Multihop wireless networks

Adhoc / fixed mesh.

Key issues: routing and forwarding

Challenge: performance issues

Broadcast \Rightarrow contention

Losses

Reliability \rightarrow not an issue in fixed mesh networks such as that discussed in the paper

How to build good routing protocols

1. Try to get hop-by-hop routing similar to wired but get the right metric

2. Rethink routing from the ground up.

Define what drives the design of the metric?

- hops \Rightarrow poor performance due to contention.
- many links are lossy.
- links are also asymmetric.

Options: hop count is a bad idea.

Delivery ratio is not a great idea either.

1. Need to account for link layer ruminations and contention.
\[\text{ETX} = \text{New metric} \]

\[\text{minimize total transmissions per packet} \]

\[\text{link throughput} = \frac{1}{\text{link ETX}} \]

\[\text{Pr (TX success)} = \text{Pr (Data)} \times \text{Pr (Ack)} \]

\[\text{link ETX} = \frac{1}{\text{Pr (TX success)}} \]

\[\text{Route ETX} \quad \text{(for short routes)} = \text{sum of link ETX} \]

ETX metric can be combined with other routing protocols (e.g. DV) to compute end-to-end paths.

- Shown to improve performance of traditional approaches.

- Prob: 1. Abstracts radio link to look like a wire with a certain property / ability of delivery.

- 2. Identify a route, forward over links.

But radios are not wires.
- Every packet is broadcast.
- Reception is probabilistic.

EXOR: 1. Exploit the opportunities that broadcast and probabilistic reception offer.

- Decide who gets to forward after reception.

- Goal: closest recipient should forward.
challenges: acquire efficiently and avoid duplicate transmissions.

Why does this impact throughput?

1. Traditional routing:

 $\frac{1}{0.25} + 1 = 5 \text{ TX.}$

 Ex: $\frac{1}{1-(1-0.25)} = 25 \text{ TX.}$

2. Exploit lucky long receptions
 or salvage unlucky receptions \rightarrow thereby ensuring partial progress.

Protocol details:

1. Batching for efficiency \rightarrow batch preparation
2. Forward a list using ETX measurements.
3. Packet reception and batch map update \rightarrow
 \rightarrow gossip mechanisms carrying reception info from high priority nodes to low priority nodes
4. Scheduling transmissions.
 - Remember the last-sent fragment
 - Use ERMA to update send rate
 - Readjust retries to avoid based on expected completion time.
Salient features:
1. Explicit using all ending opportunities
2. Sending static estimation facilitates fairness

Issues:
- How often - Use batches, and not per packet
- Who should participate - Too many causes overhead to be high
- When to forward - Schedule to avoid simultaneous transmission
- What to forward - Avoid duplicate transmission
- How and when does process complete - When leftover of batch is small enough that overhead supersedes benefit

Issues:
Static → no mobility is considered
ETX → works for short paths.
Applications → need batching → file download.
What about cross traffic → hard to estimate transmission time of others?
ETX → costly, needs probing.
What about changes in ETX? Is this an issue?