
Reconciling Performance and Programmability in
Networking Systems∗

Jayaram Mudigonda
†

Harrick M. Vin Stephen W. Keckler

Department of Computer Sciences, The University of Texas, Austin TX 78712 USA.
{jram|vin|skeckler}@cs.utexas.edu

ABSTRACT
Challenges in addressing the memory bottleneck have made
it difficult to design a packet processing platform that si-
multaneously achieves both ease-of-programming and high
performance. Today’s commercial processors support two
architectural mechanisms–namely, hardware multithreading
and caching–to overcome the memory bottleneck. The con-
figurations of these mechanisms (e.g., cache capacity, num-
ber of threads per processor core) are fixed at processor-
design time. The relative effectiveness of these mechanisms,
however, varies significantly with application, traffic, and
system characteristics. Thus, programmers often struggle
to achieve high performance from a processor that is not
well-suited to a particular deployment.

To address this challenge, we first make a case for, and
then develop a malleable processor architecture that facil-
itates the dynamic reconfiguration of cache capacity and
number of threads to best-suit the needs of each deploy-
ment. We then present an algorithm that can determine the
optimal thread-cache balance at run-time. The combination
of these two allows us to simultaneously achieve the goals
of ease-of-programming and high performance. We demon-
strate that our processor outperforms a processor similar
to Intel’s IXP2800–a state-of-the-art commercial Network
Processor–in about 89% of the deployments we consider.
Further, in about 30% of the deployments our platform im-
proves the throughput by as much as 300%.

Categories and Subject Descriptors: C.1.3 [Processor
Architectures]: Other Architecture Styles—Adaptable ar-
chitectures; C.2.6 [Computer-Communication Networks]:
Internetworking—Routers; C.4 [Performance of Systems]:
Design studies

General Terms: Design, Experimentation, Performance.

∗This research was funded in part by the Intel Corporation
and NSF ITR grant: ANI-0326001. Jayaram Mudigonda
was also supported by the Intel Foundation Fellowship.
†Currently at The Hewlett-Packard Labs, Palo Alto CA
USA. Email:jayaram.mudigonda@hp.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

Keywords: Memory bottleneck, Processor architectures,
Reconfigurable architectures, Data cache, Multithreading,
Packet processing, Routers.

1. INTRODUCTION
Designing the next-generation network infrastructure poses

a significant challenge: develop a packet processing plat-
form that simultaneously achieves the two goals: ease-of-
programming and high performance. This platform facili-
tates: (1) rapid development and deployment of novel (and
potentially disruptive) network architectures, services, and
protocols; and (2) experimentation on realistic scales. Not
surprisingly, such a platform forms the basic building block
for the next-generation commercial routers [15], as well as
research testbeds [2].

A key challenge in achieving these twin-goals of ease-of-
programming and high performance is the memory bottle-
neck. This bottleneck—caused by the ever-widening gap
in performance between processors and memory—has been
a major source of concern for all of computing. Unfortu-
nately, this problem is further aggravated in networking sys-
tems for two reasons. First, over the past decade, the link
bandwidths, and hence the rate of packet arrivals at a net-
work system, have increased significantly. Second, packet
processing applications are becoming increasingly sophisti-
cated; for each packet, they make hundreds of accesses to
large data structures that often cannot be fit in the on-chip
memories. In most modern packet processing applications
(e.g., network monitoring, intrusion detection, virus scan-
ning, and protocol conversion), the time to process a packet
is dominated by memory access overhead. Thus, the prob-
lem of achieving high packet throughput often reduces to the
problem of dealing with the memory bottleneck effectively.

Existing research on addressing the memory bottleneck in
networking systems can be broadly classified into three cat-
egories: (1) algorithms that reduce the number of memory
accesses by exploiting specific characteristics of the traffic or
control data (see [35] for examples of optimized route lookup
schemes); (2) techniques for efficiently utilizing the exiting
general-purpose hardware (e.g., exploiting the DRAM row-
locality for fast packet buffers as proposed in [19]); and (3)
special-purpose dedicated hardware mechanisms for specific
applications (e.g., the route and classification caches pro-
posed in [12] and [38]). Unlike all these proposals, in this
paper, we consider widely-applicable processor-based mech-
anisms for dealing with the memory bottleneck. We believe
that, with the processor architectures undergoing a radical
design shift (from complex single core to multiple simpler

cores), now is an opportune time for the networking com-
munity to put across its wishes to processor architects.

Today’s processors include two primary mechanisms to
address the memory bottleneck: multithreading and data
caching. These mechanisms have complementary strengths.
Whereas multithreading exploits the inherent packet-level
parallelism to hide memory access latencies (reduce proces-
sor stalls resulting from memory accesses), caches exploit
data locality to reduce the memory access overhead [25].

The relative effectiveness of these two mechanisms is in-
fluenced by several factors. For instance, applications that
update shared state for each packet serialize the execution
of packets; hence, such applications favor processors with
larger data caches but with smaller number of cores and
threads. Similarly, systems with limited off-chip bandwidth
also prefer larger caches. In contrast, systems with large
off-chip memory bandwidth but long latencies, as well as
those that are engineered for the worst-case traffic favor
multithreading (since caches do not improve the worst-case).
Consequently, the ideal combination of caching and thread-
ing required to maximize packet throughput varies signifi-
cantly across deployments (defined as combinations of appli-
cation, traffic, and system characteristics).

Current processors, however, provide only fixed configu-
rations of cache capacity and number of threads, as the chip
area, a common resource required by both caching and mul-
tithreading, must be statically allocated at chip-design time.
Hence, programmers are often left with the task of achieving
high performance on a processor that is not well-suited to
the deployment characteristics. For instance, on processors
with inadequate support for multithreading, programmers
are required to develop efficient application-specific tech-
niques to exploit parallelism, as the overhead of generic soft-
ware threads can be prohibitively expensive. On the other
hand, on processors with small or no caches, programmers
often have to resort to tricky optimizations to reduce the
number of memory accesses. For instance, careful orches-
tration of thread scheduling is required to prevent multi-
ple threads from fetching the same address repeatedly [21].
Thus, platforms based on today’s processors, achieve high
performance often at the expense of ease-of-programming.

In this paper, we ask two fundamental questions. In order
to reconcile performance and programmability in a wide-
variety of deployments: (1) what architectural mechanisms
should a processor support? and (2) how should one exer-
cise these mechanisms? We make the following four contri-
butions.

1. Case for Malleability: In Section 3, we make a case for
a malleable processor core that allows the run-time tradeoff
between cache capacity and number of threads. We ob-
serve that, it is plausible to build such a processor because
both caching and multithreading need the same abstract
resource, namely fast memory close to the processor core;
while caching uses it to hold data expected to be accessed
soon, multithreading uses it hold thread-specific registers.
We compare this malleable processor to a processor similar
to Intel’s IXP2800 because, IXP2800 is a state-of-the-art
commercial multicore multithreaded processor designed for
networking workloads. We show that, the malleable pro-
cessor outperforms the IXP2800-like processor in as many
as 89% of the deployments. Further, in 30% of the deploy-
ments, the malleable processor achieves a throughput gain

of 300% when compared to the IXP2800-like processor, and
60% when compared to the optimal fixed architecture that
maximizes the packet throughput across all deployments.

2. Realizing the Malleability: In Section 4, we ad-
dress the challenge of realizing such a malleable processor.
We base our architecture on the novel concept of a mal-
leable storage block that can be dynamically partitioned to
hold registers as well as cached data. Our malleable stor-
age design consists of a small multiported register cache
(MRC) and a primary data cache; the data cache holds
thread-specific registers in pinned lines as well as normal
cached data. With this architecture, configuring different
amounts of threading and caching simply involves changing
the amount of data cache reserved for pinning thread-specific
registers. We design a novel register access predictor to effi-
ciently bridge the bandwidth and latency gap between MRC
and data cache.

3. Exercising the Malleability: In Section 5, we con-
sider the problem of automatically exercising the malleable
processor core. We develop a low-overhead run-time adap-
tation algorithm that automatically finds and maintains the
optimal thread-cache balance. We exploit the key intuition
that processor utilization (and hence the packet throughput)
first increases and then decreases with the increase in num-
ber of simultaneous threads. The packet processing platform
created by combining this scheme with our malleable pro-
cessor, requires only thread-safe code and programmers are
freed, to a great extent, from the tedious and mostly ad hoc
performance tuning exercise.

4. Experimental Evaluation: Finally, in Section 6 we
demonstrate that our platform, besides simplifying the pro-
grammability, also achieves high performance by showing
that it performs within 8% of an ideal malleable processor,
which suffers none of the practical reconfiguration overheads
that are incurred by our processor.

The rest of the paper is organized as follows. Section 2,
describes our experimental methodology. We provide a de-
tailed presentation of our four contributions in Sections 3
to 6. We then discuss our findings in Section 7, and the re-
lated work in Section 8. Finally, we present our conclusions
and opportunities for further work in Section 9.

2. EXPERIMENTAL METHODOLOGY
In this section, we first describe the set of deployments we

consider. Informally, we define a deployment as the tuple
<application, packet trace, off-chip memory latency,
memory BW>. We then present the details of the processor
core simulator. Finally, we explain the area model and tools
we use to estimate the area requirements of various archi-
tectural structures.

2.1 Deployment Scenarios
Packet Processing Applications: Functions of a packet
processing system can be broadly classified into: (1) data-
plane that processes the regular packets and (2) control-
plane that involves management tasks such as keeping the
route table updated. In this paper, we focus on data-plane
applications because, in most systems they process the vast
majority of packets and consume most of the processing re-
sources. Table 1 shows the applications we consider; these
applications cover each of the following data-plane functions:

(1) verify the integrity of incoming packets; (2) classify them
into flows; (3) process the packets, and (4) schedule the
outgoing packets. Our application set includes most of the
two popular benchmark-suites for packet processing [23, 36],
as well as the full data-plane functionality specified in the
NP forum [5] benchmarking guidelines. Networking systems
composed from these applications often include some addi-
tional code for purposes such as passing the packet descrip-
tors from one application to another and managing the list
of free buffers. We do not include this code in our simula-
tions because, it can be reasonably assumed that, in most
cases such glue code requires only a small fraction of addi-
tional processing and memory accesses, and hence does not
change any of the qualitative conclusions of this research.

Packet Traces and Control Data: We experiment with
packet traces collected at a spectrum of locations along the
Internet hierarchy: ANL, FRG, MRA (from NLANR [26]),
and UNC (from the University of North Carolina). While
ANL trace (access link between Argonne National Lab and
its ISP) represents the traffic at the network edge, MRA
(link between two large networks: Merit and Abilene) rep-
resents the traffic at the network core. UNC, FRG (Front
Range Giga PoP) represent intermediate locations, with UNC
being closer to the edge. Each of these traces contain be-
tween 0.5 and 5.0 million packets and our experiments reach
steady state after about 75,000 packets. The qualitative con-
clusions remain same across all these traces. Since the ANL
and MRA traces often lie at the extremes in their require-
ments for caching and multithreading, we only present the
results for these two traces.

For the route lookup applications, we construct the route
table using the data published by the RouteViews project [8].
However, IP addresses found in most traces do not match
any of these real prefixes since all publicly available traces
are anonymized to preserve privacy. We de-anonymize them
by substituting every occurrence of an IP address with an-
other randomly selected address for which the route table
contains a prefix. This process, not only preserves traffic
patterns but also conforms to the traffic generation guide-
lines recommended by the Network Processor Forum [5].

For the vscan application, which scans the packet pay-
load for virus signatures, we use the signature database
published by Snort [7]. Unfortunately, publicly available
traces (that are long enough for our experiments) do not in-
clude packet payload. For our experiments, we consider two
scenarios: (1) random payload; and (2) payload containing
popular web pages. By doing so, we characterize the com-
mon case where the packet contents match a virus signature
only rarely.

System Model and Parameters: We consider a single-
chip, homogeneous multicore processor where the individ-
ual cores are multithreaded. We assume coarse-grain multi-
threading that switches threads on an off-chip memory ac-
cess; coarse-grain threading has been shown to achieve most
of the performance benefits of much more complex fine-grain
simultaneous multithreading (SMT) processors [13]. Each
core contains a local data cache that is shared by all of its
threads; the cores share a single off-chip memory level. We
use the two important parameters to characterize the off-
chip memory: (1) the access latency and (2) the available
bandwidth

To study realistic deployment scenarios, we consider mul-

tiple values of latency and bandwidth—the choice is guided
by the values of these parameters supported in modern net-
work processors. For instance, the Intel IXP2800 Network
Processor supports multiple levels of memory with access
latencies of 60, 150, and 300 cycles [21]. Further, it sup-
ports a cumulative SRAM bandwidth of 0.64 references per
CPU cycle. Hence, for our experiments, we consider several
different latency values (50, 100, 200, 300, 400, and 500 cy-
cles); and memory access bandwidths (ranging from 0.04 to
2.56 refs/cycle).

2.2 Simulation Tools
A complete survey of the space of deployment scenarios

requires us to quantify the effectiveness of a large number
(100s) of processor core configurations over an even larger
number (1000s) of deployments. Each of these simulations
must process millions of packets and requires more than a
day to finish on today’s PCs. Hence, full execution based
simulation in all cases quickly becomes infeasible. To make
this study possible without significantly sacrificing the ac-
curacy, we split the simulation into two phases. First, we
adapt the Simplescalar [6] instruction emulator to record
an execution trace for a given application and packet trace.
Then, we reuse this execution trace to drive a multithreaded
processor core simulator configured for different number of
threads and amount of cache.

Trace Generation: We use the sim-safe simulator from
the Simplescalar toolkit, which simulates a simple RISC in-
struction set. We enhanced sim-safe to generate an execu-
tion trace that is partitioned into blocks, where each block
represents the processing of a packet. Each block consists
of (1) the arrival time of the packet, taken from the packet
trace, and (2) the sequence of all the ALU instructions, mu-
tex operations, and memory accesses performed. In this
trace, we do not record accesses to globals and call stack
because, for all the applications we consider, these data are
small enough (around 100 bytes) to fit into registers and fast
on-chip memories [21].

Trace Execution on a Multithreaded Core: Our mul-
tithreaded core simulator models a very simple in order five-
stage pipeline with a full bypass network. The basic param-
eters, and the range of values they are set to, are shown in
Figure 1(a). This simulator processes the execution trace
and emulates the behavior of multiple threads interleaved
over a single pipeline. The packet arrival time stored in
each of the execution trace blocks is used to match the ar-
rival time of packets from the network line interface. Sim-
ulator tracks time at the granularity of a clock cycle. We
model all the major sources of wasted processor cycles such
as the lock contention, queueing within the memory sub-
system, and the thread switch overhead. Thread switches
occur when the current thread makes a memory access or
is blocked on a mutex, and incur a minimum latency of 2
cycles [21]. Our simulator collects a wide-variety of statis-
tics such as various types of misses, distribution of thread
run-lengths, and memory queue lengths.

We validated our simulator by comparing the processor
and cache performance it reports to those of Simplescalar’s
sim-out-order configured with similar parameters . In ad-
dition, we spot-checked the memory queueing times reported
by our simulator by comparing them to those of a cycle ac-
curate simulator of IXP2800 [3].

Functionality Application Source Notes
Integrity checksum Free BSD Protects headers in TCP, UDP and IP packets (RFC-1071) [4]
verification md5 R.S.A Inc. MessageDigest 5 (MD5). Mostly used to protect the payload (RFC-1321) [4]
Classification classify UT-Austin Hashes the five-tuple: 〈srcIP,dstIP,srcPort,dstPort,protocol〉 [18].
Route Lookup patricia Free BSD Patricia tree. Can handle non-contiguous masks. Used in many end-systems [31].
(Longest bitmap UT-Austin Employs bitmaps to compress trie nodes. Used in many commercial routers [16].
prefix bsol UT-Austin Binary search using hash tables. Has the best known avg. comp. complexity [35].
match) ixp IXA SDK 3.0 Designed for IXP series of NPs. Two tries are searched simultaneously [3].
Metering srtcm IXA SDK 3.0 Enforces a single mean rate and a peak burst. (RFC-2697) [4].
(Prioritize trtcm IXA SDK 3.0 Enforces two independent rates: mean and peak. (RFC-2698) [4].
packets) tswtcm UT-Austin Enforces mean and peak rates over sliding windows. (RFC-2859) [4].
Header stream Snort 2.0 TCP receive-side processing. Reassembles byte streams out of packets [7].
processing portscan Snort 2.0 Detects portscan attack if too many ports are accessed too quickly [7].
Payload cast SSLeay Lib Encryption scheme. Used in Virtual Private Networks (VPNs) (RFC-2612) [4]
processing vscan Snort 2.0 Pattern matcher. Scans packet payload for virus signatures [7, 37].
Scheduler drr UT-Austin Deficit Round Robin. Found in many commercial routers [35].

Table 1: Applications (UT-Austin = We developed)

2.3 Chip Area Estimation
For the purpose of estimating chip area, we model a sin-

gle multithreaded core as consisting of a thread-specific, a
thread-independent, and a data cache region. The thread-
specific region includes all the architectural components that
must be scaled with number of threads, such as register files,
status words, and program counter. We assume that the
size of the thread-specific region grows linearly with num-
ber of threads supported by the processor core. The thread-
independent region includes such components as one or more
functional units, pipeline logic, and instruction fetch and de-
code units. The data cache region contains the data cache.

We derive the area estimates for the thread-specific, and
the thread-independent regions based on the IXP2800 de-
sign (see Figure 1). IXP2800 uses 0.13 micron technol-
ogy; it consists of 16 processing cores (referred to as mi-
croengines) and an XScale core; we do not consider the Xs-
cale core in our area calculations because it is used only for
the less-frequent control-plane tasks. The 16 microengines
occupy approximately 29% of the 14.12 × 18.88 mm2 die,
for a total of 4.83mm2 per microengine. 27% (1.3 mm2) of
the area of each microengine constitutes the thread-specific
region. Since each microengine supports 8 threads, each
thread occupies 0.163mm2. We refer to this area as one
thread-equivalent (th-eq for short) and use it as a unit of
allocation for our analysis. Note that for IXP2800, the
thread-independent area of each microengine is about 21
thread-equivalents, while the total area occupied by the 16
microengines is approximately 475 thread-equivalents.

We estimate data cache size using Cacti-3.2 [1] with a 0.13
micron fabrication process. With these parameters, a sin-
gle thread-equivalent chip area can accommodate about 128
2-way associative 128-bit lines. Once more than 8 thread-
equivalent chip area is allocated to data cache, every addi-
tional thread-equivalent chip area results in the addition of
about 256 cache lines.

Finally, because packet processing workloads are inher-
ently concurrent, and we assume the processors and their
workloads are homogeneous, we estimate that the chip area
and the memory bandwidth requirements grow linearly with
number of processors. This assumption is fair because, packet
processing systems take care to balance the load across all
the processor cores. Hence, we simulate only one processor
core and extrapolate to the performance of multiple cores.

3. CASE FOR MALLEABILITY
In this section, we first show that the optimal combination

of multithreading and caching that maximizes the packet
throughput varies significantly with application, packet traf-
fic, and memory subsystem characteristics. We then demon-
strate that a malleable architecture that can adapt to these
variations can achieve impressive throughput improvements
compared to the current fixed architectures.

3.1 Influence of Deployment Characteristics
We consider a single processor core with 16 th-eqs of chip

area available to be split between threads and cache. For all
the experiments in this subsection, we fix the context switch
overhead to 2 cycles and the off-chip memory bandwidth to
0.64 references/cycle, and unless otherwise noted, off-chip
memory access time to 150 cycles. These choices are guided
by the characteristics of typical IXP2800-based systems [21].

Application Characteristics: Figure 2(a) depicts, for
each application driven with the ANL trace, the optimal
balance between number of threads and cache capacity that
maximizes the packet throughput sustained by the proces-
sor core. Within each bar, the darker and the lighter re-
gions, respectively, represent the number of th-eqs assigned
to threads and data cache. It can be seen that the balance
varies over almost the entire range.

On the one extreme, applications : cast, checksum, and
md5, use up most of the space (≥ 15) for threads. This
is because these applications scan the payload and thus do
not benefit from cache. On the other extreme lie applica-
tions drr, stream, and portscan. In these applications, a
significant fraction of the per-packet processing is not par-
allelizable due to read-write data that must be accessed in
mutual exclusion. Hence, these applications do not benefit
from large number of threads and much of the available chip
area (12 of the 16 th-eqs) is allocated to the data cache.

Many other applications–ixp, patricia, bitmap, trtcm,
srtcm, tswtcm, and classify–fall in the middle. These
applications exhibit considerable locality for data accesses
and are also amenable to parallelization. Hence, the avail-
able chip area is split somewhat evenly between threads and
cache (with about 5-8 th-eqs allocated for threads). Thus,
we conclude that the applications differ from each other
widely in terms of the characteristics that influence the bal-
ance between multithreading and caching.

Pipeline 5-stage in order
Num. threads Configurable (1 to 64)

Regs per thread 64
Switch latency 2 cycles

L1 cache latency Configurable (1 to 4 Cycles)
L1 cache associativity 2,4-way

L1 cache line-width 16 bytes
L1 cache capacity Configurable (0.25 KB to 64 KB)
Memory Latency Configurable (50 to 500 cycles)

Memory BW Configurable (0.04 to 2.54 refs/cycle)
Memory Bus-width Configurable (32 bits)

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

XScale Core

Microengines
1 2

3

1 2

3 4

Hash

Scratchpad

IX
 B

us

DRAM Controllers

SRAM Controllers

SHaC Unit

Thread
State

1

Thread
State

2

Thread
State

3

Thread
State

4
Thread
State

5

Thread
State

6

Thread
State

7

Thread
State

8

Instruction
Store

Local
Memory

Execution Pipeline CRC
Unit

Figure 1: Simulation Parameters and the Intel IXP2800 Processor

0
2

4
6

8
10

12
14

16
18

bitmap

cast
chksum

classify

drr
ixp

md5
partricia

portsscan

srtcm
stream

trtcm
tswtcm

vscan

Applications

C
hi

p
A

re
a

(T
h-

E
qs

)

Threads Cache

0

2

4

6

8

10

12

14

16

18

50 100
200

300
50 100

200
300

C
hi

p
A

re
a

(T
h-

E
qs

)

Threads Cache

Memory Latency (cycles)

Trace: ANL Trace: MRA

(a) Application Characteristics (b) Traffic and Memory Subsystem Characteristics

Figure 2: Effect of Deployment Characteristics on the Thread-cache Balance

Memory Subsystem Characteristics: Figure 2(b) shows,
for the application classify, the change in balance between
threading and caching with increasing memory access la-
tency for both the ANL and MRA traces. It illustrates that,
for both these traces, the balance shifts from a cache-heavy
configuration (e.g., with 4 threads and 12 thread-equivalents
allocated to cache) at 50 cycle latency to a thread-heavy
configuration (e.g., with 12 threads and 4 th-eqs allocated
to cache) at 300 cycle memory latency. Restricting the off-
chip memory bandwidth influences the balance similarly; for
brevity, we omit these results.

Packet Traffic Characteristics: Figure 2(b) shows that
the optimal thread-cache balance for classify application,
when driven with MRA trace, shifts towards multithreading.
This shift happens because of two reasons. First, the data
locality exhibited by classify depends upon how packets
from different flows (as identified by different fields in packet
header) are interleaved. For instance, the frequency of re-
occurrences of the packets belonging to the same flow de-
termines how often a hash bucket is accessed. Second, com-
pared to ANL, MRA trace is collected from a link closer to
the network core and hence, contains traffic aggregated from
a larger number of sources. Thus, in MRA trace, packets of
a given flow are separated by a larger number of unrelated
packets (of other flows). This results in larger working sets
and diminished effectiveness of data caches.

For most of the remaining applications – ixp, patricia,
bitmap, trtcm, srtcm, and tswtcm – balance changes sub-
stantially from ANL to MRA. Further, all these applica-
tions favor a larger number of threads with traces closer to
the network core (i.e., traces containing larger number of

flows) [24]. On the other hand, the thread-cache balance
does not change for payload processing applications such as
cast, md5, and vscan, because data accesses in these appli-
cations are not determined by the header field values, and
hence are not influenced by trace characteristics [24].

3.2 Benefits of Malleability
We now demonstrate that an architecture that can adapt

to the wide variations in thread-cache balance required by a
spectrum of deployments can achieve significant throughput
gains. We consider a malleable architecture consisting of
a fixed number of cores, but allows, within each core, the
cache capacity to be traded off for the number of threads to
best-suit the deployment requirements. We observe that, it
is plausible to build such a processor because both caching
and multithreading need the same abstract resource, namely
fast memory close to the processor core; while caching uses
it to hold data expected to be accessed soon, multithreading
uses it hold thread-specific registers.

We call a malleable architecture ideal if it can match, in
all possible configurations (i.e., all combinations of threads-
per-core and cache-per-core), the performance of the fixed
architecture with the exact same configuration. That is, the
ideal malleable architecture does not sacrifice performance
to implement the thread-cache tradeoff.

We compare the throughput supported by such an ideal
malleable processor with that of two fixed architectures with
the same chip area: (1) Intel’s IXP2800 (with 16 cores, 8
threads per core, no data cache), and (2) an optimal fixed
configuration (6 cores, 7 threads and 45 th-eqs of data cache
per core). We consider the ideal malleable processor with the
optimal configuration of 9 cores and 26 thread-equivalents

1.00 0.88

0.49 0.47 0.44 0.43 0.42 0.42 0.41 0.39 0.39

0.26

0

0.2

0.4

0.6

0.8

1

0.5-0.9x

0.9-1.1x

1.2x
1.3x

1.4x
1.5x

1.6x
1.7x

1.8x
1.9x

2.0-3.9x

>=4.0x
Relative Throughput

Fr
ac

tio
n

of
 D

ep
lo

ym
en

ts

More than 25% of
deployments see four-

fold improvement in
throughput

1.00 0.96

0.50
0.43

0.38 0.37 0.36

0.22

0.06 0.04 0.04 0.00
0

0.2

0.4

0.6

0.8

1

0.5-0.9x

0.9-1.1x

1.2x
1.3x

1.4x
1.5x

1.6x
1.7x

1.8x
1.9x

2.0-3.9x

>=4.0x
Relative Throughput

Fr
ac

tio
n

of
 D

ep
lo

ym
en

ts

More than 1/3rd of
deployments see at least

60% improvement in packet
throughput

(a) Compared to the IXP2800 (b) Compared to the Optimal-fixed

Figure 3: Throughput Improvements with Malleability

of space per core that can be configured to support any
desired combination of threads-per-core and cache-per-core.
In [24], we show that these optimal fixed and optimal mal-
leable configurations maximize the packet throughput across
all deployments for a given chip area of IXP2800.

Figures 3(a) and (b), respectively, show, over all deploy-
ments (described in Section 2.1), the throughput improve-
ments the ideal malleable processor can achieve as compared
to the IXP2800 and the optimal fixed architecture. The
bars in each figure show the fraction of the deployments in
which the ideal malleable processor achieves a given per-
formance improvement. The curve above the bars shows,
for a given performance improvement of x, the percentage
of the deployments where the malleable processor achieves
an improvement of at least x. The figures show that when
compared to IXP2800, the malleable processor improves the
throughput by at least 100% in 38% of the deployments,
and by at least 300% in as many as 25% of the deployments.
Even when compared to the optimal fixed configuration, the
malleable processor improves performance by at least 60%
in 35% of the deployments, and by at least 70% in about
25% of the deployments. In a small fraction of deployments
(4% and 12% when compared to the optimal-fixed and the
IXP2800 respectively), however, malleability leads to loss in
throughput. This is because, the optimal malleable config-
uration includes fewer (9) cores compared to the IXP2800
(with 16 cores), and a smaller cache (26 thread-equivalents)
compared to the optimal-fixed (with 45 thread-equivalents
of cache). Thus, the malleable processor suffers in deploy-
ments at the extremes of parallelism-locality tradeoff, which
can benefit from the extra cores and cache capacity available
in the IXP2800 and the optimal-fixed respectively.

4. REALIZING MALLEABILITY
The main requirement in realizing such a malleable pro-

cessor is a block of malleable memory that can hold two
fundamentally different types of data: thread-specific regis-
ters that need fast accesses at large bandwidths, and regular
cached data that need large capacity (see table 2). How-
ever, a single storage structure cannot simultaneously meet
all these requirements as the limitations of circuit-level de-
signs force a sacrifice of one of latency, bandwidth, and ca-
pacity for the remaining two. Hence, any realization of a
malleable memory must consist of two levels: a small, fast,
high-bandwidth memory and a large, slower, low-bandwidth
memory. Thus, the challenge of building a malleable mem-

Registers Data-$ Malleable Store
Latency Low Moderate Low
(cycles) (1) (2-8) (1)

BW High Low High
(refs/cycle) (3̃) (0.25-0.33) (up to 3)
Capacity Small Large Large

per thread (0.25 KB) (few KBs) (few KBs)
Addressing Index Associative Associative

Table 2: Malleable Storage: Required Features

ory is to make the fast memory appear to have the capacity
of the slower memory. We observe that this in principle,
is the same problem addressed in the traditional memory
hierarchy. Hence, in this section, we first consider two tra-
ditional solutions for managing memory hierarchies, namely
caching and double-buffering, and show that they are not
effective in achieving malleability. We then derive the prin-
ciple of predictive register prefetching and show that it can
be easily implemented with little overheads.

The high-level architecture of our malleable processor core
is shown in Figure 5. As explained above, it consists of a two
storage structures. The multiported register cache (MRC)
provides the high-bandwidth low-latency register accesses to
the pipeline, and the data cache acts as a backing store for
the MRC and hence holds, along with the regular cached
data, thread-specific registers in pinned lines. We refer to
the set of data cache lines that holds registers as context-
partition and the remaining lines as data-partition. In this
architecture, the effective capacity of the malleable memory
is determined by the data cache capacity because, the MRC
only holds copies of some of the data cache contents,namely
subset of registers for a few threads. Thus, to support the
full range of thread-cache tradeoff, we must treat the chip
area devoted to the MRC as an overhead and minimize it.

4.1 Register Caching and Double-buffering
We now show that two well-known solutions to managing

memory levels, namely LRU caching and double-buffering
require very large MRCs to be effective. The MRC imple-
mentations for these techniques are shown in Figure 4. With
register caching, when the register needed is missed in the
MRC, the pipeline stalls until the register is fetched from
the context-partition of the data cache. To minimize these
stalls register caching must provision enough capacity in the
MRC. On the other hand, register double-buffering elimi-
nates these stalls by using two register files: an execution-

ThrdID.RegID
Key

Register
Value

Associative Memory

LRU

Pinned Regs in D-$

Pipeline

Register
Caching

Register
Double-bufferingTh

re
ad

S

w
itc

h
C

on
tro

lle
r

s-file

64 Registers

e-file

Pipeline

Pinned Regs in D-$

64 Registers

Figure 4: Candidate MRC Architectures

file (e-file) and a swap-file (s-file). While the e-file is serving
the register accesses of the current running thread, s-file is
filled with the registers for the next thread to run. When
the current thread makes an off-chip memory access, a con-
text switch happens and the e-file and s-file are swapped.
If needed, the swap is delayed, and the pipeline is stalled,
until all the registers (of the next thread) are fetched into
the s-file. Thus, to ensure a good performance of double-
buffering, adequate bandwidth must be provisioned between
the MRC and the data cache.

For these two techniques, we evaluate the chip area re-
quirements of the MRC, considering a processor core with 26
thread-equivalents of available area (for the MRC, and data
cache) [24]. To perform within 10% of the ideal malleable
processor (defined and studied in Section 3), register caching
requires at least 1264 lines of fully-associative cache. Using
Cacti we determined that, to support such a cache, the MRC
requires 12 thread-equivalents (out of the 26 available). This
large cache size can be explained by three factors: (1) the
very high hit rates required because of the expensive misses
(pipeline stalls), (2) poor locality in register accesses [11],
and (3) the linear growth in working set size with number
of threads. On the other hand, double-buffering requires
the MRC to support a bandwidth of 16 refs/cycle, and the
necessary banks, ports, and associated wiring require about
14 thread-equivalents of space. This exorbitant bandwidth
requirement can be explained by the short run-lengths of
these memory intensive applications. Thus, register caching
and double-buffering do not utilize the chip area efficiently
enough to support the full range of malleability. A compre-
hensive study of these, and several other recently proposed
register caching techniques can be found in [24].

4.2 Predictive Register Prefetching
Our malleable architecture combines the advantages of

register double-buffering and caching. While double-buffering
completely eliminates stalls due to missing registers in the
MRC, it does so by using enormous bandwidth to prefetch
all the registers, whether they are used or not. On the other
hand, caching minimizes the bandwidth usage. However,
it waits too long to fetch a necessary register—until the
pipeline actually stalls. Thus, in principle, to combine the
strengths of both these approaches, one should prefetch only
those registers that are needed by the next thread. In our
architecture, we instantiate this principle with the help of a
novel register access predictor.

Predicting Register Accesses: Our malleable proces-
sor architecture, shown in Figure 5, consists of two register
files and a predictive prefetcher. The execution-file (e-file)

holds the registers for the current executing thread, while
the swap-file (s-file) is used to prefetch the registers of the
next thread that are predicted to be used. Both these files
can hold all 64 registers of a single thread. Each of the reg-
isters is augmented, for the use of the prefetcher, with three
management bits: valid (V), read (R), and modified (M). In ad-
dition, the program counter (PC) where execution resumed
and the thread identifier are captured in the s-file and e-file.

Our prefetching scheme is based on the key insight that
the PC of the next thread is a strong predictor of the regis-
ters that need to be loaded from the backing store into the
s-file. This insight is based on two observations. First, there
is a good correlation between the PC and the control flow
(the instructions sequence); this correlation is what makes
branch prediction possible. Second, since registers are hard
coded in the instructions, a given sequence of instructions
always produces the same sequence of register accesses.

Our predictor captures this correlation with the help of
a per-thread table that maps a given PC to a bit mask of
registers that would be accessed when the thread begins to
execute from that PC. We store these tables in the context-
partition of data cache along with the per-thread registers.
Later in this section, we demonstrate that the data cache has
enough capacity and bandwidth for these tables. In what
follows, we explain the predictive prefetching in detail. We
use the terms crnt, prev, and next to denote, respectively,
the thread that is currently running on the pipeline, the
thread that ran immediately before crnt and the thread
that is going to run immediately after crnt.

Execution: When crnt writes to a register, it sets the
corresponding V and M bits in the MRC; no fetch from the
backing store is done. When crnt reads an invalid register
(with the V bit unset), the pipeline stalls until the missing
register is fetched from the context-partition of the data
cache. When the value returns, it is saved in e-file with
the V and R bits set. The R bit signifies that a register was
read before it was written during the thread’s execution, and
hence should be prefetched the next time the thread resumes
at the same PC that started the current run. Registers that
are written before they are read need not be prefetched–
because the value gets overwritten anyway. Thus R bit is
not set for such registers (i.e., ones with the M bit set).

Thread Switch: On a thread switch, the two register files
s-file and e-file are logically swapped. At this instant, crnt
becomes prev, and next becomes crnt. The prefetcher first
copies back all of prev’s modified registers from the s-file
into the context-partition. It then updates prev’s predic-
tor table. The new predictor table entry is the 64-bit mask
constructed from all of the R bits set by prev. The entry to
modify is located by indexing the PC that launched prev’s
latest run. Then the prefetcher determines the set of regis-
ters to prefetch for next, by indexing next’s predictor table
with the PC where the execution is going to resume. It
then proceeds to prefetch these registers into s-file while the
current thread runs.

Accuracy of Our Predictor: To evaluate the accuracy,
we simulate the prefetching scheme for all applications un-
der all deployments. We measure the miss rate–defined as
the fraction of register references that resulted in data cache
accesses, because the predictor failed to anticipate their us-
age.

Registers Modified
(all M bits from s-file)

Prev. Th ID
(from s-file)

Start PC of Next Th
(from ready queue)

Next Th ID
(from ready queue)

Regs to Prefetch
(Pred. Tbl. of next Th)

Update
Pred. Tbl.

Generate
Write-backs

Generate
Prefetches

Read
Pred. Tbl

Regs Read
(all R bits from s-file)

Regs Prefetched
(from s-file)

Start PC of Prev. Th
(from s-file)

State maintained in the predictor and its usage

To Pipeline
(Operand Reads)

Data Cache

More threads More cache

Regular cache
(Data-partition)

MRC

From pipleline
(Result write-back)

Pinned registers
(Context-partition)

Detailed ArchitectureHigh-level Architecture

Data Cache

Load/Stores

Predictor Tables
Regs to prefetchPC

64 Registers

Pinned Regs. Bank-1
Bank-2
Bank-3
Bank-4

C
ached
D

ata

cache scheduler

Predictive
Prefetcher

Ready Queue

Prefetches and Write-backs

RegisterV R M

64 Registers

Prefetched Regs Mask
Start PC Thread ID

Demand fetches

S-file

Figure 5: Our Malleable Core Architecture.

0.00%

0.50%

1.00%

1.50%

2.00%

bitmap

bsol
cast

cksum
classify

drr
ixp

md5
patricia

portscan

srtcm
stream

trtcm
tswtcm

vscan

Applications

M
ax

. P
re

di
ct

or
 M

is
s

R
at

e

Figure 6: Miss rate Achieved by Our Predictor

0

5

10

15

20

bimap
bsol

cast
checksum

classify

drr
ixp

md5
patrica

portscan

srtcm
stream

trtcm
tswtcm

vscan

Applications

A
vg

. N
um

. R
eg

is
te

rs
 P

re
fe

tc
he

d

Oracle Predictor

Figure 7: Accuracy: Our Predictor vs. Oracle.

Figure 6 shows the maximum miss rate observed over all
the deployments. Figure 7 compares, for each application,
the average number of registers prefetched by our predictor
(the darker bars) to that of an oracle with the perfect knowl-
edge of the next thread’s register accesses (lighter bars).
First, the miss rate suffered by our scheme is very small
(< 2%). That is, our scheme successfully prefetches a vast
majority of the registers that are required. Second, the num-
ber of registers fetched by our scheme is very close to the that
of the oracle. These two observations put together demon-
strate that, our scheme prefetches a register if and only if it
is required by the next thread. This conclusion validates our
intuition that PC is a good predictor of the register accesses
to follow. Not surprisingly, the worst-suffering application is
patricia, which has one of the most complex control flows.

Predictor Overheads: To perform at its best, our pre-
dictive prefetching requires: (1) enough fast storage for the
per-thread predictor tables and (2) adequate bandwidth be-
tween the cache and the MRC to ensure that the prefetching
completes before the current thread stalls on a memory ac-
cess.

We carried out a detailed analysis of the maximum ta-
ble size required for all the applications, and over all the
deployments [24]. We found that for most applications the
table size rarely exceeds 32 entries, with stream requiring
the largest table with just 185 entries. We explain these
small table sizes based on two observations. First, packet
processing applications execute only a small portion of the
code under normal conditions; bulk of the code addresses
error conditions that rarely happen. Second, cache misses
are typically correlated with only a subset of the memory
access instructions. Consequently, even within the code for
normal processing, only a small subset of PCs account for
the vast majority of cache misses and hence thread switches.

We exploit their small sizes and store the per-thread pre-
dictor tables in the primary data cache. Our analysis shows
that, for a processor with a modest number of threads, the
data cache has enough spare capacity for these tables. For
instance, consider the 26 th-eqs of area available in our mal-
leable processor core. This area, after accounting for the
needs of the MRC, translates to about 2KB for each of the
26 threads. This is substantially more than the 1736 bytes
(256 bytes for the 64 32-bit registers and 1480 bytes for the
185 64-bit predictor entries) required by a thread of the most
demanding application, namely stream. Then, we measure
the maximum bandwidths required between the MRC and
the data cache, taking into account the accesses to the pre-
dictor table along with the prefetching related transfers. We
found that the bandwidth required is about 1.08 refs/cycle,
which can be easily provisioned in practice.

5. EXERCISING MALLEABILITY
Having designed the necessary architectural mechanisms,

we now present a simple run-time adaptation scheme that
automatically selects and maintains the optimal thread-cache
balance. The design of our scheme is guided by the following
three observations

First, selecting the optimal thread-cache combination at
deployment time based on programmer-driven profiling suf-
fers several drawbacks. Deployment-time profiling requires
programmers to specify several time-varying and hard-to-
estimate parameters such as traffic patterns. Further, often
the resulting systems: (1) are not robust to traffic fluctua-
tions and (2) are hard to maintain and upgrade.

Second, in each deployment, U(n), the processor utiliza-
tion (and thus the packet throughput) with n active threads,
first increases with n, and after reaching a peak, begins to
decrease, to never rise again. First, increasing the threads
from n to n + 1 increases the performance because, the ag-
gregate working set of n + 1 threads fits in the cache and
the additional thread only helps to hide the memory latency
further. However, since the aggregate working set size is a
non-decreasing function of the number of threads, at some
value of n+1 the aggregate working set no longer fits in the
cache. At this stage the utilization begins to fall for three
reasons: (1) cache miss rate goes up because, not only has
the working set grown larger, but also the available cache
capacity has been reduced since the new thread claims cache
lines for its registers and predictor entries; (2) higher miss
rate combined with larger number of threads leads to in-
creased contention for off-chip memory bandwidth, eventu-
ally making the system bandwidth limited; and (3) higher
miss rate means more thread switches and more wasted cy-
cles. We observe that these arguments hold for most system
settings and applications.

Third, in our architecture, increasing the number of threads
is fairly straightforward. We simply start the new thread
and the necessary data cache lines for its registers and pre-
dictor entries get automatically allocated and pinned on de-
mand. On the other hand, terminating a thread and releas-
ing its data cache lines requires the cache lines for all the
threads to be unpinned because, we cannot determine all
the lines held by a particular thread’s predictor table en-
tries. This unpinning effectively releases only the lines held
by the terminated thread because, the remaining threads
quickly re-pin most of their lines as they continue to exe-
cute. Thus, terminating a thread leads to short period with
a slight (≈ 6%) increase in the per-packet processing time.
This degraded performance, however, lasts only for a few
hundred packets.

The first of the these observations requires the adapta-
tion scheme to be sufficiently light-weight to allow run-time
usage. Given the second observation about the shape of
U(n), a simple linear or binary search through the space of
all possible active threads yields the optimal thread-cache
balance. The third observation dictates that, to minimize
the run-time overhead, the algorithm should avoid reducing
the number of threads as much as possible.

Our algorithm (Algorithm 1) does a simple linear search,
but reduces the number of times a thread is terminated by
using asymmetric step sizes; the number of threads is incre-
mented by one while searching upwards, but is decremented
by two while searching downwards.

In spite of such linear search, once the optimal thread-
cache balance is found at the system startup, our scheme
tracks the changes in the balance with only a small num-
ber (about 2-4) of adjustments. Further, during each ad-
justment, it makes a very small number (≈ 6) of memory
accesses and executes less than 40 instructions. Thus, our
scheme imposes little overhead during normal operation and

Algorithm 1 Adapt Thread-Cache Balance

Notation:
Nmax: Max number of threads
Nc: Current number of threads
λ[n]: Throughput with n threads

1: for n = Nc + 1 to Nmax do
2: λ[n] = trialRun(n)
3: if (λ[n] < λ[n − 1]) then
4: break
5: end if
6: end for
7: if ((n − 1) > Nc) then
8: return (n − 1) /* increasing works */
9: end if
10: /* increasing does not work */
11: for n = Nc − 2 down-to 1 with step (-2) do
12: λ[n] = trialRun(n)
13: if (λ[n] < λ[n + 2]) then
14: break
15: end if
16: end for
17: /*also try the last thread skipped*/
18: λ[n + 1] = trialRun(n + 1)
19: return (λ[n + 1] > λ[n + 2])?(n + 1) : (n + 2);

can be run on the data path itself with practically no per-
formance loss (see Section 6).

6. EXPERIMENTAL EVALUATION
In this section we quantify the effectiveness of our plat-

form. First, we explain the parameters of our experimental
setup. We then present the results that compare, for all
the deployment scenarios, the performance of our architec-
ture to the ideal malleable processor and the state-of-the-art
IXP2800.

6.1 Experimental Setup
Processor and Memory: The processor and memory system
models correspond to the parameters described in Section 2.
Deployments multiplex up to 26 threads over the pipeline.
Thread switches happen on data cache misses and take a
minimum of 2 cycles. We assume an instruction store within
each core, and thus simulate a perfect instruction fetch that
never stalls the pipeline.

MRC: The MRC consists of the two register files described
in Section 4. We provision both these register files with two
read/write ports and one exclusive write port (three ports
total), resulting in a total write bandwidth of 3 refs/cycle.
Although, as noted in Section 4.2, the desired average band-
width is about 1.08 refs/cycle, these extra ports are required
to accommodate the occasional burstiness in the accesses be-
tween the MRC and the data cache and thus to minimize
the wasted cycles between thread switches. However, these
extra ports make the MRC about 3% slower compared to
the traditional register files that only have one write and
two read ports. We take this slowdown into account in our
performance evaluation [24].

Data cache: We use a 4-banked, 2-way set-associative cache
with 16-byte lines. The MRC described above requires ap-
proximately 2 thread equivalents of space which leaves 24
thread equivalents to the data cache, corresponding to 54

KB. This data cache is about 75% slower than the MRC,
resulting in an access time of 2 cycles. However, we assume
that the data cache is pipelined and thus accepts a new re-
quest every cycle.

Cache bank scheduler: The cache scheduler implements a
simple fixed priority. Requests from the memory stage of
the pipeline have the highest priority. Demand misses from
the operand read stage have the second highest priority. All
the prefetch related requests and the fills from L2 cache are
served at the lowest priority.

Run-time adaptation: Adaption occurs every 100,000 pack-
ets and each trial lasts for 7,500 packets. If the packet stream
stops during a trial, adaptation terminates unsuccessfully.
When the packet stream starts again, the processor resumes
execution with the same number of threads as before the
unsuccessful adaptation. We run the adaptation algorithm
on each processor core that performs data path processing,
because overhead imposed by the adaptation algorithm is
negligible (about 6 memory accesses and 40 instructions ev-
ery 7,500 packets).

Traffic and control data: We utilize the the traffic traces,
route tables described in Section 2. These execution traces
do not contain accesses to the stack. However, we capture
the worst-case effect of these accesses by modeling a bank
conflict, on each cycle, with a cache bank that has at least
one prefetch request pending. Thus, we believe that our ex-
periments constitute a pessimistic scenario for our platform.

6.2 Evaluation Results
Comparison with Ideal Malleable Platform: We com-
pare the packet throughput of our platform to that of the
ideal malleable processor defined and studied in Section 3.
Recall that, ideal malleable processor achieves malleability
with no implementation overheads; it matches, in all pos-
sible thread-cache configurations, the performance of the
equivalent fixed architecture that supports the same number
of threads and same amount of cache, but includes separate
register files for each thread. Further, the ideal platform has
the oracular knowledge of the optimal thread cache balance
for each deployment. In contrast, our processor suffers the
following overheads: (1) longer cycle times due to the slower
MRC (compared to traditional register file), (2) stalls that
may happen due to inaccuracies in prefetching, and (3) run-
time adaption and the potential utilization loss when the
adaptation is not perfect. For this experiment, both proces-
sors include 9 cores each with 26 thread-equivalents of space
for threads and cache. We set the context switch overhead
and cache access latency to 2 cycles each. The remaining pa-
rameters, namely application, off-chip memory latency and
BW are determined by the deployment.

Figure 8(a) depicts, the relative throughput of our archi-
tecture with respect to the ideal malleable processor. For a
given relative throughput of x, the bars in each figure show
the fraction of deployments that experience an improvement
of x, where as the line above the bars shows the fraction of
deployments that see an improvement of at least x. We make
the observation that our architecture performs, in as many
as 92% of the deployments, within 6% of the ideal malleable
processor. Further, the maximum loss of 8% happens only
in less than 1% of the deployments.

Comparison with IXP2800 and Optimal-fixed: In
Section 3 we quantified the throughput improvements of
ideal malleable platform over IXP2800 and the fixed pro-
cessor that optimally partitions the available area. Our ar-
chitecture achieves virtually the same performance improve-
ments because, our architecture performs within 8% of the
ideal malleable processor. Hence, the plots that compare our
architecture to the IXP2800 and the optimal-fixed are iden-
tical to those shown in Figure 3; we omit these for space rea-
sons. We conclude that, our platform improves the through-
put, in as many as 30% the deployments, by 300% compared
to the IXP2800 and by 60% compared to the optimal-fixed.

Comparison with Hypothetical Fully Configurable
Processor: To measure how effectively our architecture
utilizes a given chip area, we compare our processor to a hy-
pothetical fully configurable processor, that allows each de-
ployment to select not only number of threads and cache
capacity, but number of cores as well. Figure 8(b) shows,
for a given chip area of IXP2800, the relative performance
of our malleable processor with respect to this hypotheti-
cal processor. Our architecture performs within 10% of this
fully configurable processor in 63% of the deployments and
within 20% in 75% of the deployments. Thus we conclude
that our architecture not only achieves significant gains over
the state of the art, but also realizes most of the performance
of the much more capable hypothetical processor.

7. DISCUSSION
Need for Malleability: We examine three plausible argu-
ments against malleable processors. First, consider a het-
erogeneous processor that includes both cache-heavy and
thread-heavy cores. On such a processor, one may achieve
high throughput by carefully mapping each application to
the best-suited cores. However, we observe that program-
ming such heterogeneous systems for high performance re-
mains at least as hard as today’s state of the art, while our
malleable system is substantially easier to program than the
state of the art.

Second, one could build a small number of chips each opti-
mized for only a subset of deployments with a common char-
acteristic. For instance, separate chips could be designed for
the network edge and core. We considered several such clas-
sifications of the deployment space. We found that, in most
cases, the ideal thread-cache balance varies even within a
subset. The single malleable core designed for the entire set
of deployments outperforms, or performs comparably, to the
fixed processors optimized for each subset [24].

Third, for systems that are engineered to support a given
throughput do not require malleable processors because, such
systems do not benefit from throughput improvements the
run-time adaptation achieves. We argue that even these
systems benefit from the simplified programmability offered
by malleable processors. Programmers can focus on issues
other than memory bottleneck, and the thread-cache bal-
ance can be fixed during the profiling phase that most of
these systems undergo to ensure the throughput. Further,
malleable processors hold a significant cost advantage. Larger
volumes associated with a single malleable chip, that can be
used in a wide-variety of systems, allows the chip manufac-
turer to better amortize the significant costs associated with
chip design and validation, there by bringing down the price.

1.00 0.98
0.92

0

0.2

0.4

0.6

0.8

1

0.92x
0.93x

0.94x
Relative Throughput

Fr
ac

tio
n

of
 D

ep
lo

ym
en

ts More than 90% of
deployments

perform within 6% of
ideal malleable

Max loss in
throughput is just

around 8%

1.00 0.93
0.85

0.80
0.75

0.63

0.27

0

0.2

0.4

0.6

0.8

1

0.4x
0.5x

0.6x
0.7x

0.8x
0.9x

1.0x

Relative throughput

Fr
ac

tio
n

of
 D

ep
lo

ym
en

ts

Three quarters of
deployments perform
within 20% of Fully

Configurable

(a) Compared to Ideal Malleable Processor (b) Compared to the Hypothetical Fully Configurable Processor

Figure 8: Effectiveness of Our Malleable Packet Processing Platform

Simplifying the Architecture: We observe that, for each
context switch, only a few (≈ 5) registers are needed to
be prefetched. If, only a few “hot” registers such as stack
pointer account for most of the prefetches, a compiler or pro-
filer could provide hints to the hardware and thus eliminate
the predictor. However, we found that the set of 5 most fre-
quently prefetched registers (by oracle) differs significantly
across applications, and in all applications, account for only
about 40-60% of the prefetches required for stall-free oper-
ation. Consequently, prefetching only these registers leads
to too many demand-fetches and poor performance (about
65% of our predictive prefetching scheme.)

8. RELATED WORK
Existing work on memory bottleneck in networking sys-

tems can be classified into three main categories: (1) algo-
rithms for reducing off-chip memory accesses; (2) schemes
that efficiently utilize general-purpose hardware; and (3)
special-purpose hardware.

Algorithmic Techniques: Most work in this area focuses
on specific problems with the goal of reducing the number
of memory accesses. For instance, the route lookup scheme
proposed in [16] reduces memory accesses by using bitmaps
to compress the nodes of the lookup trie; a good overview
of other such schemes can be found in [35]. Similarly, tech-
niques for memory access reduction are proposed in [22, 33]
for large hash table implementations, and in [17] for online
statistics collection.

Exploiting General-purpose Hardware: Partridge et
al. describe how to best-exploit the memory hierarchy of
an Alpha processor to achieve the lookup rates needed for
their 50Gbits/Sec router [27]. Bjorkman et al. examine
the effectiveness of utilizing shared memory multiprocessor
systems for parallel protocol processing [10]. Hasan et al
examine methods for better exploiting DRAM row-locality
specifically for packet headers and payload [19].

Special-purpose Hardware Support: A wide and highly
pipelined memory architecture for a collection of processor
cores is proposed in [30]. A Memory hierarchy designed for
a specific lookup scheme is presented in [9]. Special mem-
ory buffers for packet headers and payload are described
in [20]. Special-purpose hardware caches for route lookup
and Layer-4 classification are proposed in [12] and [38] re-
spectively. The ability of SMT, CMP, and superscalar archi-
tectures to exploit instruction level parallelism in network-
ing applications is studied in [13, 14]. Several problems in

designing high-speed network interfaces for end-systems are
addressed in [32].

General-purpose Systems: Register caching has been
utilized to build large yet fast register files for SMT and
wide-issue processors in [11, 28]. The general technique of
register double-buffering has been used to hide synchroniza-
tion latencies in classical multiprocessor systems in [34]. The
TRIPS processor includes a memory block that can act as
either a cache or a simple physical memory [29].

9. CONCLUSIONS AND FUTURE WORK
A packet processing platform that can achieve high packet

throughput and is easy to program forms an important build-
ing block for the next-generation commercial networks as
well as research testbeds. In this paper, we address the
memory bottleneck–a key challenge in designing such a plat-
form. We make four contributions: (1) we make a case for a
malleable processor core that supports the dynamic trade-
off between cache capacity and number of threads; (2) we
then design a novel malleable architecture that facilitates
this tradeoff; (3) we present an adaptation algorithm that
automatically finds and maintains the optimal thread-cache
balance at run-time, there by simplifying the programmabil-
ity; and (4) we demonstrate that our processor outperforms
a processor similar to IXP2800–a recent NP–in about 89%
of the deployments we consider, and in about 30% of the
deployments it quadruples the packet throughput.

Future Work: Although this paper focuses on packet pro-
cessing systems, we believe that many of our ideas and in-
sights are applicable more broadly. For instance, an in-
teresting line of work examines the fundamental locality-
parallelism tradeoff in the broader class of high-throughput
systems such as web and database servers. Another avenue
investigates how to utilize our insight that register access
can be accurately predicted to build very large yet fast reg-
ister files for wide-issue general-purpose processors. Finally,
apart from the memory bottleneck, there exist other pro-
grammability challenges, such as making it easy to program
multithreaded processors, that require further research.

10. ACKNOWLEDGMENTS
We thank Prof. Mike Dahlin of UT Austin, Dr. Raj

Yavatkar, Eric Johnson, Aaron Kunze of Intel Corporation
for their constant help throughout this research. We also
thank Prof. Patrick Crowley of Washington University, St.
Louis, for his comments on an earlier draft of this paper.

11. REFERENCES
[1] CACTI3.2 http://tinyurl.com/yqu8a5.

[2] Global Environment for Network Innovations.
http://www.geni.net.

[3] Intel IXA SDK 3.0. http://tinyurl.com/2ltuwu.

[4] Internet RFC Archive. http://www.faqs.org/rfcs/.

[5] NPF Benchmarks; http://tinyurl.com/2rbz6g.

[6] Simplescalar 3.0. http://www.simplescalar.com/.

[7] Snort IDS; http://www.snort.org.

[8] University of Oregon Route Views Project.
http://www.routeviews.org/.

[9] J.-L. Baer, D. Low, P. Crowley, and N. Sidhwaney.
Memory hierarchy design for a multiprocessor look-up
engine. In Proc. of the IEEE Conf. on Parallel
Architectures and Compilation Techniques, pages
206–216, 2003.

[10] M. Bjorkman and P. Gunningberg. Locking Effects in
Multiprocessor Implementations of Protocols. In Proc.
of the ACM SIGCOMM Conf. on Communications,
pages 74–83, 1993.

[11] J. A. Butts and G. S. Sohi. Use-based register caching
with decoupled indexing. In Proc. of the ACM Intl.
Symp. on Computer Architecture, pages 302–313, 2004.

[12] T.-C. Chiueh and P. Pradhan. Cache Memory Design
for Network Processors. In Proc. of the Intl. Symp. on
High-Performance Computer Architecture, pages
409–418, 2000.

[13] P. Crowley, M. E. Fiuczynski, and J.-L. Baer.
Characterizing Processor Architectures for
Programmable Network Interfaces. In Proc. of the
Intl. Conf. on Super Computing, pages 54–65, 2000.

[14] P. Crowley, M. E. Fiuczynski, and J.-L. Baer. On the
Performance of Multithreaded Architectures for
Network Processors. Technical Report TR2000-10-01,
University of Washington, 2000.

[15] W. Eatherton. “The Push of the Network Processing
to the Top of the Pyramid”, Keynote at the Symp. on
Architectures for Networking and Communications
Systems, 2005.

[16] W. Eatherton, G. Varghese, and Z. Dittia. Tree
bitmap: hardware/software IP lookups with
incremental updates. ACM SIGCOMM Computer
Communication Review, 34(2):97–122, 2004.

[17] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proc. of the Internet
Measurement Workshop, pages 75–80, 2001.

[18] P. Gupta and N. McKeown. Algorithms for Packet
Classification. In IEEE Network - The Magazine of
Global Internetworking, pages 24–32, March 2001.

[19] J. Hasan, S. Chandra, and T. N. Vijaykumar. Efficient
Use of Memory Bandwidth to Improve Network
Processor Throughput. In Proc. of the ACM Intl.
Symp. on Computer Architecture, pages 300–313, 2003.

[20] S. Iyer, R. R. Kompella, and N. McKeown. Analysis of
Memory Architecture for Fast Packet Buffers. In Proc.
of the IEEE Workshop on High Performance
Switching and Routing, pages 368–373, 2001.

[21] E. J. Johnson and A. Kunze. IXP 2800 Programming.
Intel Press, 2003.

[22] S. Kumar and P. Crowley. Segmented hash: an
efficient hash table implementation for high

performance networking subsys. In Proc. of the Symp.
on Architectures for Networking and Communications
Systems, pages 91–103, 2005.

[23] G. Memik, W. H. Mangione-Smith, and W. Hu.
NetBench: A Benchmarking Suite for Network
Processors. In Proc. of the IEEE/ACM Conf. on
Computer-Aided Design, pages 39–42, 2001.

[24] J. Mudigonda. Addressing the Memory Bottleneck in
Packet Processing Systems. PhD thesis, Universtity of
Texas at Austin, 2005.

[25] J. Mudigonda, H. M. Vin, and R. Yavatkar. Managing
Memory Access Latency in Packet Processing. In
Proc. of the ACM Conf. on Measurement and
Modeling of Computer Systems, pages 396–397, 2005.

[26] NLANR Network Traffic Packet Header Traces.
http://pma.nlanr.net/Traces/.

[27] C. Partridge et al. A 50-Gb/s IP router. IEEE/ACM
Transactions on Networking, 6(3):237–248, 1998.

[28] M. Postiff, D. Greene, S. Raasch, and T. Mudge.
Integrating superscalar processor components to
implement register caching. In Proc. of the Intl. Conf.
on Super Computing, pages 348–357, 2001.

[29] K. Sankaralingam et al. Exploiting ILP, TLP, and
DLP with the Polymorphous TRIPS Architecture. In
Proc. of the ACM Intl. Symp. on Computer
Architecture, pages 422–433, 2003.

[30] T. Sherwood, G. Varghese, and B. Calder. A Pipelined
Memory Architecture for High Throughput Network
Processors. In Proc. of the ACM Intl. Symp. on
Computer Architecture, pages 288–299, 2003.

[31] K. Sklower. A Tree-Based Packet Routing Table for
Berkeley Unix. In Proc. of the Winter USENIX
Conference, pages 93–103, 1991.

[32] J. Smith, E. Cooper, B. Davie, I. Leslie, Y. Ofek, and
R. Watson, editors. IEEE Journal on Selected Areas
in Communications (JSAC). IEEE, Feb 1993.

[33] H. Song, S. Dharmapurikar, J. Turner, and
J. Lockwood. Fast hash table lookup using extended
bloom filter: an aid to network processing. In Proc. of
the ACM SIGCOMM Conf. on Communications,
pages 181–192, 2005.

[34] V. Soundararajan. Dribble-back registers: A technique
for latency tolerance in multiprocessors. Technical
Report Technical Memo-474, LCS, MIT, 1992.

[35] G. Varghese. Network Algorithmics: An
Interdisciplinary Approach to Designing Fast
Networked Devices. M. Kaufmann, 2004.

[36] T. Wolf and M. Franklin. CommBench-A
Telecommunications Benchmark for Network
Processors. In Proc. of the Intl. Symp. on
Performance Analysis of Systems and Software, pages
154–162, 2000.

[37] S. Wu and U. Manber. A Fast Algorithm for
Multi-pattern Searching. Technical Report TR-94-17,
University of Arizona, 1994.

[38] J. Xu, M. Singhal, and J. Degroat. A Novel Cache
Architecture to Support Layer-Four Packet
Classification at Memory Access Speeds. In Proc. of
the IEEE Conf. on Computer Communications, pages
1445–1454, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

