

riodic outages caused by router synchronization [FJ94], eliminated
by the end of 1995).

We summarize the figure as indicating thatiernet delay vari-
ations occur primarily on time scales of 0.1-1 sec, but extend out
quite frequently to much larger times.

6.3 Available bandwidth

The last aspect of delay variation we look at is an interpretation of
how it reflects theavailable bandwidth In § 5.2 we developed a
notion of data packets “load,” A;, meaning how much delay it in-

consumed by the connection itself, and we intergres reflecting
theavailable bandwidthValues ofg3 close to 1 mean that the entire
bottleneck bandwidth was available, and values close to 0 mean that
almost none of it was actually available.

Note that we can havg =~ 1 even if the connection does not
consume all of the network path's capacity. All that is required is
that, to the degree that the connection did attempt to consume net-
work resources, they were readily available. This observation pro-
vides the basis for hoping that we might be able to@ise estimate
available bandwidth without fully stressing the network path.

We can gauge how wefl truly reflects available bandwidth by

curs due to queueing at the bottleneck behind its predecessors, plusomputing the coefficient of correlation betwegand the connec-

its own bottleneck transmission timg,. Since every packet re-
quiresg, to transit the bottleneckiariationsin OTT do not include
op, butwill reflectA; — ¢,. Term this value);, and lety; denote
the difference between paclkés measured OTT and the minimum
observed OTT.

If the network path is completely unloaded except for the con-
nection's load itself (no competing traffic), then we should have
¥ =, i.e., all ofi's delay variation is due to queueing behind its
predecessors. More generally, define

> (i + ¢i)
> (it i)

3 then reflects the proportion of the packet's delay due to the con-
nection's own loading of the network.gf~ 1, then all of the delay
variation is due to the connection's own queueing load on the net-
work, while, if 3 = 0, then the connection's load iissignificant
compared to that of other traffic in the network.

B

tion's overall throughput (normalized by dividing by the bottleneck
bandwidth). ForV7, this is 0.44, while forVs, it rises to 0.55.

Figure 11 shows the density and cumulative distributiof &dr
N>. Not surprisingly, we find that Internet connections encounter a
broad range of available bandwidths is generally the case with
Internet characteristics, a single figure like this can oversimplify
the situation. We note, for example, that confining the evaluation
of 3 to European connections results in a sharp leftward shift in
the density, indicating generally less available bandwidth, while for
U.S. connections, the density shifts to the right. Furthermore, for
paths with higher bottleneck bandwidths, we generally find lower
values ofg3, reflecting that such paths tend to be shared among more
competing connections. Finally, we note that the predictive power
of 3 tends to be fairly good. On average, a given observatigh of
will be within 0.1 of later observations @ for the same path, for
time periods up to several hours.

8The depressed density @t~ 0 reflects a measurement bias [Pag7b].

7 Conclusions References

Several conclusions emerge from our study: [A+96] G. Almes et al, “Framework for IP Provider Metrics,” In-
) » i ternet draftftp://ftp.isi.edu/internet-drafts/draft-ietf-bmwg-ippm-
e With due diligence to remove packet filter errors and TCP ef- framework-00.txtNov. 1996.
fects, TCP-based measurement pro_VIdes a viable means for[8093] J-C. Bolot, “End-to-End Packet Delay and Loss Behavior in the
assessing end-to-end packet dynamics. Internet,” Proc. SIGCOMM '93pp. 289-298, Sept. 1993.
¢ We find wide ranges of behavior, such that we must exercise [BOP94] L. Brakmo, S. O'Malley and L. Peterson, “TCP Vegas: New
great caution in regarding any aspect of packet dynamics as Techniques for Congestion Detection and AvoidanBegc. SIG-
“typicaL” COMM '94 pp. 24-35, Sept. 1994.

[CC96] R. Carter and M. Crovella, “Measuring Bottleneck Link Speed in
Packet-Switched Networks,” Tech. Report BU-CS-96-006, Com-
puter Science Department, Boston University, Mar. 1996.

[CPB93] K. Claffy, G. Polyzos and H-W. Braun, “Measurement Consider-

ations for Assessing Unidirectional Latenciesiternetworking:
e When implemented correctly, TCP's retransmission strategies Research and Experiencé (3), pp. 121-132, Sept. 1993.

work in a sufficiently conservative fashion. [DMT96] R. Durst, G. Miller and E. Travis, “TCP Extensions for Space

¢ The combination of path asymmetries and reverse-path noise Communications,Proc. MOBICOM 96 pp. 15-26, Nov. 1996.

render sender-only measurement techniques markedly infe-[FJ93] S. Floyd and V. Jacobson, “Random Early Detection Gateways
rior to those that include receiver-cooperation. for Congestion Avoidance”]EEE/ACM Transactions on Net-
])) working, 1(4), pp. 397-413, Aug. 1993.

This last p%l.nt ar_guels thar: Wgen tfhe measurement gf lntgregt C(?n_[F\]94] S. Floyd and V. Jacobson, “The Synchronization of Periodic
cerns a uni |regt|ona path—be it for measurement-based adaptive Routing Messages,JEEE/ACM Transactions on Networking
transport techniques such as TCP Vegas [B_OP94], or general In- 2(2), pp. 122-136, Apr. 1994.
ternet performance metrics such as_tho_se in development by_ the[Ja88] V. Jacobson, “Congestion Avoidance and Contriétc. SIG-
IPPM effort [A+96]—the extra complications incurred by coordi- COMM '88 pp. 314-329, Aug. 1988.

nating sender and receiver are worth the effort.

e Some common assumptions such as in-order packet delivery,
FIFO bottleneck queueing, independent loss events, single
congestion time scales, and path symmetries are all violated,
sometimes frequently.

[JLM89] V. Jacobson, C. Leres, and S. McCarntepdump , available via
anonymous ftp to ftp.ee.lbl.gov, June 1989.

[Ja90] V. Jacobson, “Compressing TCP/IP headers for low-speed se-
8 ACknOWIGdgementS rial links,” RFC 1144, Network Information Center, SRI Inter-

This work would not have been possible without the efforts of the national, Menlo Park, CA, February, 1990.

many volunteers who installed the Network Probe Daemon at their [Ke91] ~ S.Keshav, “A Control-Theoretic Approach to Flow Control’,

. MMSR96] M. Mathis, J. Mahdavi, S. Floyd and A. R , “TCP Se-
G. Almes, J. Alsters, J-C. Bolot, K. Bostic, H-W. Braun, [] ams andavi oyZ an ormanow e

; lective Acknowledgment Options,” RFC 2018, DDN Network In-
D. BI’OWﬂ, R. Bush, B. Camm, B. Ch|n0y, K. Claﬁy, formation Center, QOct. 1995.

P. Cplllnson, J. Crowcroft, P. Danzig, H. Eidnes, [M092] J. Mogul, “Observing TCP Dynamics in Real Network®foc.
M. Eliot, R. Elz, M. Flory, M. Gerla, A. Ghosh, D. Grun- SIGCOMM '92 pp. 305-317, Aug. 1992.

_/l_vgldH T H_?g::n,le. 1an|_Ta(;]' SAHﬁ)li)g't J. HaAWk\;nsin’ [Mu94] A. Mukherjee, “On the Dynamics and Significance of Low Fre-
ein, 1. Relbig, . Hyder, A. etson, A. Jack- quency Components of Internet Loadriternetworking: Re-

son, B. Karp, K. Lance, C. Leres, K. Lidl, P. Lining- search and Experieng&0l. 5, pp. 163-205, December 1994,

ton, S. McCanne, L. McGinley, J. Mllbum_‘ W. Mueller, [Pa96] V. Paxson, “End-to-End Routing Behavior in the Interntgc.
E. Nemeth, K. Obraczka, |. Penny, F. Pinard, J. Polk, SIGCOMM '96 pp. 25-38, Aug. 1996.

T. Satogata, D. Schmidt, M. Schwartz, W. Sinze, [Pa97a] V. Paxson, “Automated Packet Trace Analysis of TCP Implemen
S. Slaymaker, S. Walton, D. Wells, G. Wright, J. Wro- tations,” Proc. SIGCOMM '97Sep. 1997,

clawski, C. Young, and L. Zhang.
g g [Pa97b] V. Paxson, “Measurements and Analysis of End-to-End Internet

I am likewise indebted to Keith Bostic, Evi Nemeth, Rich Dynamics,” Ph.D. dissertation, University of California, Berke-
Stevens, George Varghese, Andres Albanese, Wieland Holfelder, ley, April 1997.
a_nd Bernd Lamparter for their ir!valuable help in rec_ruiting NPD (wtswes] W. willinger, M. Tagqu, R. Sherman, and D. Wilson, “Self-
sites. Thanks, too, to Peter Danzig, Jeff Mogul, and Mike Schwartz Similarity Through High-Variability: Statistical Analysis of Eth-
for feedback on the design of NPD. ernet LAN Traffic at the Source LevelProc. SIGCOMM '95
This work greatly benefited from discussions with Domenico pp. 100-113, Sept. 1995.
Ferrari, Sally Floyd, Van Jacobson, Mike Luby, Greg Minshall, [zSC91] L.Zhang, S. Shenker, and D. Clark, “Observations on the Dy-
John Rice, and the comments of the anonymous reviewers. My namics of a Congestion Control Algorithm: The Effects of Two-

heartfelt thanks. Way Traffic,” Proc. SIGCOMM '91pp. 133-147, Sept. 1991.

