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ABSTRACT
Our goal is to enable fast prototyping of networking hard-
ware (e.g. modified Ethernet switches and IP routers) for
teaching and research. To this end, we built and made avail-
able the NetFPGA platform. Starting from open-source ref-
erence designs, students and researchers create their designs
in Verilog, and then download them to the NetFPGA board
where they can process packets at line-rate for 4-ports of
1GE. The board is becoming widely used for teaching and
research, and so it has become important to make it easy
to re-use modules and designs. We have created a standard
interface between modules, making it easier to plug modules
together in pipelines, and to create new re-usable designs.
In this paper we describe our modular design, and how we
have used it to build several systems, including our IP router
reference design and some extensions to it.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—sequential circuits,
parallel circuits; C.2.5 [Computer-Communication Net-
works]: Local and Wide-Area Networks—ethernet, high-
speed, internet ; C.2.6 [Computer-Communication Net-
works]: Internetworking—routers

General Terms
Design

Keywords
NetFPGA, modular design, reuse

1. INTRODUCTION
The benefits of re-use are well understood: It allows devel-

opers to quickly build on the work of others, reduces time to
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market, and increases the scrutiny (and therefore the qual-
ity) of code. Software re-use is widely practiced and wildly
successful, particularly in the open-source community; as
well as in corporate development practices and commercial
tools.

The key to software re-use is to create a good API—an
interface that is intuitive and simple to use, and useful to
a large number of developers. Indeed, the whole field of
networking is built on the re-use of layers interconnected by
well-documented and well-designed interfaces and APIs.

On the other hand, the history of re-use in hardware de-
sign is mixed; there are no hugely successful open-source
hardware projects analogous to Linux, mostly because com-
plicated designs only recently started to fit on FPGAs. Still,
this might seem surprising as there are very strong incen-
tives to re-use Verilog code (or other HDLs)—the cost of
developing Verilog is much higher (per line of code) than for
software development languages, and the importance of cor-
rectly verifying the code is much higher, as even small bugs
can cost millions of dollars to fix. Indeed, companies who
build ASICs place great importance on building reusable
blocks or macros. And some companies exist to produce
and sell expensive IP (intellectual property) blocks for use
by others. To date, the successes with open-source re-usable
hardware have been smaller, with Opencores.org being the
most well-known.

Re-using hardware is difficult because of the dependencies
of the particular design it is part of; e.g. clock speed, I/Os,
and so on. Unlike software projects, there is no underlying
unifying operating system to provide a common platform for
all contributed code.

Our goal is to make networking hardware design more re-
usable for teachers, students and researchers—particularly
on the low-cost NetFPGA platform. We have created a
simple modular design methodology that allows networking
hardware designers to write re-usable code. We are creating
a library of modules that can be strung together in different
ways to create new systems.

NetFPGA is a sandbox for networking hardware—it al-
lows students and researchers to experiment with new ways
to process packets at line-rate. For example, a student in
a class might create a 4-port Gigabit Ethernet switch; or
a researcher might add a novel feature to a 4-port Giga-
bit IP router. Packets can be processed in arbitrary ways,
under the control of the user. NetFPGA uses an industry-
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Figure 1: Stages in the modular pipeline are con-
nected using two buses: the Packet Bus and the
Register Bus.

standard design flow (users write program in Verilog, synthe-
size them, and then download to programmable hardware).
Designs typically run at line-rate, allowing experimental de-
ployment in real networks. A number of classes are taught
using NetFPGA, and it is used by a growing number of net-
working researchers.

NetFPGA is a PCI card that plugs into a standard PC.
The card contains an FPGA, four 1GigE ports and some
buffer memory (SRAM and DRAM). The board is very low-
cost1 and software, gateware and courseware are freely avail-
able at http://NetFPGA.org. For more details, see [9].

Reusable modules require a well-defined and documented
API. It has to be flexible enough to be usable on a wide
variety of modules, as well as simple enough to allow both
novice and experienced hardware designers to learn it in a
short amount of time.

Our Approach — like many that have gone before —
exploits the fact that networking hardware is generally ar-
ranged as a pipeline through which packets flow and are
processed at each stage. This suggests an API that carries
packets from one stage to the next along with the informa-
tion needed to process the packet or results from a previous
stage. Our interface does exactly that — and in some ways
resembles the simple processing pipeline of Click [6] which
allows a user to connect modules using a generic interface.
One difference is that we only use a push interface, as op-
posed to both push and pull.

NetFPGA modules are connected as a sequence of stages
in a pipeline. Stages communicate using a simple packet-
based synchronous FIFO push interface: Stage i + 1 tells
Stage i that it has space for a packet word (i.e. the FIFO
is not full); Stage i writes a packet word into Stage i +
1. Since processing results and other information at one
stage are usually needed at a subsequent stage, Stage i can
prepend any information it wants to convey as a word at the
beginning of a packet.

Figure 1 shows the high-level modular architecture. Fig-
ure 2 shows the pipeline of a simple IPv4 router built this
way.

Our Goal is to enable a wide variety of users to create
new systems using NetFPGA. Less experienced users will
reuse entire pre-built projects on the NetFPGA card. Some

1At the time of writing, boards are available for $500 for
research and teaching.
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Figure 2: The IPv4 Router is built using the “Refer-
ence Pipeline”- a simple canonical five stage pipeline
that can be applied to a variety of networking hard-
ware.

others will modify pre-built projects and add new function-
ality to them by inserting new modules between the available
modules. Others will design completely new projects with-
out using any pre-built modules. This paper explains how
NetFPGA enables the second group of users to reuse mod-
ules built by others, and to create new modules in a short
time.

The paper is organized as follows: Section 2 gives the de-
tails of the communication channels in the pipeline, Section 3
describes the reference IPv4 router and other extensions,
Section 4 discusses limitations of the NetFPGA approach,
and Section 5 concludes the paper.

2. PIPELINE INTERFACE DETAILS
Figure 1 shows the NetFPGA pipeline that is entirely

on the Virtex FPGA. Stages are interconnected using two
point-to-point buses: the packet bus and the register bus.

The packet bus transfers packets from one stage to the
next using a synchronous FIFO packet-based push interface,
over a 64-bit wide bus running at 125MHz (an aggregate rate
of 8Gbps). The FIFO interface has the advantage of hiding
all the internals of the module behind a few signals and al-
lows modules to be concatenated in any order. It is arguably
the simplest interface that can be used to pass information
and provide flow control while still being sufficiently efficient
to run designs at full line rate.

The register bus provides another channel of communi-
cation that does not consume Packet Bus bandwidth. It
allows information to travel in both directions through the
pipeline, but has a much lower bandwidth.

2.1 Entry and Exit Points
Packets enter and exit the pipeline through various Re-

ceive and Transmit Queue modules respectively. These con-
nect the various I/O ports to the pipeline and translate from
the diverse peripheral interfaces to the unified pipeline FIFO
interface. This makes it simpler for designers to connect to
different I/O ports without having to learn how to use each.

Currently there are two types of I/O ports implemented
with a third planned. These are: the Ethernet Rx/Tx queues,
which send and receive packets via GigE ports, the CPU
DMA Rx/Tx queues, which transfer packets via DMA be-
tween the NetFPGA and the host CPU, and the Multi-
gigabit serial Rx/Tx queues (to be added) to allow transfer-
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Figure 3: Format of a packet passing on the packet
bus.

ring packets over two 2.5Gbps serial links. The multi-gigabit
serial links allow extending the NetFPGA by, for example,
connecting it to another NetFPGA to implement an 8-port
switch or a ring of NetFPGAs.

2.2 Packet Bus
To keep stages simple, the interface is packet-based. When

Stage i sends a packet to Stage i + 1, it will send the entire
packet without being interleaved with another. Modules are
not required to process multiple packets at a time, and they
are not required to split the packet header from its data —
although a module is free to choose to do so internally. We
have found that the simple packet-based interface makes it
easier to reason about the performance of the entire pipeline.

The packet bus consists of a ctrl bus and a data bus along
with a write signal to indicate that the buses are carrying
valid information. A ready signal from Stage i+1 to Stage i
provides flow control using backpressure. Stage i+1 asserts
the ready signal indicating it can accept at least two more
words of data, and deasserts it when it can accept only one
more word or less. Stage i sets the ctrl and data buses,
and asserts the write signal to write a word to Stage i + 1.

Packets on the packet bus have the format shown in Fig-
ure 3. As the packet passes from one stage to the next, a
stage can modify the packet itself and/or parse the packet
to obtain information that is needed by a later stage for
additional processing on the packet.

This extracted information is prepended to the beginning
of the packet as a 64-bit word which we call a module header
and is uniquely identified by its ctrl word from other mod-
ule headers. Subsequent stages in the pipeline can identify
this module header from its ctrl word and use the header
to do additional processing on the packet.

While prepending module headers onto the packet and
passing processing results in-band consumes bandwidth, the
bus’s 8Gbps bandwidth leaves 3Gbps to be consumed by
module headers (4Gbps used by Ethernet packets and 1Gbps
used by packets to/from the host). This translates to more
than 64 bytes available for module headers per packet in the
worst case. Compared with sending processing results over
a separate bus, sending them in-band simplifies the state
machines responsible for communicating between stages and
leaves less room for assumptions and mistakes in the relative
timing of packet data and processing results.

2.3 Register Bus
Networking hardware is more than just passing packets

around between pipeline stages. The operation of these
stages needs to be controllable by and visible to software

that runs the more complex algorithms and protocols at a
higher level, as well as by the user to configure and debug
the hardware and the network. This means that we need
to make the hardware’s registers, counters, and tables vis-
ible and controllable. A common register interface exposes
these data types to the software and allows it to modify
them. This is done by memory-mapping the internal hard-
ware registers. The memory-mapped registers then appear
as I/O registers to the user software that can access them
using ioctl calls.

The register bus strings together register modules in each
stage in a pipelined daisy-chain that is looped back in a ring.
One module in the chain initiates and responds to requests
that arrive as PCI register requests on behalf of the software.
However, any stage on the chain is allowed to issue register
access requests, allowing information to trickle backwards in
the pipeline, and allowing Stage i to get information from
Stage i + k.

The daisy-chain architecture is preferable to a centralized
arbiter approach because it facilitates the interconnection of
stages as well as limits inter-stage dependencies.

Requests on the bus can be either a register read or a
register write. The bus is pipelined with each transaction
consuming one clock cycle. As a request goes through a
stage, the stage decides whether to respond to the request or
send the request unmodified to the next stage in the chain.
Responding to a request means modifying the request by
asserting an acknowledge signal in the request and if the
request is a read, then also setting the data lines on the
register bus to the value of the register.

3. USAGE EXAMPLES
This section describes the IPv4 router and two extensions

to this router that are used for research: Buffer Monitoring
and OpenFlow. Two other extensions, Time Synchroniza-
tion and RCP, are described in the Appendix.

3.1 The IPv4 Router
Three basic designs have been implemented on NetFPGA

using the interfaces described above: a 4-port NIC, an Eth-
ernet switch, and an IPv4 router. Most projects will build
on one of these designs and extend it. In this section, we will
describe the IPv4 router on which the rest of the examples
in this paper are based.

The basic IPv4 router can run at the full 4x1Gbps line-
rate. The router project includes the forwarding path in
hardware, two software packages that allow it to build routes
and routing tables, and command-line and graphical user
interfaces for management.

Software: The software packages allow the routing ta-
bles to be built using a routing protocol (PeeWee OSPF
[14]) running in user-space completely independent of the
Linux host, or by using the Linux host’s own routing ta-
ble. The software also handles slow path processing such as
generating ICMP messages, handling ARP, IP options, etc.
More information can be found in the NetFPGA Guide [12].
The rest of this subsection describes the hardware.

Hardware: The IPv4 hardware forwarding path lends it-
self naturally to the classic five stage switch pipeline shown
in Figure 2. The first stage, Rx Queues, receives each packet
from the board’s I/O ports (such as the Ethernet ports and
the CPU DMA interface), appends a module header indi-
cating the packet’s length and ingress port, and passes it
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using the FIFO interface into the User Datapath. The User
Datapath contains three stages that perform the packet pro-
cessing and is where most user modifications would occur.
The Rx Queues guarantee that only good link-layer packets
are pushed into the User Datapath, and so they handle all
the clock domain crossings and error checking.

The first stage in the User Datapath, the Input Arbiter,
uses packetized round-robin arbitration to select which of
the Rx Queues to service and pushes the packet into the
Output Port Lookup stage.

The Output Port Lookup stage selects which output queue
to place the packet in and, if necessary, modifies the packet.
In the case of the IPv4 router the Output Port Lookup
decrements the TTL, checks and updates the IP checksum,
performs the forwarding table and ARP cache lookups and
decides whether to send the packet to the CPU as an ex-
ception packet or forward it out one of the Ethernet ports.
The longest prefix match and the ARP cache lookups are
performed using the FPGA’s on-chip TCAMs. The stage
also checks for non-IP packets (ARP, etc.), packets with IP
options, or other exception packets to be sent up to the
software to be handled in the slow path. It then modifies
the module header originally added by the Rx queue to also
indicate the destination output port.

After the Output Port Lookup decides what to do with
the packet, it pushes it to the Output Queues stage which
puts the packet in one of eight output buffers (4 for CPU in-
terfaces and 4 for Ethernet interfaces) using the information
that is stored in the module header. For the IPv4 router, the
Output Port Lookup stage implements the output buffers in
the on-board SRAM. When output ports are free, the Out-
put Queues stage uses a packetized round-robin arbiter to
select which output queue to service from the SRAM and
delivers the packet to the final stage, the destination Tx
Queue, which strips out the module headers and puts the
packet out on the output port, to go to either the CPU via
DMA or out to the Ethernet.

The ability to split up the stages of the IPv4 pipeline so
cleanly and hide them under the NetFPGA’s pipeline inter-
face allows the module pipeline to be easily and efficiently
extended. Developers do not need to know the details of the
implementation of each pipeline stage since its results are
explicitly present in the module headers. In the next few
sections, we use this interface to extend the IPv4 router.

Commercial routers are not usually built this way. Even
though the basic stages mentioned, here do exist, they are
not so easily or cleanly split apart. The main difference,
though, stems from the fact that the NetFPGA router is
a pure output-queued switch. An output-queued switch is
work conserving and has the highest throughput and lowest
average delay.

Organizations building routers with many more ports than
NetFPGA cannot afford (or sometimes even design) memory
that that has enough bandwidth to be used in a pure output-
queued switch. So, they resort to using other tricks such
as virtual input queueing, combined input-output queueing
([1]), smart scheduling ([10]), and distributed shared mem-
ory to approximate an output queued switch. Since the
NetFPGA router runs at line-rate and implements output
queueing, the main difference between its behavior and that
of a commercial router will be in terms of available buffer
sizes and delays across it.

3.2 Buffer Monitoring Router
The Buffer Monitoring Router augments the IPv4 router

with an Event Capture stage that allows monitoring the out-
put buffers’ occupancies in real-time with single cycle accu-
racy. This extension was needed to verify the results of re-
sarch on using small output buffers in switches and routers
[4]. To do this, the Event Capture stage timestamps when
each packet enters an output queue and when it leaves, as
well as its length. The host can use these event records to
reconstruct the evolution of the queue occupancy from the
series.

Since packets can be arriving at up to 4Gbps with a min-
imum packet length of 64 bytes (84 including preamble and
inter-packet gap), a packet will be arriving every 168ns.
Each packet can generate two events: Once going into a
queue, and once when leaving. Since each packet event
record is 32-bits, the required bandwidth when running at
full line rate is approximately 32 bits/168/2ns = 381Mbps!

This eliminates the possibility of placing these timestamps
in a queue and having the software read them via the PCI
bus since it takes approximately 1µs per 32-bit read (32
Mbps). The other option would be to design a specific mech-
anism by which these events could be written to a queue
and then sent via DMA to the CPU. This, however, would
require too much effort and work for a very specific function-
ality. The solution we use is to collect these events into a
packet which can be sent out an output port — either to the
CPU via DMA or to an external host via 1 Gbps Ethernet.

To implement the solution, we need to be able to times-
tamp some signals from the Output Queues module indicat-
ing packet events and store these in a FIFO. When enough
events are collected, the events are put into a packet that is
injected into the router’s pipeline with the correct module
headers to be placed in an output queue to send to a host,
whether local via DMA or remote.

There are are mainly two possibilities for where this exten-
sion can be implemented. The first choice would be to add
the Event Capture stage between the Output Port Lookup
stage and the Output Queues stage. This would allow re-
using the stage to monitor signals other than those coming
from the Output Queues as well as separate the monitoring
logic from the monitored logic. Unfortunately, since the
timestamping happens at single cycle accuracies, signals in-
dicating packet storage and packet removal have to be pulled
out of the Output Queues into the Event Capture stage vio-
lating the FIFO discipline and using channels other than the
packet and register buses for inter-module communication.

Another possibility is to add the buffer monitoring logic
into the Output Queues stage. This would not violate the
NetFPGA methodology at the cost of making it harder to
re-use the monitoring logic for other purposes. The current
implementation uses the first approach since we give high
priority to re-use and flexibility. This design is shown in
Figure 4.

The Event Capture stage consists of two parts: an Event
Recorder module and a Packet Writer module. The Event
Recorder captures the time when signals are asserted and
serializes the events to be sent to the Packet Writer, which
aggregates the events into a packet by placing them in a
buffer. When an event packet is ready to be sent out, the
Packet Writer adds a header to the packet and injects it into
the packet bus to be sent into the Output Queues.

While not hard, the main difficulties encountered while
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Figure 4: The event capture stage is inserted be-
tween the Output Port Lookup and Output Queues
stages. The Event Recorder generates events while
the Event Packet Writer aggregates them into pack-
ets.

implementing this system were handling simultaneous packet
reads and writes from the output queues, and ordering and
serializing them to get the correct timestamps. The system
was easily implemented over a few weeks time by one grad
student, and verified thoroughly by another.

3.3 OpenFlow Switch
OpenFlow is a feature on a networking switch that allows

a researcher to experiment with new functionality in their
own network; for example, to add a new routing protocol, a
new management technique, a novel packet processing algo-
rithm, or even eventually alternatives to IP [11]. The Open-
Flow Switch and the OpenFlow Protocol specifications es-
sentially provide a mechanism to allow a switch’s flow table
to be controlled remotely.

Packets are matched on a 10-tuple consisting of a packet’s
ingress port, Ethernet MAC destination and source addresses,
Ethernet type, VLAN identifier (if one exists), IP destina-
tion and source addresses, IP protocol identifier, and TCP/UDP
source and destination ports (if they exist). Packets can be
matched exactly or using wildcards to specify fields that are
Don’t Cares. If no match is found for a packet, the packet
is forwarded to the remote controller that can examine the
packet and decide on the next steps to take [13].

Actions on packets can be forwarding on a specific port,
normal L2/L3 switch processing, sending to the local host,
or dropping. Optionally, they can also include modifying
VLAN tags, modifying the IP source/destination addresses,
and modifying the UDP/TCP source/destination addresses.
Even without the optional per-packet modifications, imple-
menting an OpenFlow switch using a general commodity
PC would not allow us to achieve line-rate on four 1Gbps
ports; therefore, we implemented an OpenFlow switch on
NetFPGA.

The OpenFlow implementation on NetFPGA replaces two
of the IPv4 router’s stages, the Output Port Lookup and
Output Queues stages, and adds a few other stages to im-
plement the actions to be taken on packets as shown in Fig-
ure 5. The OpenFlow Lookup stage implements the flow
table using a combination of on-chip TCAMs and off-chip
SRAM to support a large number of flow entries and allow
matching on wildcards.

As a packet enters the stage, the Header Parser pulls the
relevant fields from the packet and concatenates them. This
forms the flow header which is then passed to the Wildcard
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Figure 5: The OpenFlow switch pipeline imple-
ments a different Output Port Lookup stage and
uses DRAM for packet buffering.

Lookup and Exact Lookup modules. The Exact Lookup mod-
ule uses two hashing functions on the flow header to index
into the SRAM and reduce collisions. In parallel, the Wild-
card Lookup module performs the lookup in the TCAMs to
check for any matches on flow entries with wildcards.

The results of both wildcard and exact match lookups are
sent to an arbiter that decides which result to choose. Once
a decision is reached on the actions to take on a packet, the
counters for that flow entry are updated and the actions are
specified in new module headers prepended at the beginning
of the packet by the Packet Editor.

The stages between the Output Port Lookup and before
the Output Queues, the OpenFlow Action stages, handle
packet modifications as specified by the actions in the mod-
ule headers. Figure 5 only shows one OpenFlow Action stage
for compactness, but it is possible to have multiple Action
stages in series each doing one of the actions from the flow
entry. This allows adding more actions very easily as the
specification matures.

The new Output Queues stage implements output FIFOs
that are handled in round-robin order using a hierarchy of
on-chip Block RAMs (BRAMs) and DRAM as in [8]. The
head and tail caches are implemented as static FIFOs in
BRAM, and the larger queues are maintained in the DRAM.

Running on the software side is the OpenFlow client that
establishes a SSL connection to the controller. It provides
the controller with access to the local flow table maintained
in the software and hardware and can connect to any Open-
Flow compatible controller such as NOX[5].

Pipelining two exact lookups to hide the SRAM latency
turned out to be the most challenging part of implementing
the OpenFlow Output Port Lookup stage. It required mod-
ifying the SRAM arbiter to synchronize its state machine to
the Exact Lookup module’s state machine and modifying the
Wildcard Lookup module to place its results in a shallow fifo
because it finishes earlier and doesn’t need pipelining. The
Match Arbiter has to handle the delays between the Exact
Lookup and Wildcard Lookup modules and delays between
when the hit/miss signals are generated and when the data
is available. To run at line-rate, all lookups had to complete
in 16 cycles; so, another challenge was compressing all infor-
mation needed from a lookup to be able to pull it out from
the SRAM with its limited bandwidth in less than 16 cycles.

The hardware implementation currently only uses BRAM
for the Output Queues and does not implement any optional
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packet modifications. It was completed over a period of five
weeks by one graduate student, and can handle full-line rate
switching across all ports. The DRAM Output Queues are
still being implemented. Integration with software is cur-
rently taking place. The exact match flow table can store up
to 32, 000 flow table entries, while the wildcard match flow
table can hold 32. The completed DRAM Output Queues
should be able to store up to 5500 maximum-sized (1514
bytes) packets per output queue.

4. LIMITATIONS
While the problems described in the previous section and

in the appendix have solutions that fit nicely in NetFPGA,
one has to wonder what problems do not. There are at least
three issues: latency, memory, and bandwidth.

The first type of problems cannot be easily split into clean
computation sections that have short enough latency to fit
into a pipeline stage and allow the pipeline to run at line-
rate. This includes many cryptographic applications such as
some complex message authentication codes or other public
key certifications or encryptions.

Protocols that require several messages to be exchanged,
and hence require messages to be stored in the NetFPGA
an arbitrary amount of time while waiting for responses also
do not lend themselves to a simple and clean solution in
hardware. This includes TCP, ARP, and others.

We already saw one slight example of the third type of
problems in the Buffer Monitoring extension. Most solu-
tions that need too much feedback from stages ahead in
the pipeline are difficult to implement using the NetFPGA
pipeline. This includes input arbiters tightly coupled the
output queues, load-balancing, weighted fair queueing, etc.

5. CONCLUSION
Networking hardware provides fertile ground for design-

ing highly modular and re-usable components. We have de-
signed an interface that directly translates the way packets
need to be processed into a simple clean pipeline that has
enough flexibility to allow for designing some powerful ex-
tensions to a basic IPv4 router. The packet and register
buses provide a simple way to pass information around be-
tween stages while maintaining a generic enough interface
to be applied across all stages in the pipeline.

By providing a simple interface between hardware stages
and an easy way to interact with the software, NetFPGA
makes the learning curve for networking hardware much
gentler and invites students and researchers to modify or
extend the projects that run on it. By providing a library
of re-usable modules, NetFPGA allows developers to mix
and match functionality provided by different modules and
string together a new design in a very short time. In ad-
dition, it naturally allows the addition of new functionality
as a stage into the pipeline without either having to under-
stand the internals of previous or past stages, or having to
modify any of them. We believe that we have been able to
achieve the goal we have set for NetFPGA of allowing users
of different levels to easily build powerful designs in a very
short time.
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APPENDIX

A. RCP ROUTER
RCP (Rate Control Protocol) is a congestion control algo-

rithm which tries to emulate processor sharing in routers [2].
An RCP router maintains a single rate for all flows. RCP
packets carry a header with a rate field, Rp, which is over-
written by the router if the value within the packet is larger
than the value maintained by the router, otherwise it is left
unchanged. The destination copies Rp into acknowledgment
packets sent back to the source, which the source then uses
to limit the rate at which it transmits. The packet header
also includes the source’s guess of the round trip time (RTT);
a router uses the RTT to calculate the average RTT for all
the flows passing through it.

RCP’s goal is to decrease flow-completion times compared
to TCP and XCP [3] while coexisting with legacy transport
protocols. One of the requirements is minimal changes to the
router hardware so most of the complexity is pushed to soft-
ware. The hardware is responsible for collecting the required
statistics, averaging the RTT and flow sizes, and stamping
the rate in the packets if required, while the software is re-
sponsible for calculating the router’s rate periodically based
on the data it gathers from the hardware. The calculated
rate is then passed to the hardware using the register inter-
face.

Since per-packet modification might be necessary, it would
be very difficult for a software based router to implement
this functionality on four 1Gbps ports running at line rate.
The NetFPGA router was therefore used to implement this
extension. The IPv4 router is extended by adding an ad-
ditional stage between the router Output Port Lookup and
the Output Queues stages.

The additional stage, the RCP Stage, parses the RCP
packet and updates Rp if required. It also calculates per-
port averages and makes this information available to the
software via the memory-mapped register interface. The
router also includes the Buffer Monitoring stage from the
Buffer Monitoring Router, allowing users to monitor queue
occupancy evolution when RCP is being used and when it
is not.

The design of the system took around two days and the
implementation and testing took around 10 days.

B. PRECISION TIME SYNCHRONIZATION
ROUTER

A design that is loosely based on the IEEE 1588 standard
[7] was implemented to enable high precision synchroniza-
tion of clocks between hosts over a network. Since very high
precision synchronization requires timestamping packets as
close as possible to the wire on egress and ingress, a modifi-
able hardware forwarding path was needed. The NetFPGA
IPv4 router was modified to do these timestamps and to
send them to the software along with any synchronization
protocol packets.

The IPv4 router was extended to timestamp packets on
ingress and egress before reaching the Ethernet Rx Queue
and after the Tx Queues. Timestamps are then stored in
registers to allow the software to extract them. A rate-
controlled clock is implemented on the NetFPGA allowing
changing the clock rate very precisely via registers. A soft-
ware daemon implements the synchronization protocol that
adjusts the clock to achieve synchronization. The design
has been implemented and is currently being debugged and
tested for accuracy.
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