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ABSTRACT
Network use has evolved to be dominated by content distribution
and retrieval, while networking technology still speaks only of con-
nections between hosts. Accessing content and services requires
mapping from the what that users care about to the network’s where.
We present Content-Centric Networking (CCN) which treats con-
tent as a primitive – decoupling location from identity, security and
access, and retrieving content by name. Using new approaches to
routing named content, derived heavily from IP, we can simulta-
neously achieve scalability, security and performance. We imple-
mented our architecture’s basic features and demonstrate resilience
and performance with secure file downloads and VoIP calls.

1. INTRODUCTION
The engineering principles and architecture of today’s Internet

were created in the 1960s and ’70s. The problem networking aimed
to solve was resource sharing — remotely using scarce and ex-
pensive devices like card readers or high-speed tape drives or even
supercomputers. The communication model that resulted is a con-
versation between exactly two machines, one wishing to use the
resource and one providing access to it. Thus IP packets contain
two identifiers (addresses), one for the source and one for the des-
tination host, and almost all the traffic on the Internet consists of
(TCP) conversations between pairs of hosts.

In the 50 years since the creation of packet networking, comput-
ers and their attachments have become cheap, ubiquitous commodi-
ties. The connectivity offered by the Internet and low storage costs
enable access to a staggering amount of new content – 500 exabytes
created in 2008 alone [13]. People value the Internet for what con-
tent it contains, but communication is still in terms of where.

We see a number of issues that affect users arising from this in-
compatibility between models.

• Availability: Fast, reliable content access requires awkward,
pre-planned, application-specific mechanisms like CDNs and
P2P networks, and/or imposes excessive bandwidth costs.

• Security: Trust in content is easily misplaced, relying on
untrustworthy location and connection information.
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Figure 1: CCN moves the universal component of the network
stack from IP to chunks of named content.

• Location-dependence: Mapping content to host locations
complicates configuration as well as implementation of net-
work services.

The direct, unified way to solve these problems is to replace
where with what. Host-to-host conversations are a networking ab-
straction chosen to fit the problems of the ’60s. We argue that
named data is a better abstraction for today’s communication prob-
lems than named hosts. We introduce Content-Centric Networking
(CCN), a communications architecture built on named data. CCN
has no notion of host at its lowest level – a packet “address” names
content, not location. However, we preserve the design decisions
that make TCP/IP simple, robust and scalable.

Figure 1 compares the IP and CCN protocol stacks. Most layers
of the stack reflect bilateral agreements; e.g., a layer 2 framing pro-
tocol is an agreement between the two ends of a physical link and a
layer 4 transport protocol is an agreement between some producer
and consumer. The only layer that requires universal agreement is
layer 3, the network layer. Much of IP’s success is due to the sim-
plicity of its network layer (the IP packet - the thin ‘waist’ of the
stack) and the weak demands it makes on layer 2, namely: stateless,
unreliable, unordered, best-effort delivery. CCN’s network layer
(Section 3) is similar to IP’s and makes fewer demands on layer 2,
giving it many of the same attractive properties. Additionally, CCN
can be layered over anything, including IP itself.

CCN departs from IP in a number of critical ways. Two of
these, strategy and security, are shown as new layers in its pro-
tocol stack. CCN can take maximum advantage of multiple si-
multaneous connectivities (e.g., ethernet and 3G and bluetooth and
802.11) due to its simpler relationship with layer 2. The strategy
layer (Section 3.3) makes the fine-grained, dynamic optimization
choices needed to best exploit multiple connectivities under chang-
ing conditions. CCN secures content itself (Section 5), rather than
the connections over which it travels, thereby avoiding many of the
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host-based vulnerabilities that plague IP networking.
We describe the architecture and operation of CCN in Sections 2

through 5. In Section 6 we evaluate performance using our pro-
totype implementation. Finally, in Sections 7 and 8, we discuss
related work and conclude.

2. CCN NODE MODEL
CCN communication is driven by the consumers of data. There

are two CCN packet types, Interest and Data (Figure 2). A
consumer asks for content by broadcasting its interest over all avail-
able connectivity. Any node hearing the interest and having data
that satisfies it can respond with a Data packet. Data is trans-
mitted only in response to an Interest and consumes that Interest.1

Since both Interest and Data identify the content being exchanged
by name, multiple nodes interested in the same content can share
transmissions over a broadcast medium using standard multicast
suppression techniques [3].

Data ‘satisfies’ an Interest if the ContentName in the Interest
packet is a prefix of the ContentName in the Data packet. CCN
names are opaque, binary objects composed of an (explicitly speci-
fied) number of components (see Figure 4). Names are typically hi-
erarchical so this prefix match is equivalent to saying that the Data
packet is in the name subtree specified by the Interest packet (see
Section 3.2). IP uses this convention to resolve the 〈net, subnet,
host〉 hierarchical structure of IP addresses and experience has
shown it allows for efficient, distributed hierarchical aggregation
of routing and forwarding state while allowing for fast lookups.2

One implication of this matching is that interests may be received
for content that does not yet exist – allowing a publisher to gener-
ate that content on the fly in response to a particular query. Such
active names allow CCN to transparently support a mix of stati-
cally cached and dynamically-generated content, as is common in
today’s Web. Name prefixes may also be context-dependent such
as /ThisRoom/projector to exchange information with the display
projector in the current room or /Local/Friends to exchange infor-
mation with any friends in the local (broadcast) environment.3

The basic operation of a CCN node is very similar to an IP node:
A packet arrives on a face, a longest-match look-up is done on its
name, and then an action is performed based on the result of that
lookup.4 Figure 3 is a schematic of the core CCN packet forward-
ing engine. It has three main data structures: the FIB (Forwarding

1Interest and Data packets are thus one-for-one and maintain a
strict flow balance. A similar flow balance between data and ack
packets is what gives TCP its scalability and adaptability [20] but,
unlike TCP, CCN’s model works for many-to-many multipoint de-
livery (see Section 3.1).
2While CCN names are variable length and usually longer than IP
addresses, they can be looked up as efficiently. The structure of an
IP address is not explicit but instead implicitly specified by the con-
tents of a node’s forwarding table. Thus it is very difficult to apply
modern O(1) hashing techniques to IP lookups. Instead, log(n)
radix tree search (software) or parallel but expensive TCAMs (high
end hardware) are typically used. Since the CCN name structure is
explicit, ContentNames can easily be hashed for efficient lookup.
3This last example would use the explicit identity information cre-
ated by CCN signing to allow friends to rendezvous via a fixed
name rather than via complex enumeration or probing strategies.
i.e., the name says what they want to communicate and the signa-
ture says who they are in the context of the name, e.g., ‘a friend in
the local environment’.
4We use the term face rather than interface because packets are
not only forwarded over hardware network interfaces but also ex-
changed directly with application processes within a machine, as
described in Section 6.
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Figure 2: CCN packet types
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Figure 3: CCN forwarding engine model

Information Base), Content Store (buffer memory) and PIT (Pend-
ing Interest Table).

The FIB is used to forward Interest packets toward potential
source(s) of matching Data. It is almost identical to an IP FIB
except it allows for a list of outgoing faces rather than a single one.
This reflects the fact that CCN is not restricted to forwarding on
a spanning tree. It allows multiple sources for data and can query
them all in parallel.

The Content Store is the same as the buffer memory of an IP
router but has a different replacement policy. Since each IP packet
belongs to a single point-to-point conversation, it has no further
value after being forwarded downstream. Thus IP ‘forgets’ about
a packet and recycles its buffer immediately on forwarding com-
pletion (MRU replacement). CCN packets are idempotent, self-
identifying and self-authenticating so each packet is potentially use-
ful to many consumers (e.g., many hosts reading the same newspa-
per or watching the same YouTube video). To maximize the prob-
ability of sharing, which minimizes upstream bandwidth demand
and downstream latency, CCN remembers arriving Data packets as
long as possible (LRU or LFU replacement).

The PIT keeps track of Interests forwarded upstream toward con-
tent source(s) so that returned Data can be sent downstream to its
requester(s). In CCN, only Interest packets are routed and, as they
propagate upstream toward potential Data sources, they leave a trail
of ‘bread crumbs’ for a matching Data packet to follow back to the
original requester(s). Each PIT entry is a bread crumb. PIT entries
are erased as soon as they have been used to forward a matching
Data packet (the Data ‘consumes’ the Interest). PIT entries for In-
terests that never find a matching Data are eventually timed out (a
‘soft state’ model — the consumer is responsible for re-expressing
the interest if it still wants the Data).

When an Interest packet arrives on some face, a longest-match
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lookup is done on its ContentName. The index structure used for
lookup is ordered so that a ContentStore match will be preferred
over a PIT match which will be preferred over a FIB match.

Thus if there is already a Data packet in the ContentStore that
matches the Interest, it will be sent out the face the Interest arrived
on and the Interest will be discarded (since it was satisfied).

Otherwise, if there is an exact-match PIT entry the Interest’s ar-
rival face will be added to the PIT entry’s RequestingFaces list and
the Interest will be discarded. (An Interest in this data has already
been sent upstream so all that needs to be done is to make sure that
when the Data packet it solicits arrives, a copy of that packet will
be sent out the face that the new Interest arrived on.)

Otherwise, if there is a matching FIB entry then the Interest
needs to be sent upstream towards the data. The arrival face is
removed from the face list of the FIB entry then, if the resulting list
is not empty, the Interest is sent out all the faces that remain and a
new PIT entry is created from the Interest and its arrival face.

If there is no match for the Interest it is discarded (this node does
not have any matching data and does not know how to find any).

Data packet processing is relatively simple since Data is not
routed but simply follows the chain of PIT entries back to the orig-
inal requester(s). A longest-match lookup of a Data packet’s Con-
tentName is done upon arrival. A ContentStore match means the
Data is a duplicate so it is discarded. A FIB match means there
are no matching PIT entries so the Data is unsolicited and it is dis-
carded.5 A PIT match (there may be more than one) means the
Data was solicited by Interest(s) sent by this node. The Data is (op-
tionally) validated (see Section 5.1) then added to the ContentStore
(i.e., a C-type index entry is created to point to the Data packet).
Then a list is created that is the union of the RequestingFaces list
of each PIT match minus the arrival face of the Data packet. The
Data packet is then sent out each face on this list.

Unlike IP’s FIFO buffer model, the CCN Content Store model
allows the node memory already required for stat muxing to simul-
taneously be used for transparent caching throughout the network.
All nodes can provide caching, subject only to their independent
resource availabilities and policies.

The multipoint nature of data retrieval by Interest provides flexi-
bility to maintain communication in highly dynamic environments.
Any node with access to multiple networks can serve as a content
router between them. Using its cache, a mobile node may serve
as the network medium between disconnected areas, or provide
delayed connectivity over intermittent links. Thus CCN transport
provides Disruption Tolerant Networking [11]. The Interest/Data
exchange also functions whenever there is local connectivity. For
example, two colleagues with laptops and ad-hoc wireless could
continue to share corporate documents normally in an isolated lo-
cation with no connectivity to the Internet or their organization.

3. TRANSPORT
CCN transport is designed to operate on top of unreliable packet

delivery services, including the highly dynamic connectivity of mo-
bile and ubiquitous computing. Thus Interests, Data, or both might
be lost or damaged in transit, or requested data might be temporar-
ily unavailable. To provide reliable, resilient delivery, CCN Inter-
ests that are not satisfied in some reasonable period of time must be
retransmitted. Unlike TCP, CCN senders are stateless and the final
5‘Unsolicited’ Data can arise from malicious behavior, data arriv-
ing from multiple sources, or multiple paths from a single source.
In the latter cases the first copy of the Data that arrives consumes
the Interest so duplicate(s) will not find a PIT entry. In all cases
the Data should be discarded since that preserves flow balance and
helps guarantee stable operation under arbitrary load.

consumer (the application that originated the initial Interest) is re-
sponsible for re-expressing unsatisfied Interests if it still wants the
data. A receiver’s strategy layer (see Figure 1) is responsible for re-
transmission on a particular face (since it knows the timeout for the
upstream node(s) on the face) as well as selecting which and how
many of the available communication interfaces to use for send-
ing interests, how many unsatisfied interests should be allowed, the
relative priority of different interests, etc.

Underlying packet networks might duplicate packets and CCN
multipoint distribution may also cause duplication. All duplicate
Data packets are discarded by the basic node mechanisms described
in the preceding section. Though data cannot loop in CCN, Inter-
ests can loop and make it appear as if there is Interest on a face
where no interest actually exists. To detect and prevent this, Interest
packets contain a random nonce value so that duplicates received
over different paths may be discarded (see Figure 2).

CCN Interests perform the same flow control and sequencing
function as TCP ack packets. Flow control is described in the next
section and sequencing in the following one. Since a node is guar-
anteed to see any Data resulting from its Interests, response time
and rate can be directly measured and used to adaptively determine
the best way to satisfy Interests in some prefix. This is described in
the third section.

3.1 Reliability and Flow Control
One Interest retrieves at most one Data packet. This basic rule

ensures that flow balance is maintained in the network and allows
efficient communication between varied machines over networks
of widely different speeds. Just as in TCP, however, it is possible to
overlap data and requests. Multiple Interests may be issued at once,
before Data arrives to consume the first. The Interests serve the
role of window advertisements in TCP. A recipient can dynamically
vary the window size by varying the Interests that it issues. We
show the effect of such pipelining later in Section 6.2. Since CCN
packets are independently named, the pipeline does not stall on a
loss – the equivalent of TCP SACK is intrinsic.

In a large network, the end-to-end nature of TCP conversations
means there are many points between sender and receiver where
congestion can occur from conversation aggregation even though
each conversation is operating in flow balance. The effect of this
congestion is delay and packet loss. The TCP solution is for end-
points to dynamically adjust their window sizes to keep the aggre-
gate traffic volume below the level where congestion occurs [20].
The need for this congestion control is a result of TCP’s flow bal-
ance being end-to-end. In CCN, by contrast, all communication is
local so there are no points between sender and receiver that are not
involved in their balance. Since CCN flow balance is maintained
at each hop, there is no need for additional techniques to control
congestion in the middle of a path. This is not the same as hop-
by-hop flow control, where backpressure between adjacent nodes
is used to adjust resource sharing among continuous flows. CCN
does not have FIFO queues between links but rather an LRU mem-
ory (the cache) which decouples the hop-by-hop feedback control
loops and damps oscillations. (We will cover this topic in detail in
a future paper.)

3.2 Sequencing
In a TCP conversation between hosts, data is identified by simple

sequence numbers. CCN needs something more sophisticated be-
cause consumers are requesting individual pieces from large collec-
tions of data and many recipients may share the same Data packets.
Locating and sharing data is facilitated by using hierarchical, ag-
gregatable names that are at least partly meaningful to humans and
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reflect some organizational structure of their origin, rather than just
the sequence in an ephemeral conversation. Despite this extra rich-
ness in CCN names, their transport function in Interests is exactly
the same as that of sequence numbers in TCP ACKs: specifying
the next Data the recipient requires.

Before explaining how the next Data is identified, we first de-
scribe the names in more detail. As mentioned, names are hier-
archically structured so that an individual name is composed of a
number of components. Each component is composed of a num-
ber of arbitrary octets – variable-length binary values that have no
meaning to CCN transport. Names must be meaningful to some
higher layer(s) in the stack to be useful, but the transport imposes
no restrictions except the component structure. Binary encodings
of integers or other complex values may be used directly without
conversion to text for transmission. Name components may even
be encrypted for privacy. For notational convenience, we present
names like URIs with / characters separating components, as in
Figure 4, but these delimiters are not part of the names and are
not included in the packet encodings. This example illustrates the
application-level conventions currently used to capture temporal
evolution of the content (a version marker, _v encoded as FD,
followed by an integer version number) and its segmentation (a
segment marker, _s encoded as 00, followed by an integer value
which might be a block or byte number or the frame number of the
first video frame in the packet). The final component of every Data
packet name implicitly includes a SHA256 digest of the packet.6

An Interest can specify precisely what content is required but in
most cases the full name of the next Data is not known so the con-
sumer specifies it relative to something whose name is known. This
is possible because the CCN name tree can be totally ordered (sib-
lings are arranged in lexicographic order) thus relations like next
and previous can be unambiguously interpreted by the CCN trans-
port without any knowledge of name semantics.

For example, Figure 5 shows a portion of the name tree associ-
ated with Figure 4. An application that wants to display the most re-
cent version of the video would express interest in ‘/parc.com/
videos/WidgetA.mpg RightmostChild’ which results in the
highlighted traversal7 and yields the first segment of the second
version of the video. Once this was retrieved, the next segment
could be obtained by sending an Interest containing its name with a
LeftmostRightSibling annotation or by simply computing the _s1
portion of the name since the segmentation rules are known (and
determined) by the application.

As this example illustrates, the naming conventions for pieces of
data within a collection can be designed to take advantage of the
relative retrieval features of Interest packets and applications can
discover available data through tree traversal. Although such nam-

6The digest component is not transmitted since it is derivable. It
exists so that an Interest or a link can unambiguously and exactly
name any piece of content.
7The default traversal rule is LeftmostChild.
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Figure 5: Name tree traversal

ing conventions are not part of basic CCN transport, they are an im-
portant element of application design. We anticipate that a wide va-
riety of reusable conventions will be standardized and implemented
in shared libraries to provide applications with high-level abstrac-
tions such as files and media streams over CCN.

Interests, then, provide a form of restricted query mechanism
over accessible content collections in a CCN, designed for efficient
expression of what the receiver requires next. We do not have space
to describe the details of the query options under development. It
will be possible to restrict results by publisher, not just by collec-
tion, and to exclude content already obtained when simple ordering
is insufficient. We are also developing higher level name discov-
ery mechanisms that are more efficient for exploring large name
subtrees when the content itself is not required.

3.3 Rich Connectivity, Mobility and Strategy
Machines today typically have multiple network interfaces and

are increasingly mobile. Since IP is restricted to forwarding on
spanning trees, it is difficult for IP to take advantage of more than
one interface or adapt to the changes produced by rapid mobility.
CCN packets cannot loop so CCN can take full advantage of mul-
tiple interfaces. CCN talks about data, not to nodes, so it does not
need to obtain or bind a layer 3 identity (IP address) to a layer 2
identity such as a MAC address. Even when connectivity is rapidly
changing, CCN can always exchange data as soon as it is physi-
cally possible to do so. Furthermore, since CCN Interests and Data
are paired, each node gets fine grained, per-prefix, per-face per-
formance information for adaptively choosing the ‘best’ face for
forwarding Interests matching some prefix (see Section 6.3).8

As described in Section 2, CCN explicitly models multiple con-
nectivity via per-FIB-entry face lists. Since there is no one-size-
fits-all strategy for using multiple faces, the design intent is for
each CCN FIB entry to contain a program, written for an abstract
machine specialized to forwarding choices, that determines how to
forward Interests. The ‘instructions’ for this machine should in-
clude a small subset of the normal load/store, arithmetic, and com-
parison operators plus actions that operate on sets of faces such
as sendToAll, sendToBest, markAsBest, and triggers such as inter-

8In IP, route asymmetry generally makes it impossible for an in-
terior node to learn if an interface or route is actually functioning
since it only sees one side of a conversation.

4



estSatisfied, interestTimedOut, faceDown that can be used to in-
voke lists of actions when significant events occur. Faces will have
an (open-ended) set of attributes such as BroadcastCapable, is-
ContentRouter, UsageBasedCharging, PeakUseLimited that can be
used to dynamically construct the sets for use by the actions.

These actions, triggers and attributes are collectively called the
CCN Strategy Layer and the program in a FIB entry is the strategy
for obtaining Data associated with the FIB’s prefix. Our current
default strategy is to send an Interest on all BroadcastCapable faces
then, if there is no response, to try all the other faces in sequence.
Thus data that is available in the local environment, such as on the
instructor’s computer in a lecture or a colleague’s laptop or phone
in a business meeting, will be obtained directly and only data that
is not found locally will use the routing machinery.

The other faces in a FIB prefix entry are learned in a variety of
ways. Sources of data, such as the repositories in Figure 6, ar-
range to receive Interests for the prefixes they service by doing a
Register operation to the local CCN core. This creates local FIB
entries for the registered prefixes that have the repository applica-
tion’s face in their face lists. The registered prefixes have optional
flags that indicate if they should be advertised outside the local ma-
chine. Announcement agents read the registered prefix table on the
local node (via normal CCN Interest-Data to a namespace reserved
for local node communication) and advertise the flagged prefixes
that meet their policy constraints (see Section 5.4). The adver-
tisements might be via CCN (e.g., the agent services Interests in
/local/CCN/registrations), via standard IP Service Lo-
cation protocols, or via CCN or IP routing (see Section 4).

4. ROUTING
Routing has recently experienced a resurgence of research ac-

tivity. Today there are a variety of interesting and effective candi-
date solutions for most routing problems. Any routing scheme that
works well for IP should also work well for CCN, because CCN’s
forwarding model is a strict superset of the IP model with fewer re-
strictions (no restriction on multi-source, multi-destination to avoid
looping) and the same semantics relevant to routing (hierarchical
name aggregation with longest-match lookup). CCN provides an
excellent vehicle to implement a routing protocol’s transport: at the
heart of most routing transport protocols is something very simi-
lar to CCN’s information-oriented guided-diffusion flooding model
since they have to function in the pre-topology phase of networking
where peer identities and locations are not known. Since CCN pro-
vides a robust information security model (Section 5), using CCN
as a routing transport can make routing infrastructure protection
almost automatic.

To illustrate how CCN is mapped onto a routing scheme, the next
section describes how CCN can be routed using unmodified Inter-
net link-state IGPs (IS-IS or OSPF). This is intended both to show
how CCN can use existing, conventional routing,9 and to show that
CCN is sufficiently compatible with IP that it can be deployed in-
crementally, using the existing infrastructure.

4.1 Link-state Intra-domain Routing
Intra-domain routing protocols provide a means for nodes to dis-

cover and describe their local connectivity (‘adjacencies’), and to
describe directly connected resources (‘prefix announcements’) [17,
16]. These two functions are orthogonal—one describes links in
the graph while the other describes what is available at particular

9As opposed to more content-oriented routing such as Small-
Worlds which also apply to CCN but have quite different imple-
mentation strategies.
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Figure 6: Routing Interests to a domain’s media content

nodes in the graph. It is common for these two functions to be
performed in completely different information domains. For ex-
ample, IS-IS [17] describes adjacencies in terms of IEEE 802.1
layer 2 MAC addresses but announces layer 3 IP4 and/or IP6 pre-
fixes. As described in Section 2, IP forwarding and CCN forward-
ing are almost identical. They both use prefix-based longest match
lookups (and use them for the same reason—hierarchical aggre-
gation of detail) to find local neighbor(s) ‘closer’ to the identifier
matched. Given the similarities of the two FIBs, one might suspect
that the distributed routing machinery used to create IP FIBs might
be easily adapted to create CCN FIBs. This is indeed the case.

CCN prefixes are very different from IP prefixes, so the main
question is whether it is possible to express them in some partic-
ular routing protocol. Fortunately, both IS-IS and OSPF can de-
scribe directly connected resources via a general TLV (‘type label
value’) scheme [18, 19] that is suitable for distributing CCN con-
tent prefixes. The specification says that unrecognized types should
be ignored, which means that content routers, implementing the
full CCN forwarding model, can be attached to an existing IS-IS or
OSPF network with no modifications to the network or its routers.
The content routers learn the physical network topology and an-
nounce their place in that topology via the adjacency protocol and
flood their prefixes in prefix announcements using a CCN TLV.

For example, Figure 6 shows an IGP domain with some IP-
only routers (single circles) and some IP+CCN routers. The me-
dia repository next to A is announcing (via a CCN broadcast in a
local network management namespace) that it can serve Interests
matching the prefix ‘/parc.com/media/art’. A routing application
on A hears this announcement (since it has expressed interest in the
namespace where such announcements are made), installs a local
CCN FIB entry for the prefix pointing at the face where it heard
the announcement, and packages the prefix into IGP LSA which
is flooded to all nodes. When the routing application on E, for
example, initially gets this LSA, it creates a CCN face to A then
adds a prefix entry for ‘/parc.com/media/art’ via that face to the lo-
cal CCN FIB. When a different repository adjacent to B announces
‘/parc.com/media’ and ‘/parc.com/media/art’, B floods an IGP LSA
for these two prefixes with the result that E’s CCN FIB is as shown
in the figure. An interest in /parc.com/media/art/impressionist-
history.mp4 expressed by a client adjacent to E will be forwarded
to both A and B, who each forward it to their adjacent repository.

CCN dynamically constructs topologies that are close to optimal
for both bandwidth and delay (i.e., data goes only where there is
interest, over the shortest path, and at most one copy of any piece of
data goes over any link). But this delivery topology is clearly non-
optimal since a client adjacent to F interested in the same movie
would result in a second copy of the content crossing the A-C or B-
C link. This happens when an incremental CCN deployment leaves
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some parts of the physical topology inaccessible to CCN (C is not
a content router so it cannot cache). As soon as C gets the CCN
software upgrade, E and F will forward their interests via it and the
distribution will be optimal.

In the model described above, IGP LSA’s are used as a transport
for normal CCN messages which have full CCN content authenti-
cation, protection and policy annotation. Thus even though the IGP
is not secure, the communication between CCN-capable nodes is
secure. If all the nodes are evolved to being CCN-capable, the IGP
topology infrastructure is automatically secured (see Section 5.1).
The security of the externally originated prefix announcements is a
function of the announcing protocol. CCN content prefixes, such as
those announced by the media servers in Figure 6, are secured by
CCN and have its robust trust model. IP prefixes announced from
other IGPs or BGP would be untrusted.

There is a behavioral difference between IP and CCN in what
happens when there are multiple announcements of the same pre-
fix. In IP any particular node will send all matching traffic to ex-
actly one of the announcers. In CCN all nodes send all matching
interests to all of the announcers. This arises from a semantic dif-
ference: An IP prefix announcement from some IGP router says
“all the hosts with this prefix can be reached via me”. The equiv-
alent announcement from a CCN router says “some of the content
with this prefix can be reached via me”. Since IP has no way of
detecting loops at the content level, it is forced to construct loop-
free forwarding topologies, i.e., a sink tree rooted at the destination.
Since a tree has a single path between any two nodes, an IP FIB has
only one slot for ‘outgoing interface’. So all the hosts associated
with a prefix have to be reachable via the node announcing a pre-
fix because all traffic matching the prefix will be sent to that node.
Since CCN packets cannot loop, a prefix announcement does not
have to mean that the node is adjacent to all the content covered
by the prefix and CCN FIBs are set up to forward Interests to all
the nodes that announce the prefix. This semantic difference can
be accommodated without changing the IGP because it is an im-
plementation change, not a protocol change. IP has to compute a
spanning tree from prefix announcements and CCN does not, but
this computation is done where the information is used, not where
it is produced, so both protocols receive complete information.10

4.2 Inter-domain Routing
Once a few customers of an ISP start to use CCN, it is in the

ISP’s best interest to deploy content router(s) to reduce peering
costs (only one copy of any piece of content needs to cross an inter-
provider peering link, independent of how many customers request
it) while lowering customers’ average latency (all but the first copy
come from the ISP’s local content store). Thus there is an edge-
driven, bottom-up incentive structure to grow CCN once it reaches
some base deployment threshold. Since customers are directly con-
nected to their ISP, it is trivial for them to learn about the ISP’s con-
tent router via a service discovery protocol run over the customer-
ISP peering link(s). This protocol could use CCN-based registra-
tion announcements (Section 3.3) for a ‘wildcard’ (0-component)
prefix. Or it could use Anycast (e.g., all content routers have IP
address 10.0.96.95), DNS convention (e.g., all content routers are
named ccn.isp.net), DNS SRV[14], SLP[15], etc., and none of these
options require any inter-domain distribution of content prefixes.

10Strictly speaking, this statement is true for link-state IGPs like IS-
IS or OSPF but not for distance vector IGPs like RIP or EIGRP. The
production of their routing announcement involves a Bellman-Ford
calculation that presupposes spanning trees and suppresses infor-
mation on alternatives. Such an IGP would require small modifica-
tions to the scheme described here.

The central problem with this type of bottom-up deployment is to
bridge the gap between domains that have content routers but are
separated by ISP(s) that do not. For example, a content router at
parc.com would like to obtain content with the prefix mit.edu and
there are no content routers between PARC and MIT. Using the
prefix in a (heuristic) DNS lookup to locate the IP address of con-
tent server(s) at MIT (either via a _ccn._udp.mit.edu SRV lookup
and/or a ccn.mit.edu address lookup) works perfectly well to auto-
matically and on-demand build a UDP-tunneled ‘face’ connecting
the content routers. But this scheme does not work as well if the
gap is not at the edges. If PARC and MIT’s ISPs both support con-
tent routing but they are connected via ISPs that do not, there is no
way for PARC’s ISP to learn of the relevant content router in MIT’s
ISP so it will forward Interests directly to MIT. Thus without ad-
ditional mechanism, ISP routers benefit inbound content (content
requested by their customers) but not outbound (content created by
their customers). This partially negates a major long term CCN
advantage of making traffic near the root of a content distribution
tree independent of the popularity of the content; today that traffic
grows linearly with the popularity (Section 6.2).

This problem can be fixed by integrating domain-level content
prefixes into BGP. Current BGP inter-domain routing has the equiv-
alent of the IGP TLV mechanism that would allow domains to ad-
vertise their customer’s content prefixes. The BGP AS-path infor-
mation also lets each domain construct a topology map equivalent
to the one constructed in the IGP case, but at the Autonomous Sys-
tem (AS) rather than network prefix level. This map is functionally
equivalent to the IGP case (one learns which domains serve Inter-
ests in some prefix and what is the closest CCN-capable domain on
the paths to those domains) so the same algorithms apply.

5. CONTENT-BASED SECURITY
CCN is built on the notion of content-based security: protection

and trust travel with the content itself, rather than being a prop-
erty of the connections over which it travels. In CCN, all content
is authenticated with digital signatures, and private content is pro-
tected with encryption. This is a critical enabler for CCN’s dynamic
content-caching capabilities – if you are to retrieve content from the
closest available copy, you must be able to validate the content you
get. Current IP networks trust content based on where (from what
host) and how (over what sort of pipe) it was obtained; clients must
therefore retrieve content directly from the original source to trust
it. Embodying security in content, not hosts, reduces the trust we
must place in network intermediaries, opening the network to wide
participation. In this section, we give an overview of CCN’s core
security design, and highlight novel aspects of its security process-
ing. Detailed analysis of the CCN security model, including topics
like revocation, will be the subject of a separate paper; additional
background and motivation are described in [34].

5.1 Content Validation
CCN authenticates the binding between names and content; the

signature in each CCN data packet (Figure 2) is over the name,
the content, and a small amount of supporting data useful in sig-
nature verification (“signed info” in Figure 2). This allows content
publishers to securely bind arbitrary names to content. In contrast,
many previous approaches require names to be self-certifying to se-
curely name content (e.g., by using the cryptographic digest of the
content as its name [26, 28, 12, 9]). The ability to directly, and se-
curely use user- or application-meaningful names enhances usabil-
ity and eases transport. Systems without it require an “indirection
infrastructure” [4, 6] to map from the names humans care about to
secure, opaque, self-certifying names. The security of the result-
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ing system is then limited to the security of the (often unsecured)
indirection infrastructure.

CCN data is publicly authenticatable – per-packet signatures are
standard public key signatures, and anyone, not just the endpoints
of a communication stream, can verify that a name-content bind-
ing was signed by a particular key. The signature algorithm used
is selected by the content publisher from a large fixed set, and cho-
sen to meet the performance requirements of that particular data –
e.g., to minimize the size of the verification data, or the latency or
computational cost of signature generation or verification. Though
Data packets are designed to be individually verifiable, the com-
putational cost of signature generation may be amortized across
multiple packets through the use of aggregation techniques such as
Merkle Hash Trees [27].

Each signed CCN Data packet contains information to enable
retrieval of the public key necessary to verify it. Its supporting
information includes the cryptographic digest, or fingerprint, of that
public key, as a shorthand identifier for the publisher, and to enable
fast retrieval of that key from a local cache. It also includes a key
locator, which indicates where that key can be obtained; this can
contain the key itself, or a CCN name to retrieve the key.

At the lowest layers, CCN content validation is purely syntactic –
it simply verifies that content was signed by the key it purports (the
key whose fingerprint is specified as the content publisher). It does
not attach any real-world meaning to that key – who it belongs to,
or if a signature by that key indicates whether or not the user should
trust this particular piece of content. Even this minimal verification
can be surprisingly useful, particularly in defending against many
types of network attack. For example, it allows content consumers
to request content by publisher as well as by name, and to get the
content they intend in the face of spurious or malicious data. CCN
content routers may choose to verify all, some or none of the Data
they handle, as their resources allow. They may also dynamically
adapt, verifying more data in response to detected attack.

5.2 Managing Trust
Although CCN moves data in a peer-to-peer fashion, it provides

end-to-end security between content publisher and content con-
sumer. CCN content consumers must determine whether received
content is acceptable, or trustworthy. CCN’s notion of trust is con-
textual, i.e., narrowly determined in the context of particular con-
tent and the purpose for which it will be used. For example, one
might require a legal document be signed by someone authorized
by the courts, and a blog post only be signed by the same per-
son who signed the other entries in that blog – and perhaps not
even that. This is more flexible and easier to use than attempts to
mandate a one-size-fits-all approach to trust, for example marking
publishers as uniformly “good” or “bad”.

The basic primitive of content-based security – authenticated
bindings from names to content – can be used to implement mech-
anisms for establishing higher-level trust. CCN’s signed bindings
between names and content act in essence to certify that content.
When that name refers to an individual or organization, and that
content is a public key, the result is essentially a digital certificate.
This allows CCN to easily support traditional mechanisms for es-
tablishing trust in keys. More interestingly, by allowing content to
securely link, or refer, to other content we can allow content to cer-
tify other content. This provides a powerful mechanism by which
we can leverage trust in a small number of keys into trust in a large
forest of interconnected content.

5.2.1 Trusting Keys
Application-level CCN consumers must solve traditional key

Signed by  parc.com/george

/parc.com/george/videos/WidgetA.mpg/v3/s0/0x3fdc96a4...

Signed by parc.com

0x1b048347

signed 
checksum

key

parc.com/george/desktop public key{{

Figure 7: CCN trust establishment can associate content
namespaces with publisher keys.

management problems – associating public keys with individuals
and organizations, as it is these real-world identities that largely
determine who is an acceptable signer for a given piece of content.
CCN simplifies this task in several ways: first, it directly addresses
the practical problem of merely obtaining the keys necessary to ver-
ify a piece of content. Keys are just another type of CCN Data, and
simple naming conventions enable them to be easily found.

Second, as mentioned above, merely publishing a key as CCN
content effectively generates a certificate for it – binding a (CCN)
name to that key as authenticated by the signer (publisher). This
building block can be used to represent arbitrary trust relationships
between keys directly in CCN – from simple trees, as in a tradi-
tional certificate-based public key infrastructure (PKI), to the arbi-
trary graphs used by the PGP Web of Trust.

Third, CCN does not mandate a one-size-fits-all trust model.
Trust is between publishers and content consumers, and what is ap-
propriate for one application might not be appropriate for another.
Users are free to reuse existing models (e.g., PKI) for establishing
trust in keys, or to define new ones more appropriate to CCN.

A model particularly suited to CCN is that of SDSI/SPKI [32,
10, 2]. In this model keys are mapped to identities via locally-
controlled namespaces; e.g., the members of an organization might
be recognized because their keys are certified by the organization
itself, not because they are validated by some source of external,
third-party trust (e.g., Verisign). Knowing the key for parc.com,
we can then authenticate the keys of its employees. More power-
fully, if we know and trust one of parc.com’s employees, we
might look in his SDSI namespace for the identity, and key, of
parc.com. Starting from a small number of public keys authen-
ticated using a variety of user-friendly mechanisms (e.g., personal
contact, organizational membership, public experience [30, 37]),
one can use SDSI’s model to infer trust in a large number of pub-
lishers.

We can map SDSI identities directly into CCN names, and ex-
press SDSI trust relationships directly in CCN content. Such names-
paces make up a forest-of-trees – a content consumer might trust
that they have the right key for parc.com (or for /parc.com/
george) for any number of reasons from direct experience (e.g.,
they are a PARC employee), to information provided by friends,
to its presence in a trusted directory of keys. It is not required, or
even expected, that all such trees will be joined in a single (or small
number of) root(s) as happens in traditional global or commercial
PKIs. Most notably, it is the consumer who decides why they trust
a particular key, using many types of information, not the publisher
in obtaining a certificate from a particular vendor.

Further, by organizing content in terms of hierarchical name-
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spaces, CCN allows signing policy, and even keys, to attach to
particular content names; authorization at one level of a content
namespace is given by a signature from a key at a higher level.
Figure 7 shows the key for parc.com authorizing that of user
george, who then authorizes the key for his desktop computer.
These trust statements, represented as CCN data, help a consumer
evaluate whether or not he is an acceptable publisher of
WidgetA.mpg in the parc.com/george namespace.

5.2.2 Evidence-Based Security
We can add to our notion of structured names a representation of

secure reference, much like a trusted hyperlink or bookmark. One
CCN content item can refer to another (the link target) not only by
the target’s name, but also by the cryptographic digest of its con-
tents (forming effectively a self-certifying name [26, 28, 12, 9]), or
by the identity (key) of its publisher [9, 31, 25, 24]). Such refer-
ences can be used to express delegation, saying that the publisher
P of a link named N with target (N ′, P ′) intends the name N to
refer to whatever publisher P ′ refers to by target name N ′.

Such references can express traditional forms of delegation, but
they can also be used to build up a network of trust in content – indi-
vidual signed pieces of content effectively certify the other pieces
of content they (securely) refer to. For example, having decided
to trust content A, say a web page, users may automatically trust
the content A securely links to – e.g., its images, ads, source ma-
terial and so on, without additional management or configuration
overhead. That trust is very fine-grained – those materials are only
considered valid within the context of A.

Each piece of content the user encounters also acts as a potential
piece of evidence as to the validity of content it refers to. If many
publishers that we trust all say that they believe in P ′’s value for
N ′, we are much more likely to believe it as well. If an attacker
subverts a single publisher, e.g. obtaining the key for P ′′ and us-
ing it to forge a malicious value for N ′ the attack will fail, as the
preponderance of the evidence will still point to the correct value.
With each piece of additional signed support for trustworthy con-
tent, it becomes harder and harder for an attack to succeed, as an
attacker simply cannot subvert all of the available evidence.

5.3 Content Protection and Access Control
The primary means of controlling access to CCN content is en-

cryption. CCN does not require trusted servers or directories to
enforce access control policies; no matter who stumbles across pri-
vate content, only authorized users are able to decrypt it.

Encryption of content, or even names or name components, is
completely transparent to the network – to CCN, it is all just named
binary data (though efficient routing and data sequencing may re-
quire that some name components remain in the clear). Decryp-
tion keys can be distributed along with their content, as CCN Data
blocks. Name conventions, encapsulated in programmer-friendly
libraries, can make it easy to find the decryption key necessary for
an authorized user to decrypt a given piece of content. CCN does
not mandate any particular encryption or key distribution scheme
– arbitrary, application-appropriate access control models can be
implemented simply by choosing how to encode and distribute de-
cryption keys for particular content.

5.4 Network Security and Policy Enforcement
CCN’s design protects it from many classes of network attack.

Authenticating all content, including routing and policy informa-
tion, prevents data from being spoofed or tampered with. The fact
that CCN messages can talk only about content, and simply cannot
talk to hosts makes it very difficult to send malicious packets to a

particular target. To be effective, attacks against a CCN must focus
on denial of service: “hiding” legitimate content (e.g., simply not
returning an available later version), or “drowning” it – preventing
its delivery by overwhelming it in a sea of spurious packets.

To ensure they get the content they want in the face of poten-
tial spurious alternatives, consumers can place constraints on the
publishers whose content can satisfy their Interests. Available con-
straints attempt to strike a balance between network efficiency and
content consumer ease of use. At a minimum, consumers (or li-
brary software acting on their behalf) can specify the specific pub-
lisher (public key) they want to have signed their desired content, or
a key that must have signed (certified) the key of the content pub-
lisher. This level of indirection avoids the brittleness of systems
that require content consumers to know what specific key signed
the content they want a priori.

CCN incorporates a number of mechanisms to prevent excessive
forwarding of unwanted traffic. Flow balance between Interests and
Data prevents brute force denial of service by Data flooding over
anything beyond the local link. Flow balance operates in a hop-by-
hop fashion. Only the number of Data packets requested by down-
stream Interests will ever be forwarded across a given link, no mat-
ter how many are provided. Even if an Interest is forwarded across
many networks in search of matching Data (unlikely, but dependent
on routing), at each aggregation point only a single Data packet will
be forwarded towards the content consumer. Data-based distributed
denial of service (DDoS) attacks are simply not possible.

As Interests can be generated by consumers at a rate of their
choosing, it is theoretically possible to mount an Interest flood-
ing attack – distributed generation of huge numbers of Interests
in hopes of overwhelming the available bandwidth to the node(s)
or networks CCN routers believe are the most likely sources of
matching content. Multiple Interests requesting the same Data will
be combined by CCN routers, and only a single copy will be for-
warded upstream. So to attempt an Interest flood, an attacker must
generate Interests for names that begin with a prefix supplied by the
target, but which contain unique name components (to prevent In-
terest combining). As CCN routing allows transmission of Interests
for content that does not yet exist, such Interests would normally be
forwarded to their intended target.

Two features of CCN routing make it easy to mitigate such at-
tacks: first, as Data packets follow the Interests they satisfy back to
the consumer, every CCN intermediary node is able to see, for each
Interest it forwards, whether or not that Interest successfully re-
trieves Data. (This is not the case in IP networking, where forward
and return paths through the network are frequently disjoint.) Such
randomly generated Interest flood packets will in general never re-
sult in Data responses. A simple adaptive algorithm allows inter-
mediary routers to limit the number of Interests they will forward
under a certain prefix as a function of how many previous Interests
for that prefix have been successful (resulted in Data). Second, the
attacked domain can ask downstream routers to throttle the number
of Interests they forward by name prefix, much as an IP network
might ask its upstream IP to throttle or block attempts to access un-
used addresses. However, CCN’s ability to attach policy to content
namespaces allows semantically selective control.

CCN also provides tools that allow an organization to exercise
control over where their content will travel. Routers belonging
to an organization or service provider can enforce policy-based
routing, where content forwarding policy is associated with con-
tent name and signer. One simple example is a “content firewall”
that only allows Interests from the Internet to be satisfied if they
were requesting content under the /parc.com/public names-
pace. An organization could publish its policies about what keys
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Figure 8: Bulk data transfer performance

can sign content under a particular name prefix (e.g., all keys signed
by ccnx.org), and have their content routers automatically drop
content that does not meet those requirements, without asking those
routers to understand the semantics of the names or organizations
involved. Finally, Interests could in certain cases be digitally signed,
enabling policy routing to limit into what namespaces or how often
particular signers may query.

6. EVALUATION
In this section we describe and evaluate the performance of our

prototype CCN implementation. Our current implementation en-
codes packets in the ccnb compact binary XML representation us-
ing dictionary-based tag compression. Our CCN forwarder, ccnd,
is implemented in C as a userspace daemon. Interest and Data pack-
ets are encapsulated in UDP for forwarding over existing networks
via broadcast, multicast, or unicast.

Most of the mechanics of using CCN (ccnd communication,
key management, signing, basic encryption and trust management)
are embodied in a CCN library. This library, implemented in Java
and C, encapsulates common conventions for names and data such
as encoding fragmentation and versioning in names or represent-
ing information about keys for encryption and trust management.
These conventions are organized into profiles representing applica-
tion-specific protocols layered over basic CCN Interest–Data.

This architecture has two implications. First, the security perime-
ter around sensitive data is pushed into the application; content is
decrypted only inside an application that has rights to it and never
inside the OS networking stack or on disk. Second, much of the
work of using CCN in an application consists of specifying the
naming and data conventions to be agreed upon between publishers
and consumers.

All components run on Linux, Mac OS XTM, SolarisTM, FreeBSD,
NetBSD and Microsoft WindowsTM. Cryptographic operations are
provided by OpenSSL and Java.

6.1 Data Transfer Efficiency
TCP is good at moving data. For bulk data transfer over ter-

restrial paths it routinely delivers app-to-app data throughput near
the theoretical maximum (the bottleneck link bandwidth). TCP can
‘fill the pipe’ because its variable window size allows for enough
data in transit to fill the bandwidth×delay product of the path plus
all of the intermediate store-and-forward buffer stages[21]. CCN’s
ability to have multiple Interests outstanding gives it the same capa-
bility (see Section 3.1) and we expect its data transfer performance

Bytes (packets) Overheads
Sent Received Encap Transact

Web page (6429 bytes)
HTTP 723 (9) 7364 (9) 15% 11%
CCN/ETH 811 (8) 8101 (6) 26% 13%
CCN/UDP 325 (3) 6873 (5) 7% 5%

Secured Web page (16944 bytes)
HTTPS 1548 (16) 21232 (22) 25% 9%
CCN/ETH 1791 (16) 20910 (14) 23% 11%
CCN/UDP 629 (5) 18253 (14) 8% 4%

Table 1: Web content efficiency

to be similar to TCP’s.
To test this we measured the time needed to transfer a 6MB file

as a function of the window size (TCP) and number of outstanding
Interests (CCN). The tests were run between two Linux hosts con-
nected by 100Mb/s links to our campus ethernet. For the TCP tests
the file was transferred using the test tool ttcp. For the CCN tests
the file was pre-staged into the memory of the source’s ccnd by
requesting it locally.11 This resulted in 6,278 individually named,
signed CCN content objects each with one KB of data (the resulting
object sizes were around 1350 bytes).

Results can be seen in Figure 8.12 CCN requires five times the
pipelining of TCP, 20 packets vs. 4, to reach its throughput asymp-
tote. This is an artifact of the additional store-and-forward stages
introduced by our prototype’s totally unoptimized task-level imple-
mentation vs. Linux TCP’s highly optimized in-kernel implemen-
tation. TCP throughput asymptotes to 90% of the link bandwidth,
reflecting its header overhead (payload to packet size ratio). CCN
asymptotes to 68% of the link bandwidth. Since CCN was encap-
sulated in IP/UDP for this test, it has all the overhead of the TCP
test plus an additional 22% for its own headers. Thus for this exam-
ple the bulk data transfer efficiency of CCN is comparable to TCP
but lower due to its larger header overhead.13

Bulk data transfer performance is important for things like down-
loading large multimedia files, but users’ perception of the speed
of the net is driven by how quickly it can deliver (much smaller)
web page content items. We compared the relative performance of
CCN with HTTP and HTTPS to retrieve a single HTML file. For
the unsecure (HTTP) example we used Google’s home page. For
the secure (HTTPS) example we used Wells Fargo Bank’s home
page. Two different CCN encapsulations are measured: directly
into 1500 byte ethernet packets (no IP or UDP headers) using a
payload size of 1230 bytes, and into UDP datagrams using a max
payload size of 7656 bytes.14

The results are summarized in Table 1. The first two columns
give the total number of bytes and packets sent and received by
the client (including all protocol headers and control traffic such as
SYNs and ACKs). The last two columns are computed from the
first two and give overhead percentages for each protocol: Encap
measures the data encapsulation overhead and is the ratio of over-
head bytes (total bytes received – data bytes received) to data bytes.
Transact measures the transaction overhead (cost of soliciting the

11This was done so the measurement would reflect just communica-
tion costs and not the signing cost of CCN content production.

12Since CCN transacts in packet-sized content chunks, the TCP
window size was divided by the amount of user data per packet
to convert it to packets.

13Most of the CCN header size increase vs. TCP is due to its security
annotation (signature, witness and key locator).

14Since these datagrams were larger than the 1500 byte path MTU
they were IP fragmented. The packet and byte counts include the
fragments and fragment headers.
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Figure 9: Total transfer time vs. the number of sinks.

content) and is the ratio of total bytes sent to data bytes received.
Content transfer via CCN is always secure, yet the results show

that it matches the performance of unsecured HTTP and substan-
tially outperforms secure HTTPS. CCN-over-ethernet is essentially
the same as HTTP (more bytes but fewer packets and round-trip
times) and twice as efficient as HTTPS (half the number of pack-
ets). CCN-over-jumbo-UDP is twice as efficient as HTTP and three
times more efficient than HTTPS in both overhead and packets.

6.2 Content Distribution Efficiency
The preceding sections compared CCN vs. TCP performance

when CCN is used as a drop-in replacement for TCP, i.e., for point-
to-point conversations with no data sharing. However, a major
strength of CCN is that it offers automatic, transparent sharing of
all data, essentially giving the performance of an optimally situ-
ated web proxy for all content but requiring no pre-arrangement or
configuration.

To measure sharing performance we compared the total time
taken to simultaneously retrieve multiple copies of a large data file
over a network bottleneck using TCP and CCN. The test configu-
ration is shown in the inset of Figure 9 and consisted of a source
node connected over a 10 Mbps shared link to a cluster of 6 sink
nodes all interconnected via 1 Gbps links.15 The machines were
of various architectures (Intel, AMD, PowerPC G5) and operating
systems (Mac OS X 10.5.8, FreeBSD 7.2, NetBSD 5.0.1, Linux
2.6.27).

The sinks simultaneously pulled a 6MB data file from the source.
For the TCP tests this file was made available via an http server on
the source and retrieved by the sinks using curl. For the CCN
tests this file was pre-staged as described in Section 6.1. For each
test, the contents of the entire file were retrieved and we recorded
the elapsed time for the last node to complete the task. Multiple
trials were run for each test configuration varying the particular
machines which participated as sinks.

Test results are shown in Figure 9. With a single sink TCP’s bet-
ter header efficiency allows it to complete faster than CCN. But as
the number of sinks increases TCP’s completion time increases lin-
early while the CCN performance stays constant. Note that since
the performance penalty of using CCN vs. TCP is around 20%
while the performance gain from sharing is integer multiples, there
is a net performance win from using CCN even when sharing ra-
tios / hit rates are low. The win is actually much larger than it

15We used a 10 Mbps bottleneck link to clearly show saturation be-
havior, even with only a small number of nodes.
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appears from this test because it applies, independently, at every
link in the network and completely alleviates the traffic concentra-
tions we now see at popular content hubs and major peering points.
For example, today a popular YouTube video will traverse the link
between youtube.com and its ISP millions of times. If the video
were distributed via CCN it would cross that link once. With the
current architecture, peak traffic loads at aggregation points scale
like the total consumption rate of popular content. With CCN they
scale like the popular content creation rate, a number that, today, is
exponentially lower.

6.3 Voice-over-CCN and the Strategy Layer
To demonstrate how CCN can support arbitrary point-to-point

protocols we have implemented Voice-over-IP (VoIP) on top of
CCN (VoCCN). Complete details and performance measurements
are given in [22]. In this section we describe a test that uses a
VoCCN call to demonstrate the behavior and advantages of CCN’s
strategy layer.

As described in Section 3.3, when the FIB contains multiple
faces for a content prefix, the strategy layer dynamically chooses
the best. It can do this because CCN can send the same Interest out
multiple faces (since there is no danger of looping) and because a
CCN node is guaranteed to see the Data sent in response to its Inter-
est (unlike IP where the request and response paths may be almost
entirely disjoint). These two properties allow the strategy layer to
run experiments where an Interest is occasionally sent out all faces
associated with the prefix. If a face responds faster than the current
best, it will become the new best and be used exclusively for the
prefix’s Interests, until it is time for the next experiment (e.g., after
200 packets, when there is a change in carrier or SSID, or when an
Interest does not get a response and times out).

To test this mechanism we ran our linphone-based VoCCN client
between two Linux 2.6.27 machines (a 3.4 GHz Intel P4 and a 2.66
GHz Intel Core2 Duo) each connected to two isolated wired 1 Gbps
ethernet networks. The linphone default is to packetize audio into
20ms frames so audio activity resulted in a constant 50pps source of
RTP packets. As measured by voice quality, the performance of our
secure VoCCN prototype was equivalent to that of stock linphone.
No packets were lost by either client, however a small number of
VoCCN packets (< 0.1%) were dropped for arriving too late.

We conducted failover tests by manually disconnecting and re-
connecting network cables. Figure 10 shows the traffic on both
links during one of these tests. The strategy layer initially picks
link B but at 15 seconds into the call it switches to link A in reaction
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to some small variance in measured response time, then switches
back to link B at 40 seconds. At 45 seconds we unplugged link
A but this had no impact since link B was being used at the time.
At 60 seconds link A was reconnected. At 82 seconds link B was
disconnected. The strategy layer switches to link A, and there is a
small excursion above 50pps in the link A traffic rate as the pack-
ets produced during the failure detection time are retrieved from
the upstream ccnd. At 95 seconds link B is reconnected; traffic re-
mains on link A. At 120 seconds link A is disconnected, and the
CCN strategy layer switches back to link B, but the failure detec-
tion took longer this time as shown by the large traffic burst on B
immediately following the switch. There is one more spontaneous
switch at 160 seconds then the call terminates at 165 seconds.

The failover behavior is not coded into our client but arises en-
tirely from the CCN core transport. The small delay for the final
failover reflects the preliminary state of our current implementation
(it does not listen for ‘carrier lost’ notifications from the ethernet
driver so failure detection is timeout rather than event driven). It
is interesting to note that after failing over the client is able to re-
trieve the missing conversation data from CCN: a few packets were
delayed but none were lost.

7. RELATED WORK
It is widely recognized that combining identity and location in-

formation into a single network address does not meet the demands
of today’s applications and mobile environments. Proposed reme-
dies implement functionality above the current Internet architec-
ture, replace it in a “clean slate” approach, or combine aspects of
both. Like CCN, these proposals aim to switch from host- to con-
tent-oriented networking to meet data-intensive application needs.

Prior content-oriented networking research is dominated by the
use of unstructured, opaque, usually self-certifying content labels.
The challenges these systems face are efficiently routing queries
and data based on the “flat” names, and providing an indirection
mechanism to map user-meaningful names to the opaque labels.

The Data-Oriented Network Architecture [24] replaces DNS
names with flat, self-certifying names and a name-based anycast
primitive above the IP layer. Names in DONA are a cryptographic
digest of the publisher’s key and a potentially user-friendly label –
however, that label is not securely bound to the content, allowing
substitution attacks. Unlike CCN, data cannot be generated dy-
namically in response to queries – content in DONA must first be
published, or registered, with a tree of trusted resolution handlers
(RHs) to enable retrieval. Each resolution handler must maintain
a large forwarding table providing next hop information for every
piece of content in the network. Once the content is located, pack-
ets are exchanged with the original requester using standard IP rout-
ing. If the location of a piece of content changes, new requests for it
will fail until the new registration propagates through the network.
CCN, in contrast, can forward requests to all the places a piece of
content is likely to be.

A number of systems make use of distributed hash tables (DHTs)
to route queries for opaque content names. ROFL (Routing on Flat
Labels) evaluates the possibility of routing directly on semantic-
free flat labels [7]. A circular namespace is created to ensure cor-
rect routing (as in Chord [36]), but additional pointers are added to
shorten routes. In a similar approach, i3 [35] separates the acts of
sending and receiving by using a combination of packet identifiers
and a DHT. Receivers insert a trigger with the data identifier and
their address into the DHT. The trigger is routed to the appropri-
ate sender, who fulfills the request by responding with the packet
containing the same id and the requested data. SEATTLE [23] uti-
lizes flat addressing with a one-hop DHT to provide a directory ser-

vice with reactive address resolution and service discovery. Unlike
CCN, all of these systems require content be explicitly published
to inform the DHT of its location before it can be retrieved. Also
unlike CCN, this retrieval is largely free of locality – queries might
retrieve a cached copy of data along their routed path, but are not
guaranteed to retrieve the closest available copy.

Instead of routing end-to-end based on an identifying
name, the PSIRP project [33] proposes using rendezvous as a net-
work primitive. Each piece of data has both a public and private la-
bel used for verifying the publisher and making routing decisions.
Consumers receive content by mapping the desired, user-friendly
name to an opaque public label via an unsecure directory service.
The label is then used to subscribe to the piece of data, triggering
the system to locate and deliver the corresponding content. Though
motivated by the same problems as CCN, PSIRP suffers from its
use of unstructured identifiers and lack of strong cryptographic
binding between user-meaningful names (or currently, even their
opaque labels) to content.

The 4WARD NetInf project [29] has similar goals to CCN but
focuses on higher level issues of information modeling and ab-
straction. It currently uses DONA-style names for Data and In-
formation Objects and provides a publish/subscribe style API. The
NetInf Dictionary infrastructure uses a DHT for name resolution
and location lookup.

TRIAD [8], like CCN, attempts to name content with user-
friendly, structured, effectively location-independent names.
TRIAD uses URLs as its names using an integrated directory to
map from the DNS component of the URL to the closest available
replica of that data. It then forwards the request to that next hop,
continuing until a copy of the data is found. Its location is returned
to the client, who retrieves it using standard HTTP/TCP. TRIAD re-
lies on trusted directories to authenticate content lookups (but not
content itself), and suggests limiting the network to mutually trust-
ing content routers for additional security.

Research into content-aware routing protocols also attempts to
improve delivery performance and reduce traffic overhead. For ex-
ample, Anand et. al [5] studied the benefits of large-scale packet
caching to reduce redundant content transmission. In this work,
routers recognize previously forwarded content and strip the con-
tent from packets on the fly, replacing the content portion with a
representative fingerprint. Downstream routers reconstruct the con-
tent from their own content cache before delivering to the requester.

8. CONCLUSIONS
Today’s network use centers around moving content, but today’s

networks still work in terms of host-to-host conversations. CCN
is a networking architecture built on IP’s engineering principles,
but using named content rather than host identifiers as its central
abstraction. The result retains the simplicity and scalability of IP
but offers much better security, delivery efficiency, and disruption
tolerance. CCN is designed to replace IP, but can be incrementally
deployed as an overlay – making its functional advantages available
to applications without requiring universal adoption.

We implemented a prototype CCN network stack, and demon-
strated its usefulness for both content distribution and point-to-
point network protocols. We released this implementation as open
source and it is available from [1].
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