
Not-a-Bot (NAB): Improving Service Availability in the Face of Botnet
Attacks ∗

Ramakrishna Gummadi∗ Hari Balakrishnan∗ Petros Maniatis† Sylvia Ratnasamy†
∗MIT CSAIL † Intel Research Berkeley

Abstract
A large fraction of email spam, distributed denial-of-

service (DDoS) attacks, and click-fraud on web adver-
tisements are caused by traffic sent from compromised
machines that form botnets. This paper posits that by
identifying human-generated traffic as such, one can mit-
igate botnet attacks, by servicing human-generated traffic
with improved reliability or higher priority.

The key challenge is to identify human-generated traf-
fic in the absence of strong unique identities. We develop
NAB (“Not-A-Bot”), a system to approximately identify
and certify human-generated activity. NAB uses a small
trusted software component called an attester, which runs
on the client machine with an untrusted OS and applica-
tions. The attester tags each request with an attestation
if the request is made within a small amount of time of
legitimate keyboard or mouse activity. The remote entity
serving the request sends the request and attestation to a
verifier, which checks the attestation and implements an
application-specific policy for attested requests.

Our implementation of the attester is within the Xen
hypervisor. By analyzing traces of keyboard and mouse
activity from 328 users at Intel, together with adversar-
ial traces of spam, DDoS, and click-fraud activity, we
estimate that NAB reduces the amount of spam that cur-
rently passes through a tuned spam filter by more than
92%, while not flagging any legitimate email as spam.
NAB delivers similar benefits to legitimate requests un-
der DDoS and click-fraud attacks.

1 Introduction

Botnets comprising compromised machines are
the major originators of email spam, distributed
denial-of-service (DDoS) attacks, and click-fraud on
advertisement-based web sites today. By one measure,
the current top six botnets alone are responsible for more
than 85% of all spam mail [26], amounting to more than
120 billion messages per day that infest more than 95%
of all inboxes [15, 27]. Botnet-generated DDoS attacks
account for about five percent of all web traffic [10],
occurring at a rate of more than 4000 distinct attacks
per week on average [19]. A problem of a more recent

∗To appear in the proceedings of NSDI 2009

vintage, click-fraud, is a growing threat to companies
that draw revenue from web ad placements [30]; bots are
said to generate 14–20% of all ad clicks today [8].

If it were possible to tag email or web requests as
“human-generated,” the problems of spam, DDoS, and
click-fraud could be mitigated. The reason is that most
(though not all) non-spam email is human-generated
(and most spam is not), many overloaded web sites prefer
to service requests from human users, and a non-human-
generated request is click-fraud by definition.

The observation that human activity is a useful indi-
cator is not new, but there is currently no good way to
obtain this informationautomaticallywithout human in-
put. As explained in §4, requiring human input (say in
the form of answering CAPTCHAs [34]) is either un-
tenable (persuading users to answer a CAPTCHA before
clicking on a web ad or link is unlikely to work well), or
ineffective (e.g., because the task of solving CAPTCHAs
is transferable to other machines, and not inextricably
linked to the request it is intended to validate).

The problem with obtaining this evidence automati-
cally is that the client machine may have been compro-
mised, so one cannot readily trust any information pro-
vided by software running on the compromised machine.
To solve this problem, we observe that almost all com-
modity PCs hitting the market today are equipped with
a Trusted Platform Module (TPM) [32]. We use this fa-
cility to build a trusted path between physical input de-
vices (the keyboard and mouse, extensible in the future
to devices like the microphone) and anattester, which is
a small piece of trusted code that runs isolated from the
(untrusted) operating system.

The key challenge for the attester is to certify human-
generated traffic without relying on strong unique iden-
tities. This paper describes NAB, a system that imple-
ments such an attester (§4) for email (for spam control)
and web requests (for DDoS mitigation and click-fraud
protection). Attestations are signatures on requests using
an anonymous (i.e., group signature) key derived from
the TPM private key. These attestations are processed by
averifier run remotely by an entity interested in knowing
whether the traffic was sent as a result of human activity.
The verifier implements an application-specific policy
that decides whether the attestation was sent with con-
comitant keyboard or mouse (and therefore, with human)

1



activity. If the attestation is valid (i.e., it is not forged
or used before), the entity can take suitable application-
dependent action—improving the “spam score” for the
email message, increasing the priority of the web re-
quest, etc. NAB requires minor modifications to client
and server applications to use attestations. NAB’s attesta-
tions are attached to email and web requests as extended
objects, so SMTP and HTTP protocols themselves need
not be changed.

NAB’s philosophy is to do no harm to users who do
not deploy NAB, while benefiting users who deploy it.
For example, email senders who use the attester improve
the probability that their emails are not flagged as spam,
and email receivers that use the verifier see reduced spam
in inboxes that check for valid attestations. These im-
provements are preserved even under adversarial work-
loads. Further, since NAB does not use blacklisting or
filtering, legitimate email from an infected machine can
still be delivered with valid attestations.

The NAB approach can run on any platform that pro-
vides for the attested execution of trusted code, such as
Intel’s TXT and AMD’s Pacifica architectures. Isolation
of trusted from untrusted code is typically intertwined
with virtualization in these architectures, but systems
such as Flicker have demonstrated that virtualization is
not required [18], and microprocessor manufacturers are
rumored to be adding this functionality into the processor
package for any hardware thread. We have constructed
our prototype using virtualization over a trusted hypervi-
sor, but hope to evaluate the NAB approach in Flicker in
the near future.

Our prototype extends the Xen hypervisor [3], thus
isolating itself from malicious code running within the
untrusted OS. We stripped the host kernel and Xen
Virtual Machine Monitor (VMM) down to fewer than
30,000 source lines, including the necessary device
drivers, and built the attester as a 500-line kernel mod-
ule. This code, together with the TPM and input devices
forms the trusted computing base (TCB). Generating an
attestation on a standard PC takes less than 107 CPU cy-
cles, or less than 10 ms on a 2 GHz processor, making
NAB practical for handling fine-grained attestation re-
quests (email and web requests).

We evaluate whether NAB can be applied to spam
control, DDoS defense, and click-fraud detection using
traces of keyboard and mouse activity drawn from 328
PCs of volunteering users at Intel, gathered over a one-
month period [12]. Since NAB modifies request han-
dling, we consider an adversarial botnet that exploits how
NAB generates and verifies attestations. We construct an
adversarial attack workload and evaluate it on the col-
lected traces. We estimate that:

1. If the email sender uses NAB, the spam score for the
email message is boosted so that no legitimate email

is misclassified as spam. On the other hand, only bots
that harvest existing user activity, as described in §4.1
can get through; this reduces the volume of spam mes-
sages getting through today’s spam filters as false neg-
atives by 92% compared to current levels. Thus, a mail
relay that requires attestations from its clients to for-
ward email or an inbox that prioritizes attested email
benefit from not misclassifying legitimate email as
spam, while admitting only 8% of today’s undetected
spam traffic.

2. NAB can lower the priority of more than 89% of
bot-mounted DDoS activity, without affecting human-
generated requests.

3. NAB can identify click-fraud activity generated by
bots with more than 87% accuracy, without losing any
human-generated web clicks.

These results suggest that the application-independent
abstraction provided by NAB—the ability to tag traf-
fic with unforgeable evidence of input device activity—
enables a range of verifier policies for applications that
benefit from identifying human-generated requests and
treating them separately from all other requests, which
include bot traffic.

2 Threat Model and Goal

Threat model and assumptions.We assume that the OS
and applications of a host cannot be trusted, and are sus-
ceptible to compromise. A host is equipped with a TPM,
which boots the attester. This trust in the correct boot-up
of the attester can be remotely verified, which is the stan-
dard practice for TPM-assisted secure booting today. We
assume that the users of subverted hosts may be lax, but
not malicious enough to mount hardware attacks against
their own machine’s hardware (such as shaving the pro-
tective coating off their TPM chip or building custom
input hardware). We assume correct hardware, includ-
ing the correct operation and protection of the TPM chip
from software attacks, as per its specification [32]. We
make no assumptions about what spammers do with their
own hardware. Finally, we assume that the cryptographic
primitives we use are secure, and that their implementa-
tions are correct.
Goal. NAB consists of an attester and a verifier. Our
primary goal is to distinguish between bot and human-
generated traffic at the verifier, so that the verifier can im-
plement application-specific remedies, such as prioritiz-
ing or improving the delivery of human traffic over bot-
net traffic. We would like to do so without requiring any
user input or imposing any cognitive burden on the user.
Therefore, the attester attempts to infer the user’s intent
by associating requests with recently observed keyboard
and mouse clicks. This association is only an approxi-

2



mate indicator of actual human activity: NAB guaran-
tees that all human-generated requests will be correctly
attested, but it is possible for a bot to acquire attestations
for its request traffic too.

We aim to bound the final botnet traffic that man-
ages to bypass any measures put up against it (spam
and DDoS filters, click fraud detectors, etc.). We will
consider our approach successful if we can reduce this
botnet traffic that evades our best approaches today to a
small fraction of its current levels (≈ 10%), even in the
worst case for NAB (i.e., with adaptive bots that modu-
late and maximize their transmissions to exploit human
activity behavior), while still identifying all valid human-
generated traffic correctly. We set this goal because we
do not believe that purely technical approaches such
as NAB will completely suppress attack traffic such as
spam, which also uses social engineering. NAB achieves
this goal with realistic workloads and adaptive bots (§6).

3 NAB Architecture

We now present the requirements and constraints that
drive the NAB architecture.

3.1 Requirements and Constraints

Requirements.There are four main requirements. First,
attestations must be generated in response to human re-
quests automatically. Second, such attestations must not
be transferable from the client on which they are gener-
ated. Third, NAB must benefit users that deploy it with-
out hurting those that do not. Fourth, NAB must preserve
the existing privacy and anonymity semantics while de-
livering these benefits.
Constraints. NAB has two main constraints. First, the
host’s OS or applications cannot be trusted. In particular,
a compromised machine can actively try to subvert the
attester functionality. Second, the size of the attester TCB
should be small, because it is a trusted component that
executes remotely.
Challenge.The key challenge is to meet these require-
ments without assuming the existence of globally unique
identities. Even assuming a a public-key infrastructure
(PKI), deploying and managing large-scale identity sys-
tems that map certificates to users is a daunting prob-
lem [4].

Without such identities, the requirements are hard to
meet, and, in some cases, even seemingly in conflict with
each other. For example, generating attestations automat-
ically without trusting the OS and applications is chal-
lenging. Further, there is tension between the require-
ment that NAB should benefit its users without hurt-
ing other users, and the requirement that NAB should
preserve the existing anonymity and privacy semantics.

Attester

Attested 

requests

TPM

OS

App1 App2

Network

Verifier1

App1 Server

Verifier2

App2 Server

Figure 1: NAB architecture. The TCB is highlighted.

NAB’s attestations are anonymously signed certificates
of requests, and the membership size of the signing keys
is several million. We describe how NAB uses such attes-
tations to overcome the absence of globally unique iden-
tities in §4.4.
TPM background. The TPM is a small chip specified by
the Trusted Computing Group to strengthen the security
of computer systems in general. A TPM provides many
security services, among which the ability to measure the
integrity of trusted software running on the computer at
boot time. Since a TPM is too slow to be used routinely
for cryptographic operations such as signing human ac-
tivity, we use the TPM only for its secure bootstrap facil-
ities, to load anattester, a small trusted software module
that runs on the host processor and generates attestations
(i.e., messages asserting human activity).

The attester relies on two key primitives provided
by TPMs. The first is calleddirect anonymous attesta-
tion (DAA), which allows the attester to sign messages
anonymously. Each TPM has anattestation identity key
(AIK), which is an anonymous key used to derive the at-
tester’s signing key. The second primitive is calledsealed
storage, which provides a secure location to store the
attester’s signing key until the attester is measured and
launched correctly.

3.2 Architecture

NAB consists of an attester that runs locally at a host
and generates attestations, as well as an external verifier
that validates these attestations (running at a server ex-
pected to handle spam and DDoS requests, or checking
for click fraud). The attester code hashes to a well-known
SHA-1 value, which the TPM measures at launch. The
attester then listens on the keyboard and mouse ports for
human activity clicks, and decides whether an attestation
should be granted to an application when the applica-
tion requests one. If the attester decides to grant an at-
testation, the application can submit the attestation along
with the application request to the verifier for human ac-
tivity validation. The verifier can confirm human activity
as long as it trusts the attestation TCB, which consists
of the attester, the TPM, and input device hardware and
drivers. This architecture is shown in Figure 1.

3



Attestations are signed messages with two key proper-
ties that enable the verifier to validate them correctly:

1. Non-transferability. An attestation generated on a
machine is authenticated by a chain of signing keys
that pass through that machine’s TPM. Hence, a valid
attestation cannot be forged to appear as if it were is-
sued by an attester other than its creator, and no valid
attestation can be generated without the involvement
of a valid attester and TPM chip.

2. Binding to the content of a request.An attestation
contains the hash digest of the content of the request
it is attesting to. Since an attester generates an attes-
tation only in response to human activity, this binding
ensures that the attestation corresponds to the content
used to generate it. Binding thus allows a request to be
tied to the user’s intent to generate that request, greatly
reducing opportunities for using human activity to jus-
tify unrelated requests.

4 Attester Design and Implementation

Our attester design assumes no special hardware support
other than the availability of a TPM device. However, it
is flexible enough to exploit the recent processor exten-
sions for trusted computing such as AMD’s Secure Vir-
tual Machine (SVM) or Intel’s Trusted Execution Tech-
nology (TXT) to provide additional features such as late
launch (i.e., non boot-time launch), integration into the
TCB of an OS, etc., in the future.

The attester’s sole function is to generate an attestation
when an application requests one. An attestation request
contains only the application-specific content to attest to
(e.g., the email message to send out). The attester may
provide the attestation or refuse to provide an attestation
at all. We discuss two important decisions: when to grant
an attestation and what to attest.

4.1 When To Grant An Attestation

The key question in designing the attester is deciding un-
der what conditions a valid attestation must be granted.
The goal is to simultaneously ensure that human-
generated traffic is attested, while all bot-generated traf-
fic is denied attestation.

The attester’s decision is one of guessing the human’s
presence and intent: was there a human operating the
computer, and did she really intend to send the particular
email for which the application is requesting an attesta-
tion? Since the attester lacks a direct link to the human’s
intentions, it must guess based on the trusted inputs avail-
able: the keyboard and mouse. We considered three key
design points for such a guessing module.

The best-quality guess is not a guess at all: the attester
could momentarily take over the keyboard, mouse, and
display device, and prompt the user with a specific ques-
tion to attest or not attest to a particular email. Since the
OS and other applications are displaced in the process,
only the human user can answer the question. From the
interaction point of view, this approach is similar to the
User Account Control (UAC) tool in Microsoft Windows
Vista, in which the OS prompts the user for explicit ap-
proval before performing certain operations, although in
our context it would be the much smaller and simpler at-
tester that performs that function. While technically fea-
sible to implement, users have traditionally found ex-
plicit prompts annoying in practice, as revealed by the
negative feedback on UAC [33]. What is worse, user fa-
tigue inevitably leads to an always-click-OK user behav-
ior [36], which defeats the purpose of attestation.

So, we only consider guesses made automatically. In
particular, we use implicit guessing of human intent,
using timing as a good heuristic: how recently before
a particular attestation request was the last keyboard
or mouse activity observed? We call this a “t − δ” at-
tester, ifδm denotes the time since the last mouse activity
andδk denotes the time since the last keyboard activity.
For example, the email application requests an attesta-
tion specifying that a keyboard or mouse click should
have occurred within the last∆k or ∆m milliseconds re-
spectively, where the∆{k,m} represents the application-
specified upper-bound. The attester generates attestations
that indicate this time lag, or refuses if that lag is longer
than an application-configured threshold. So, the attester
refuses email attestations in the absence of human activ-
ity within the last∆{k,m} milliseconds.

This method is simpler and cheaper in terms of re-
quired resources than an alternative we carefully consid-
ered and eventually discarded. Using keyboard activity
traces, we found that good-quality guesses can be ex-
tracted by trying tosupportthe content of an attestation
request using specific recent keyboard and mouse activ-
ity. For example, the attester can observe and remember
a short sequential history of keystrokes and mouse clicks
in order of observation. When a particular attestation re-
quest comes in, the attester searches for the longest sub-
sequence of keyclicks that matches the content to attest.
An attestation could be issued containing the quality of
match (e.g., a percentage of content matched), only rais-
ing an explicit alarm and potential user prompting if that
match is lower than a configurable threshold (say 60%).
This design point would not attest to bot requests un-
less they contained significant content overlap with legit-
imate user traffic. Nevertheless this method raised great
implementation complexity, given the typical multitask-
ing behavior of modern users (switching between win-
dows, interleaving keyboard and mouse activity, insert-

4



ing, deleting, selecting and overwriting text, etc.). So,
we ultimately discarded it in favor of the simplert − δ
attester, which allowed a simple implementation with a
small TCB size.

One drawback of thet−δ attester is that it allows a bot
to generate attestations for its own traffic by “harvesting”
existing user activity. So, NAB could allow illegitimate
traffic to receive attestations, though only at the rate of
human activity.

NAB mitigates this situation through two ways. First,
NAB ensures that two attestations are separated by at
least the application-specific∆ milliseconds. For email,
we find from the traces (§6) that∆ = 1 second works
well. Since key clicks cannot be captured or stored,
we throttle a bot significantly in practice. Today’s bots
send several tens of thousands of spam within a few
hours [15], so even an adaptive bot is constrained by this
restriction.

Second, if legitimate traffic fails to receive an attesta-
tion (e.g., because bot code attestation requests absorbed
all recent user activity before the user’s application had
a chance to do so), a NAB-aware application alerts the
user that it has not been able to acquire an attestation,
possibly alerting the user that unwholesomeness is afoot
at her computer. We note that this technique is not per-
fect, because a bot can hijack such prompts. In practice,
we found that such feedback is useful, although we eval-
uate NAB assuming adversarial bots.

4.2 What To Attest

The second attester design decision is what to attest, i.e.,
how much to link a particular attestation to the issuer, the
verifier, and the content.

Traditional human activity solutions such as
CAPTCHAs [34] don’t link to the actual request
being satisfied. A CAPTCHA is a challenge that only a
human is supposed to be able to respond to. A correct
response to a CAPTCHA attests to the fact that a human
was likely involved in answering the question, but it
does not say where the human was or whether the
answer came from the user of the service making the
request. The problem is that human activity can be
trafficked, as evidenced by spammers who route human
activity challenges meant for account creation to sketchy
web sites to have them solved by those sites’ visitors
in exchange for free content [28], or to sweatshops
with dedicated CAPTCHA solvers. Thus,a human was
involved in providing the activity, but not necessarily the
human intended by the issuer of the challenge.

In contrast, NAB generates responder-specific,
content-specific, and, where appropriate, challenger-
specific attestations. Attestations are certificates of
human activity that contain a signature over the entire

App

OS Attester

req(h(msg), type, 

,      ,PID)

rep(Kpriv{h(msg),

nonce,

δm, δk},

certified Kpub)

kbd, mouse clicks
User

TPM

Measure integrity,

release signed {Kpub,Kpriv} 

(at boot)

∆k∆m

Figure 2: Attester interfaces.

request content. For example, an email attestation
contains the signature over the entire email, including
the “From:” address (i.e., the responder), the email body
(i.e., the content), and the “To:” address (i.e., the chal-
lenger). Similarly, a web request attestation contains the
URL signature, which provides both responder-specific
and content-specific attestations.

Content-specific attestation is more subtle. Whereas
CAPTCHAs are used today for coarse-grained actions
such as email account creation, they are considered too
intrusive to be used for finer granularity requests such as
sending email or retrieving web URLs. So, in practice,
the challenge response is “amortized” over multiple re-
quests (i.e., all email sent from the CAPTCHA-created
mail account). Even if an actual human created the ac-
count, nothing prevents the bots in that human’s desktop
from sending email indiscriminately using that account.

Finally, challenger-specific attestation helps in ensur-
ing that unwitting, honest humans do not furnish attesta-
tions for bad purposes. A verifier expecting an attestation
from humanA’s attester will reject an attestation from
humanB that might be provided instead. In the spam ex-
ample, this is tantamount to explicit sender authentica-
tion.

Attestations with these three properties, together with
application-specific verifier policies described in §5.2,
meets our second and third requirements (§3.1).

4.3 Attester API

Figure 2 shows the relationship between the attester and
other entities. The API is simple: there is only a single
request/reply pair of calls between the OS and the at-
tester. An application’s attestation request contains the
hash of the message to be attested (i.e., the contents of
an email message or the URL of a browser click), the
type of attestation requested, and the process id (PID) of
the requesting process.

If the attester verifies that the type of attestation be-
ing requested is consistent with user activity seen on the
keyboard/mouse channels, it signs the attestation and,
depending on the attestation type, includesδm and δk,
which indicate how long ago a mouse click and a key-

5



board click respectively were last seen. The attestation is
an offline computation, and is thus an instance of a non-
interactive proof of human activity.

The same API is used for all applications. The only
customization allowed is whether to include the values
of the δm or δk, depending on the attestation type. The
attester uses a group signature scheme for anonymous
attestations, extending the Direct Anonymous Attesta-
tion (DAA) service [7] provided by recent TPMs. Anony-
mous attestations preserve the current privacy semantics
of web and email, thereby meeting our fourth and final
requirement (§3.1).

We have currently defined and implemented two attes-
tation types. Type 0 is for interactive applications such
as all types of web requests. Type 1 is for delay-tolerant
applications such as email. Type 0 attestations are gener-
ated only when there is either a mouse or keyboard click
in the last one second, and do not include theδm or δk

values. Type 0 attestations are added to enhance privacy,
that is, to prevent verifiers from tracking at a fine tempo-
ral granularity a human user’s activity or a particular re-
quest’s specific source machine. Type 1 attestations can
be used with all applications we have examined, if this
finer privacy concern is ignored. Since the attester runs
locally, ∆{m,k} values of one second between when the
user clicks a key in order to tell the browser to open a
URL or send an email, and when the browser receives
the keyclick and requests the attester for an attestation is
sufficient.
Attestation structure. An attestation contains the fol-
lowing four structures. First, it contains a hash of the
message being attested. Second, to maintain the fresh-
ness of the attestations and disallow improper attestation
reuse, the attester includes a 160-bit nonce in the returned
attestation. The nonce is generated from the keyed SHA-
1 hash of an internal counter, using the attester’s pri-
vate signing key. The nonce can be stored and checked
at the verifier, as described in §5.3. Third, there are op-
tional δ{k,m} values, signed with the anonymous signing
keyKpriv. Fourth, it includes a certificate from the TPM
guaranteeing the attester’s integrity, the version of the at-
tester being used, the attestation identity key of the TPM
that measured the attester integrity, and the signed at-
tester’s public keyKpub (Figure 2).

The mechanism for attesting to web requests is simple:
when a user clicks on a URL that is either a normal link
or an ad, the browser requests an attestation on the entire
page URL. After the browser fetches the page content, it
uses the same attestation to retrieve any included objects
within the page. As explained in §5.2, the verifier accepts
the attestation for all included objects.

The mechanism for sending email in the common case
is also straightforward: the entire email message, includ-
ing headers and attachments, constitutes the request. In-

terestingly, the same basic mechanism is extensible to
other email usage scenarios, such as text or web-based
email, email-over-ssh, batched and offline email, and
script-generated email.
Email usage scenarios (mailing lists; remote, batched,
offline, scripted or web mail). To send email to mail-
ing lists, the attester attests to the email normally, ex-
cept that the email destination address is the name of the
target mailing list. Every recipient’s verifier then checks
that the recipient is subscribed to the mailing list, as de-
scribed in §5.2. Also, a text-based email application run-
ning remotely over ssh can obtain attestations from the
local machine with the help of the ssh client program ex-
ecuting locally. This procedure is similar to authentica-
tion credential forwarding implemented in ssh. Similarly,
a graphical email client can obtain and store an attesta-
tion as soon as the “send” button is clicked, regardless of
whether it has a working network connection, or if the
email client is in an offline mode, or if the client uses an
outbox to batch email instead of sending it immediately.
In case of web mail, a browser can obtain an attestation
on behalf of the web application.

Script-generated email is more complex. The PID ar-
gument in the attestation request (Figure 2) is used for
deferred attestations, which are attestations approved
ahead of time by the user. Such forms of attestation
are not required normally, and are useful primarily for
applications such as email-generating scripts, cron-jobs,
etc.. When an application requests a deferred attestation,
the user approves the attestation explicitly through a re-
served click sequence (currently “Ctl-Alt-F4”, followed
by number of deferred attestations). These attestations
are stored in a simple PID-table in the attester, and re-
leased to the application in the future. Since the content
of a deferred attestation is not typically known until later
(such as when the body of an email is dynamically gen-
erated), it is dangerous to release an unbound attestation
to the untrusted OS. Instead, the attester stores the de-
ferred attestations in its own memory, and releases only
bound attestations. Although the attester ensures that un-
bound attestations are not released to the untrusted OS,
thereby limiting damage, there is no way to ensure that
these attestations are not stolen by a bot faking the legit-
imate script’s PID. However, the user is able to reliably
learn about the missing attestations after this occurrence,
which is helpful during troubleshooting.

4.4 Attester Implementation

The attester is a small module, currently at fewer than
500 source code lines. It requires a TPM chip conforming
to any revision of the TPM v1.2 specification [32].
Attester installation. The attester is installed by bind-
ing its hash value to an internal TPM register called a

6



Platform Configuration Register (PCR). We usePCR18.
Initially, the register value is -1. We extend it with the
attester through the TPM operation:

PCRExtend(18,H(ATT))

whereH(ATT) is the attester’s hash. If the attester needs
to be updated for some reason (which should be a rare
event),PCR18 is reinitialized and extended with the new
code value.
Key generation. At install time, the attester generates
an anonymous signing key pair:{Kpub,Kpriv}. This key
pair is derived from the attestation identity key AIK of
the TPM, and is an offline operation.Kpriv allows the
attester to sign requests anonymously. The attester then
seals the private keyKpriv to the TPM using the TPM’s
private storage root keyKroot.

Assume that the system BIOS, which boots before the
attester, extendsPCR17. Thus, the sealing operation ren-
dersKpriv inaccessible to everyone but the attester by
executing the TPM call:

Seal((17,18),Kpriv)

which returns the encrypted valueC of Kpriv. The TPM
unseals and releases the key only to the attester, after the
attester is booted correctly.

Unless the TPM releasesKpriv and the accompanying
certificate to the attester, there is thus no way for the host
to prove to an external verifier that a request is accompa-
nied by human activity. Conversely, if the attester has a
valid private key, the external verifier is assured that the
attester is not tampered with.
Attester booting. The attester uses a static chain of trust
rooted at the TPM and established at boot-time. It is
booted as part of the secure boot loading operation be-
fore the untrusted OS itself is booted. After the BIOS
is booted, it measures and launches the attester. After
the attester is launched, it unseals the previously sealed
Kpriv by executing:

Unseal(C,MACKroot((17,PCR17),(18,PCR18)))

TheUnsealoperation releasesKpriv only if the PCR
registers 17 and 18 after reboot contain the same hash
values as the registers at the time of sealingKpriv. If
the PCR values match, the TPM decryptsC and returns
Kpriv to the attester.

Thus, by sealing the anonymous signing keyKpriv to
the TPM and using secure boot loading to release the key
to the attester, NAB meets the challenge of generating
attestations without globally unique identities.
Attester execution.The attester waits passively for at-
testation requests from an application routed through the
untrusted OS. A small untrusted stub is loaded into the

OS in order to interact with the attester on behalf of the
application.

With our current attester design and implementation,
applications need to be modified in order to obtain attes-
tations. We find the modifications to be fairly small and
localized (§6). The only change as far as applications are
concerned is to first obtain appropriate attestations and
then include them as part of the requests they submit
today. Protocols such as SMTP (mail) or HTTP (web)
need not be modified in order to include this function-
ality. SMTP allows extensible message headers, while
HTTP can include the attestation as part of the “user
agent” browser string sent with web requests.

5 Verifier Design and Implementation

We now describe how verifiers use attestations to imple-
ment attack-specific countermeasures for spam, DDoS
and click-fraud.

5.1 Verifier Design

The verifier is co-located with the server processing re-
quests. We describe how the server invokes the verifier
for each application in §5.2. When invoked, the verifier
is passed both the attestation and the request. The attes-
tation and request contain all the necessary information
to validate the request.

The verifier first checks the validity of the attester pub-
lic key used for signing the request and enclosed in the
attestation, by traversing the public-key chain also en-
closed in the attestation (Figure 2). If valid, it then re-
computes the hash of the request’s content and verifies
whether the signed hash value in the attestation matches
the request’s contents. Further, for attestations that in-
clude theδ{k,m} values, the verifier also checks whether
δ{k,m} are less than the application-specified∆{k,m}. The
verifier then checks to ensure that the attestation is not
being double-spent, as described next in § 5.3.

A bot running in an untrusted domain cannot masquer-
ade as a trusted attester to the verifier because a TPM
will not release the signedKpub (Figure 2) to the bot
without the correct code hash. Further, it derives no ben-
efit from tampering with theδ values it specifies in its
requests, because the verifier enforces the application-
specified upper-limit onδ{k,m}.

The verifier then implements an application-specific
policy as described next.

5.2 Application-specific Policies

Verifiers implement application-specific policies to deal
with bot traffic. Spam can be more aggressively filtered
using information in the attestations, legitimate email

7



sa_fltr_thr

yes

Forward

mail

no

Attested?

yes no

DiscardForward

Figure 3: Sender ISP’s verifier algorithm.

with attestations can be correctly classified, DDoS can
be handled more effectively by prioritizing requests with
attestations over traffic without attestations, and click-
fraud can be reduced by only serving requests with valid
attestations and ignoring other requests.

We now describe how the verifier implements such
application-specific policies.
Spam policy.The biggest problem with Bayesian spam
filters such as spamassassin today is that they either flag
too much legitimate email as spam, or flag too little spam
as such.

When all legitimate requests are expected to carry at-
testations, the verifier can set spam filters aggressively to
flag questionable unattested messages as spam, but use
positive evidence of human activity to “whitelist” ques-
tionable attested messages.
Sender ISP’s email server.The verifier sits on the
sender ISP’s server alongside a Bayesian spam filter like
spamassassin. The filter is configured at an aggressive,
low threshold (e.g., -2 instead of the default 5 for spa-
massassin), because the ISP can force its users to send
email with attestations, in exchange for relaying email
through its own servers.

This low spamassassin “required score” threshold (or
sa fltr thr in Figure 3) tags most unattested spam
as unwanted (i.e., it catches more than 90% of today’s
spam, because a less aggressive threshold of 5 is used
currently). However, in the process, it might also tag
some valid email as spam. In order to correct this mis-
take, the verifier “salvages” messages with a high spam
filter score that carry a valid attestation, and relays them;
high-score, unattested email is discarded as spam. This
step ensures that legitimate human-generated email is
forwarded unconditionally, even if her machine is com-
promised. Thus, NAB guarantees that human-generated
email from even a compromised machine is forwarded
correctly (for example, in our trace study in §6, we did
not find a single legitimate email that was ultimately re-
jected). Finally, while spam that steals attestations will
also be forwarded, this spam volume is 92% less than the
spam forwarded today (§6). This reduction is because the

attester limits the bot to acquiring attestations only when
there is human activity, and because the verifier ensures
that clicks less thanδ = 1 second apart cannot be har-
vested.
Recipient’s inbox.A second form of deploying the ver-
ifier is at the email recipient. This form can coexist with
the verifier on the sender’s side.

We observe that any email server classifying email as
spam or not can ensure that a legitimate email is not mis-
classified by improving the spam score for email mes-
sages with attestations by a small number (=3, §6). This
number should be high enough that all legitimate email
is classified correctly, while spam with or without attes-
tations is still caught.

The verifier improves the score for all attested emails
by 3, thereby vastly improving the delivery of legitimate
email. Additionally, in this deployment, the verifier also
checks that the ‘To:” or “Cc:” headers contain the recipi-
ent’s email address or the address of a subscribed mailing
list. If not (for e.g., in case of “Bcc:”), it does not improve
the spam score by 3 points.
Email deployment scenarios and incentives.Email
senders have an incentive to deploy NAB because it pre-
vents their email from being misclassified as spam. Veri-
fiers can be deployed either for reducing spam forwarded
through mail relays or for ensuring that all legitimate
email is classified and delivered correctly. Home ISPs,
which see significant amount of compromised hosts on
their networks, can benefit from the first deployment sce-
nario, because, unlike other methods of content or IP-
based filtering, attestations still allow all legitimate email
from compromised hosts, while reducing spam signifi-
cantly (§6). Also, web-based mail servers such as gmail
have an incentive to deploy NAB so that they can avoid
being blacklisted by other email relays by reducing the
spam they forward today. Finally, email recipients have
an incentive to deploy NAB because they will receive all
legitimate email correctly, unlike today (§6).
DDoS policy.We consider scenarios where DDoS is ef-
fected by overloading servers, and not by flooding net-
works. The verifier resides in a firewall or load balancer,
and observes the response time of the web server to de-
termine whether the server is overloaded [35]. Here, un-
like in spam, the verifier does not drop requests with
invalid or no attestations. Instead, it prioritizes requests
with valid attestations over those that lack them. Priori-
tizing, rather than dropping, makes sense because some
valid requests may actually be generated automatically
by machines (for example, automatic page refreshes on
news sites like cnn.com).

The verifier processes the web request in the following
application-specific manner. If the request is for a page
URL, the verifier treats it as a fresh request. It keeps a
linked list of all valid attestations it has seen in the past

8



10 minutes, and adds the attestation and the requested
page URL to the list. If the request is for an embedded
object within a page URL, the verifier searches the attes-
tation list to see if the attestation is present in the list. If
the attestation is present in the list, and if the requested
object belongs to the page URL recorded in the list for
the attestation, the verifier treats the attestation as valid.
Otherwise, it lowers the priority of the request. The veri-
fier ages the stored attestations list every minute.

The priority policy serves all outstanding attested re-
quests first, and use any remaining capacity to serve all
unattested requests in order.
DDoS incentives.Overloaded web sites have a natural
incentive to deploy verifiers. While users have an incen-
tive to deploy attesters to receive priority treatment, the
attester deployment barrier can be still high. However,
since our attester is not application-specific, it is possible
for the web browser to leverage the attester deployed for
email or click-fraud.
Click-fraud policy. Click-fraud occurs whenever an au-
tomated request is generated for a click, without any in-
terest in the click target. For example, a botmaster puts up
a web site to show ads from companies such as Google,
and causes his bots to fetch ads served by Google through
his web site. This action causes Google to pay money to
the botmaster. Similarly, an ad target’s competitor might
generate invalid clicks in order to run up ad costs and
bankrupt the ad purchaser. Further, the competitor might
be able to purchase ad words for a smaller price, because
the victim might no longer bid for the same ad word. Fi-
nally, companies like Google have a natural incentive to
prove to their advertisers that ads displayed together with
search results are clicked not by bots but by humans.

With NAB, a verifier such as Google can implement
the verifier within its web servers, configured as a sim-
ple policy of not serving unattested requests. Also, it can
log all attested requests to prove to the advertiser that
the clicks Google is charging for are, in fact, human-
generated.
Incentives. Companies like Google, Yahoo and Mi-
crosoft that profit from ad revenue have a good incentive
to deploy verifiers internally. They also have an incentive
to distribute the attester as part of browser toolbars. Such
toolbars are either factory installed with new PCs, or the
user can explicitly grant permission to install the attester.
While the user may not benefit directly in this case, she
benefits from spam and DDoS reduction, and from being
made aware of potential problems when a bot steals key
clicks.

5.3 Security guarantees

NAB provides two important security guarantees. First,
it ensures that attestations cannot be double-spent. Sec-

ond, it ensures that a bot cannot steal key clicks and ac-
cumulate attestations beyond a fixed time window, which
reduces the aggregate volume and burstiness of bot traf-
fic.

The verifier uses the nonce in the attestation (Fig-
ure 2) for these two guarantees. The verifier stores the
nonces for a short period (10 minutes for web requests,
one month for email). We find this nonce overhead to be
small in practice (§6.3). If a bot recycles an attestation
after one month, and the spam filter at the verifier flags
the email as spam based on content analysis, the verifier
uses the “Date:” field in the attested email to safely dis-
card the request because the message is old.

The combination of application-specific verifier pol-
icy and content-bound attestations can also be used to
mitigate bursty attacks. For example, a web URL can in-
clude an identifier that encodes the link freshness. Since
attestations include the identifier, the verifier can discard
out-of-date requests, even if they have valid signatures.

6 Evaluation

In this section, we evaluate NAB’s two main compo-
nents: a) our current attester prototype with respect to
metrics such as TCB size, CPU requirements, and appli-
cation changes; and b) our verifier prototype with respect
to metrics such as the extent to which it mitigates attack-
specific traffic such as spam, DDoS and click-fraud, and
the rate at which it can verify attestations.

Our main experiments and their conclusions are shown
in Table 1. We elaborate on each of them in turn.

6.1 Attester Evaluation

TCB size.We implemented the attester as a kernel mod-
ule within Xen. Xen is well-suited because it provides a
virtual machine environment with sufficient isolation be-
tween the attester and the untrusted OS. However, the
chief difficulty was keeping the total TCB size small.
Striving for a small TCB allows the attester to handle
untrusted OSes with a higher assurance. While the Xen
VM itself is small (about 30 times smaller than the Linux
kernel), we have to factor the size of a privileged do-
main such as Domain-0 into the TCB code base. Un-
fortunately, this blows up TCB to more than 5 million
source lines of code (SLOC), the majority of which is
device driver code.

Instead, we started with a minimal kernel that only
includes the necessary drivers for our platform. We in-
cluded the Xen VMM and built untrusted guest OSes us-
ing the mini-OS [21] domain building facility included
in the Xen distribution. Mini-OS allows the user-space
applications and libraries of the host VM to be untrusted,
leaving us with a total codebase of around 30,000 source

9



Experiment Conclusion
TCB size 500 source lines of code (SLOC) for attester, 30K SLOC total
Attester CPU cost < 107 instructions/attestation
Application changes <250 SLOC for simple applications
Worst-case spam mitigation > 92% spam suppressed; no human-sent email missed
Worst-case DDoS mitigation > 89% non-human requests identified; no human requests demoted
Worst-case click-fraud mitigation > 87% automated clicks denied; no human request denied
Verifier throughput > 1,000 req/s. Scalable to withstand 100,000-bot DDoS

Table 1: Summary of key experiments and their results.

lines of code (SLOC) for the trusted kernel, VMM and
attester. Our attester was less than 500 SLOC. While this
approach produced a TCB that can be considered rea-
sonably small, especially compared to the status quo, we
are examining alternatives such as using Xen’s driver do-
main facility that allows device drivers to run in unpriv-
ileged domains. We are also working on using the IOM-
MUs found on the newer Intel platforms, which enable
drivers for devices other than keyboard and mouse to run
in the untrusted OS, while ensuring that the attester can-
not be corrupted due to malicious DMA requests. Such
an approach makes the attester portable to any x86 plat-
form.
Attester CPU cost. The attester uses RSA signatures
with a 1024-bit modulus, enabling it to generate and re-
turn an attestation to the application with a worst-case
latency of 10 ms on a 2 GHz Core 2 processor. This la-
tency is usually negligible for email, ad click, or fetch-
ing web pages from a server under DDoS. Establishing
an outgoing TCP connection to a remote server usually
takes more than this time, and attestation generation is
interleaved with connection establishment.
Application changes.We modified two command-line
email and web programs to request and submit attes-
tations: NET::SMTP, a Perl-based SMTP client, and
cURL, a HTTP client written in C. Both modifications
required changes or additions of less than 250 SLOC.

6.2 Verifier Evaluation

We used a trace study of detailed keyboard and mouse
activity of 328 volunteering users at Intel to confirm
the mitigation efficacy of our application-specific veri-
fier policies. We find the following four main benefits
with our approach:

1. If the sender’s mail relay or the receiver’s inbox uses
NAB and checks for attestations, the amount of spam
that passes through tuned spam filters (i.e., false neg-
atives) reduces by more than 92%, while not flagging
any legitimate email as spam (i.e., no false positives).
The spam reduction occurs by setting the “scoring
thresholds” aggressively; the presence of concomitant

human activity greatly reduces the number of legiti-
mate emails flagged as spam.

2. In addition to reduced spam users see in their inboxes,
NAB also reduces the peak processing load seen at
mail servers, because the amount of attested spam that
can be sent even by an adaptive botnet is bounded by
the number of human clicks that generate attestations.
Hence, mail servers can prioritize attested requests po-
tentially dropping low-priority ones, which improves
the fraction of human-generated email processed dur-
ing high-load periods.

3. NAB can filter out more than 89% of bot-mounted
DDoS activity without misclassifying human-
generated requests.

4. NAB can identify click-fraud activity generated by ad-
ware with more than 87% accuracy, without losing any
human-generated web clicks.

Methodology. We use keyboard and mouse click traces
that are collected on user laptops at a fine granularity of
one-second intervals at all times, both at work and home.
Each user’s trace is a sequence of records with the fol-
lowing relevant information: timestamp; number of key-
board clicks within the last second; number of mouse
clicks within the last second; the foreground application
that’s receiving these clicks (such as “Firefox”, “Out-
look”, etc.); and the user’s network activity (i.e., the TCP
flow records that were initiated in the last one second).
Nearly 400 users participated in the trace study, but we
use data from 328 users because some users left the study
early. These 328 users provide traces continuously over
a one-month period between Jan–Feb 2007, as long as
their machines were powered on. While the user popula-
tion size is moderate, the users and the workloads were
diverse. For example, there were instances of significant
input device activity corresponding to gaming activity
outside regular work. So, we believe the traces are suf-
ficiently representative of real-world activity.

Separately, we also collected malware traces from a
honeypot. The malware whose traces we gathered in-
cluded: a) the Storm Worm [14], which was until re-
cently the largest botnet, generating several tens of bil-
lions of spam messages per day; and b) three adware
bots called 180solutions, Nbcsearch and eXactSearch,

10



which are known to perpetrate click-fraud against Ya-
hoo/Overture. For spam, we also used a large spam cor-
pus containing more than 100,000 spam messages and
50,000 valid messages [1]. Each message in the corpus is
hand-classified as spam or non-spam, providing us with
ground-truth. For DDoS, we use traffic traces from the
Internet Traffic Archive [31], which contain flash-crowd
scenarios. We assume that these flash crowds represent
DDoS requests, because, as far as an overloaded server
is concerned, the two scenarios are indistinguishable.

We overlay the user activity traces with the malware
and DDoS traces for each user, and compare the results
experienced by the user at the output of the verifier with
and without attestations. We consider two strategies for
overlaying requests: a normal bot and an adaptive bot.
The adaptive bot represents the worst-case scenario for
the verifier, because it monitors human activity and mod-
ulates its transmissions to collect attestations and mas-
querade as a user at the verifier.

We consider an adaptive adversary that buffers its re-
quests until it sees valid human activity, and simulate the
amount of benefit NAB can provide under such adversar-
ial workloads.

Spam mitigation. The verifier can be used in two ways
(§5.2). First, mail relays such as gmail or the SMTP
server at the user’s ISP can require attestations for outgo-
ing email. In this case, the main benefit comes from fil-
tering out all unattested spam and catching most attested
spam, while allowing all legitimate email. So, the main
metric here is how much attested spam is suppressed.
Second, the inbox at the receiver can boost the “spam
score” for all attested email, thereby improving the prob-
ability that a legitimate email is not misclassified. So, the
main metric here is how much attested human-generated
email is misclassified as spam.

Figure 4 shows the amount of spam, attested or not,
that managed to sneak through spamassassin’s Bayesian
filter for a given spam threshold setting. By setting a
spam threshold of -2 for an incoming message, and ad-
mitting messages that still cleared this threshold and car-
ried valid attestations, we cut down the amount of spam
forwarded by mail relays by more than 92% compared to
the amount of spam forwarded currently.

From our traces, we also found that no attested human-
generated email is misclassified as spam for a spam
threshold setting of 5, as long as the spam score of at-
tested messages is boosted by 3 points. On the other
hand, spamassassin uses a threshold of 5 by default be-
cause, without attestations, a lot of valid email would be
missed if it were to use a spam score of -2. Even so, about
0.08% of human-generated email is still misclassified as
spam, which is a significant improvement of legitimate
email reception.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-3 -2 -1 0 1 2 3 4 5
Spam threshold

M
is
s
e
d
 s
p
a
m
 (
%
)

Figure 4: Missed spam percentage vs. spam threshold
with attestations. By setting spam threshold to -2, spam
cleared by spamassassin and received in inboxes today is
reduced more than 92% even in worst case (ı.e., adaptive
bots), without missing any legitimate email.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Remaining spam traffic in worst case (%)

C
D
F

Figure 5: CDF of percentage of bots’ spam requests ser-
viced by an email server in the worst case. The mail
server’s peak spam processing load is reduced to less
than 7.5% of its current levels.

There is another benefit that the verifier can derive by
using attestations. It comes in the form of reduced peak
load observed while processing spam. Today’s email
servers are taxed by ever-increasing spam requests [26].
At peak times, the mail server can prioritize messages
carrying attestations over those that don’t, and process
the lower-priority messages later.

Figure 5 shows the CDF of the percentage of spam re-
quests that the verifier must still service at a high priority
because of stolen attestations. NAB demotes spam traffic
without attestations by more than 91% in the worst case
(equivalently, less than 7.5% of spam traffic is served at
the high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted spam
traffic is 2.7%, and the standard deviation is 1.3%. Thus,
NAB reduces peak server load by more than 10×.
DDoS mitigation. The verifier uses the DDoS policy
described in §5.2, by giving lower priority to requests

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Remaining DDoS traffic in worst case (%)

C
D

F

Figure 6: CDF of percentage of bots’ DDoS requests
serviced in the worst case. Allowed DDoS traffic is re-
stricted to less than 11% of original levels.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Remaining click-fraud traffic in worst case (%)

C
D

F

Figure 7: CDF of percentage of bots’ click-fraud requests
serviced in the worst case. Serviced click-fraud requests
are restricted to less than 13% of original levels.

without attestations. Figure 6 shows the CDF of the per-
centage of DDoS requests that the verifier still serves at
a high priority because of stolen attestations. NAB de-
motes DDoS traffic by more than 89% in the worst case
(equivalently, only 11% of DDoS traffic is served at the
high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted DDoS
traffic is 5.8%, and the standard deviation is 2.2%.

Click-fraud mitigation The verifier uses the Click-fraud
policy described in §5.2. Figure 7 shows the amount
of click-fraud requests that the verifier satisfies due to
valid attestations. NAB denies more than 87% of all
in the worst case (equivalently, only 13% of all click-
fraud requests is serviced). At the same time, no human-
generated requests are denied service. The mean of the
serviced click-fraud traffic is 7.1%, and the standard de-
viation is 3.1%.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20000 40000 60000 80000 100000

Number of botnet nodes

L
a
te
n
c
y
 i
n
c
re
a
s
e
 f
o
r 
n
o
rm
a
l 

re
q
u
e
s
ts
 (
m
s
)

Figure 8: Request processing latency at the verifier.

6.3 Verifier Throughput

The verifier processes attestations, which are signed RSA
messages, at a rate of more than 1,0000 attestations per
second on a 2 GHz Core 2 processor. It benefits from
the fact that RSA verification is several times faster than
signing. The verifier processes an attestation by consult-
ing the data base of previously seen nonces within an
application-specific period. The longest is email, with
a duration of one month, while nonces of web requests
are stored for 10 minutes, and fit in main memory. Even
in the worst-case scenario of a verifier at an ISP’s busy
SMTP relay, the storage and lookup costs for the nonces
are modest—for a server serving million clients, each
of who send thousand emails per day, the nonce storage
overhead is around 600 GB, which can fit on a single disk
and incur one lookup overhead. This overhead is modest
compared to the processing and storage costs incurred
for reliable email delivery.

Another concern is that the verifier is itself suscepti-
ble to a DDoS attack. In order to understand how well
our verifier can withstand DDoS attacks, we ran exper-
iments on a cluster of 10 Emulab machines configured
as distributed email verifiers. We launched a DDoS from
bots with fake attestations. Each DDoS bot sent 1 req/s
to one of the ten verifiers at random, in order to mimic
the behavior of distributed low-rate bots forming a DDoS
botnet. Our goal was to determine whether a botnet of
100,000 nodes (which is comparable to the median bot-
net size) can overwhelm this verifier infrastructure or
not. Our bot implementation used 100 clients to simulate
1000 bots each, and attack the ten verifier machines. We
assume network bandwidth is not a bottleneck, and that
the bots are targeting the potential verification overhead
bottleneck. A verifier queues incoming requests until it
can attend to it, and has sufficient request buffers.

Figure 8 shows the latency increase (in ms) experi-
enced by a normal client request. Normally, a user takes
about 1 ms to get her attestation verified. With DDoS, we

12



find that even a 100,000-node botnet degrades the perfor-
mance of a normal request only by an additional 1.2 ms
at most. Hence, normal request processing is not affected
significantly. Thus, a cluster of 10 verifiers can withstand
a 100,000-node botnet using fake attestations.

7 Related Work

We classify prior work into four main categories.
Human activity detection. CAPTCHAs [34] are the
currently popular mechanism for proving human pres-
ence to remote verifiers. However, as described in §4,
they suffer from four major drawbacks that render
them less attractive for mitigating botnet attacks. First,
CAPTCHAs are transferable and not bound to the con-
tent they attest, and are hence vulnerable to man-in-the-
middle attacks; second, they are semantically indepen-
dent of the application (i.e., unbound to the user’s intent),
are hence exposed to human solver attacks; third, they
are unbound to identity (and so cannot be blacklisted);
fourth, they are obtrusive, which restricts their use for
fine-grained attestations (by definition, CAPTCHAs re-
quire manual human input), and hence cannot be auto-
mated, unlike NAB. Also, we are witnessing continued
successes in breaking the CAPTCHA implementations
of several sites such as Google, Yahoo, and MSN [13],
leading some to question even their long-term viabil-
ity [38], at least in their current form. By contrast, NAB’s
security relies on cryptographic protocols such as RSA
that have been studied and used longer.

The recent work on the Nexus operating system [37]
has developed support for application properties to be se-
curely expressed using a trusted reference monitor mech-
anism. The Nexus reference monitor is more expressive
than a TPM implementing a hash-based trusted boot. So,
it allows policies restricting outgoing email only from
registered email applications. In contrast, we assume
commodity untrusted OS and applications.

The approach of using hardware to enable human ac-
tivity detection has been described before in the context
of on-line games, using untrusted hardware manageabil-
ity engines (such as Intel’s AMT features) [24].
Mitigating spam, DDoS and click-fraud. There is ex-
tensive literature related to mitigation techniques for
Spam [2], DDoS [22, 39] and click-fraud [30]. There
are still no satisfactory solutions, so application-specific
defenses are continuously proposed. For example, Oc-
cam [11], SPF (Sender Policy Framework), DKIM (Do-
mainKeys Identified Mail) and “bonded sender” [6]
have been put forth recently as enhancements. Simi-
larly, DDoS and click-fraud mitigation have each seen
several radically different attack-specific proposals re-
cently. These proposals include using bandwidths-as-
payments [35], path validation [39], and computational

proofs of work [22] for DDoS; and using syndicators,
premium clicks, and clickable CAPTCHAs for click-
fraud [30].

While all these proposals certainly have several mer-
its, we propose that it is possible to mitigate a vari-
ety of botnet attacks using a uniform mechanism such
as NAB’s attestation-based human activity verification.
Such a uniform attack mitigation mechanism amortizes
its cost of deployment. Moreover, unlike some propos-
als, NAB does not rely on IP-address blacklisting, which
is unlikely to work well because even legitimate requests
from a blacklisted host are denied. Also, NAB can be im-
plemented purely at the end hosts, and does not require
Internet infrastructure modification.

Malware analysis and containment.Malware such as
worms, viruses and bots have been characterized exten-
sively in literature before [14, 16, 29]. For example, bots
are now downloaded automatically when users visit com-
promised web servers or malicious ads, and they send
spam by hijacking IP routing table entries temporar-
ily [23]. This increasingly malicious behavior of bots,
combined with their large size and changing network ad-
dresses, is what makes them hard to contain.

Several techniques for controlling malware propaga-
tion have been proposed. For example, Vigilante [9] is a
system for containing worm propagation automatically.
On the other hand, NAB deals with the complementary
problem of containing attack traffic such as spam and
DDoS floods generated by bots.

Secure execution environments.The TPM specifica-
tions [32] defined by the Trusted Computing Group are
aimed at providing primitives that can be used to pro-
vide security guarantees to commodity OSes. TPM-like
services have been extended to OSes that cannot have
exclusive access to a physical TPM device of their own,
as with legacy and virtual machines. For example, Pio-
neer [25] provides an externally verifiable code execution
environment for legacy devices similar to that provided
by a hardware TPM, and vTPM [5] provides full TPM
services to multiple virtualized OSes. NAB assumes a
single OS and a hardware TPM, but can leverage this re-
search in future.

XOM [17] and Flicker [18] provide trusted execu-
tion support even when physical devices such as DMA
or, with XOM, even main memory are corrupted, while
SpyProxy [20] blocks suspicious web content by exe-
cuting the content in a virtual machine first. In con-
trast, NAB assumes compromised machines’ hardware
is functioning correctly, that the bot may generate di-
verse traffic such as spam and DDoS, and that own-
ers don’t mount hardware attacks against their own ma-
chines, which is realistic for botted machines.

13



8 Conclusions

This paper presented NAB, a system for mitigating net-
work attacks by using automatically obtained evidence of
human activity. NAB uses a simple mechanism centered
around TPM-backed attestations of keyboard and mouse
clicks. Such attestations are responder- and content-
specific, and certify human activity even in the absence
of globally unique identities. Application-specific veri-
fiers use these attestations to implement various poli-
cies. Our implementation shows that it is feasible to
provide such attestations at low TCB size and runtime
cost. By evaluating NAB using trace analysis, we esti-
mate that NAB can reduce the amount of spam evading
tuned spam filters by more than 92% even with worst-
case adversarial bots, while ensuring that no legitimate
email is misclassified as spam. We realize similar bene-
fits for DDoS and click-fraud. Our results suggest that the
application-independent abstraction provided by NAB
enables a range of verifier policies for applications that
would like to separate human-generated requests from
bot traffic.

References

[1] 2005 TREC public spam corpus,http://plg.uwaterloo.ca/
∼gvcormac/treccorpus/.

[2] A plan for spam,http://www.paulgraham.com/spam.html.
[3] P. Barham, B. Dragovic et al. Xen and the art of virtualization. In

SOSP’03.
[4] M. Bellare and P. Rogaway. Entity authentication and keydistri-

bution. InCRYPTO’93.
[5] S. Berger, R. Ćaceres et al. vTPM: Virtualizing the Trusted Plat-

form Module. InUSENIX-SS’06: Proceedings of the 15th con-
ference on USENIX Security Symposium.

[6] Bonded sender program,http://www.bondedsender.com.
[7] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attes-

tation. InCCS’04.
[8] Click fraud rate rises to 14.1%,http://redmondmag.com/

columns/print.asp?EditorialsID=1456.
[9] M. Costa, J. Crowcroft et al. Vigilante: End-to-end containment

of internet worms. InSOSP’05.
[10] Five percent of Web traffic caused by DDoS at-

tacks, http://www.builderau.com.au/news/soa/
Five-percent-of-Web-traffic-caused-by-DDoS-attacks/
0,339028227,339287902,00.htm.

[11] C. Fleizach, G. Voelker, and S. Savage. Slicing spam with oc-
cam’s razor. InCEAS’07.

[12] F. Giroire, J. Chandrashekar et al. The Cubicle Vs. The Coffee
Shop: Behavioral Modes in Enterprise End-Users. InPAM’08.

[13] Gmail CAPTCHA cracked,http://securitylabs.websense.
com/content/Blogs/2919.aspx.

[14] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Mea-
surements and mitigation of peer-to-peer-based botnets: A case
study on Storm worm. InLeet’08.

[15] C. Kanich, C. Kreibich et al. Spamalytics: An empirical analysis
of spam marketing conversion. InCCS’08.

[16] Know your enemy: Statistics,http://www.honeynet.org/
papers/stats/.

[17] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an un-
trusted operating system on trusted hardware. InSOSP’03.

[18] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB mini-
mization. InEuroSys’08.

[19] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Sav-
age. Inferring Internet denial-of-service activity.ACM Trans.
Comput. Syst., 24(2), 2006.

[20] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H.M.
Levy. SpyProxy: Execution-based detection of malicious web
content. InUSENIX’07.

[21] D. G. Murray, G. Milos, and S. Hand. Improving xen security
through disaggregation. InVEE’08.

[22] B. Parno, D. Wendlandt et al. Portcullis: Protecting connection
setup from denial-of-capability attacks. InSIGCOMM’07.

[23] A. Ramachandran and N. Feamster. Understanding the network-
level behavior of spammers. InSIGCOMM’06.

[24] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at thecontrols?:
Detecting input data attacks. InSIGCOMM workshop on Network
and system support for games, 2007.

[25] A. Seshadri, M. Luk et al. Pioneer: verifying code integrity
and enforcing untampered code execution on legacy systems. In
SOSP’05.

[26] Six botnets churning out 85% of all spam,
http://arstechnica.com/news.ars/post/
20080305-six-botnets-churning-out-85-percent-of-all-spam.
html.

[27] Spam reaches all-time high of 95% of all email,http://www.
net-security.org/secworld.php?id=5545.

[28] Spammers using porn to break CAPTCHAs,http://www.
schneier.com/blog/archives/2007/11/spammers using.
html.

[29] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet
in your spare time. InUsenix Security’02.

[30] The first AdFraud workshop,http://crypto.stanford.edu/
adfraud/.

[31] Traces in the Internet Traffic Archive,http://ita.ee.lbl.
gov/html/traces.html.

[32] Trusted Platform Module (TPM) specifications,https://www.
trustedcomputinggroup.org/specs/TPM/.

[33] Vista’s UAC security prompt was designed to an-
noy you, http://arstechnica.com/news.ars/post/
20080411-vistas-uac-security-prompt-was-designed-to-annoy-you.
html.

[34] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using Hard AI Problems for Security. InEurocrypt’03.

[35] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker. DDoS Defense by Offense. InSIGCOMM’06.

[36] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usabil-
ity evaluation of PGP 5.0. InUSENIX Security’99.

[37] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schnei-
der. Device driver safety through a reference validation mecha-
nism. InOSDI’08.

[38] Windows Live Hotmail CAPTCHA cracked, ex-
ploited, http://arstechnica.com/news.ars/post/
20080415-gone-in-60-seconds-spambot-cracks-livehotmail-captcha.
html.

[39] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. InSIGCOMM’05.

14


	1 Introduction
	2 Threat Model and Goal
	3 NAB Architecture
	3.1 Requirements and Constraints
	3.2 Architecture

	4 Attester Design and Implementation
	4.1 When To Grant An Attestation
	4.2 What To Attest
	4.3 Attester API
	4.4 Attester Implementation

	5 Verifier Design and Implementation
	5.1 Verifier Design
	5.2 Application-specific Policies
	5.3 Security guarantees

	6 Evaluation
	6.1 Attester Evaluation
	6.2 Verifier Evaluation
	6.3 Verifier Throughput

	7 Related Work
	8 Conclusions

