
Nettle: Functional Reactive Programming

of OpenFlow Networks

Andreas Voellmy and Paul Hudak

Yale University
andreas.voellmy@yale.edu, paul.hudak@yale.edu

Abstract. We describe a language-centric approach to solving the com-
plex, low-level, and error-prone problem of network control. Specifically,
we have designed a domain-specific language called Nettle, embedded
in Haskell, that allows programming OpenFlow networks in an elegant,
declarative style. Nettle is based on the principles of functional reactive
programming (FRP), and as such has both continuous and discrete ab-
stractions, each of which is leveraged in the design of Nettle: using the
discrete nature of FRP we are able to elegantly capture control messages
to and from OpenFlow switches as streams of Nettle events; using the
continuous nature of FRP we are able to express dynamic load balancing
algorithms in a concise manner, reflecting directly the mathematics of
the underlying control system. We have implemented Nettle and tested it
on real OpenFlow switches. We demonstrate our methodology by writing
several non-trivial OpenFlow controllers.

1 Introduction

Networks continue to increase in importance and complexity, yet the means to
configure them remain primitive and error prone. There is no precise language
for describing what a network should do, nor how it should behave. At best,
network operators document their complex requirements informally, but then
are faced with the daunting and unreliable task of translating their specifications
by hand into the low-level, device-specific, often arcane scripts used to control
today’s commercial switches and routers. This low-level programming model
often results in devices and protocols interacting in unexpected and unintended
ways [5], and gives little hope in validating high-level protocols and policies such
as those related to traffic engineering, business relationships, security [11, 3].

Part of the problem is that most conventional routers are not only low-level,
they are also decidedly impoverished in expressive power, and inflexible in their
configuration capabilities – it is sometimes difficult to get even the most basic
configurations to work correctly.

We believe that these problems can be overcome through the use of advanced
high-level programming languages and tools that allow one to express the overall
network behavior as a single program expressed in a declarative style. Although
this idea has been suggested by several researchers [3, 9], the development of an
actual solution has been elusive. There are two aspects of our approach that we



believe will result in a successful outcome: First, we abandon conventional com-
mercial routers in favor of OpenFlow switches [1]. OpenFlow presents a unified,
flexible, dynamic, remotely programmable interface that allows network switches
to be controlled from a logically centralized location.

Second, we use advanced programming language ideas to ensure that our
programming model is expressive, natural, concise, and designed precisely for
networking applications. Specifically, we borrow ideas from functional reactive

programming (FRP) and adopt the design methodology of domain-specific lan-

guage (DSL) research.
Our overall approach, which we call Nettle, allows us to radically rethink the

problem of network configuration. Indeed, we like the mantra, “Don’t configure
the network, program it !” In doing this at a high level, we enable the development
of new, powerful, and natural network policies, protocols, and control algorithms.

2 Overall Approach

We are interested in the problem of configuring a local network of OpenFlow
switches, varying in size from a single router to several hundred, or even thou-
sands. Such a network may belong to a commercial entity, an ISP, a university,
etc. Typically, certain border routers of such a network interface to the Inter-
net, but our focus is on the internal interactions and coordination between local
switches. Unlike most conventional networks, all of the OpenFlow switches com-
municate to a centralized controller. It is here that a Nettle program runs, thus
forming a global control policy for the entire local network.

Figure 1 illustrates our software architecture. At the bottom are OpenFlow
switches themselves. One level up is Haskell, our host language. Above that is a
library, HOpenFlow, that abstractly captures the OpenFlow protocol.

OpenFlow

Haskell

HOpenFlow

Functional Reactive Programming

S
ec
u
ri
ty

R
o
u
ti
n
g

C
o
n
tr
a
ct
s

..
..
..
..
.

..
..
..
..
.

Fig. 1. Nettle layered system architecture.

The next layer in our stack is an instantiation of the Functional Reactive
Programming (FRP) paradigm. FRP is a family of languages that provide an
expressive and mathematically sound approach to programming interactive sys-
tems in a declarative manner. FRP has been used successfully in computer ani-
mation, robotics, control systems, GUIs, interactive multimedia, and other areas



in which there is a combination of both continuous and discrete entities [10, 4].
This is the layer that is the focus of this paper.

Above the FRP layer, we plan to implement an extensible family of DSLs,
each member capturing a different network abstraction. For example, we may
have one DSL for access control, another for traffic engineering, and another
for interdomain contracts. As a concrete example, in [12] we describe a DSL
for expressing a class of dynamic security policies for campus networks and its
implementation on Nettle’s FRP layer.

Our contributions in the design of Nettle/FRP may be summarized as follows:

1. We have designed a discrete, event-based abstraction that captures commu-
nication patterns to and from OpenFlow switches. With this abstraction we
are able to develop complete controllers in an elegant style that treat each
message stream as a whole, rather than as individual messages.

2. We have designed a notion of continous, time-varying quantities that capture
higher-level abstractions such as traffic volume on individual network links.
With this abstraction we are able to think of certain kinds of network control,
such as traffic engineering, as a continous control problem, much like in
conventional control theory.

3. We have implemented all of Nettle/FRP in the context of the software archi-
tecture of Figure 1. We have tested our system on reference implementations
of the OpenFlow switches, as well as on real OpenFlow switches.

4. We have used Nettle/FRP to design several non-trivial controllers that solve
realistic networking objectives, as well as exotic ones that show off the power
of our approach. A selection of these controllers is described in this paper.

The remainder of the paper is organized as follows: In the next section we
introduce the basic concepts of Nettle/FRP, and its specific use in controlling
OpenFlow switches. In Section 4 we describe a series of increasingly complex
discrete controllers, culminating in Section 5 in a larger example: a “learning
switch.” Then in Section 6 we introduce the notion of continuous quantities,
and use it in the design of dynamic controllers for traffic enginnering. Finally, in
Section 7 we compare our approach to related work.

3 Functional Reactive Programming

In this section we briefly introduce the key ideas and constructs of Nettle/FRP,
whose design is strongly influenced by Yampa [7], an FRP-based DSL that we
previously designed for use in robotics and animation.

The simplest way to understand Nettle/FRP is to think of it as a language for
expressing electrical circuits. We refer to the wires in a typical circuit diagram as
signals, and the boxes (that convert one signal into another) as signal functions.
For example, this very simple circuit has two signals, x and y , and one signal
function, sigfun:

sigfun xy



This is written as a code fragment in Nettle simply as: y ← sigfun −≺ x

Nettle has many built-in signal functions, including all of the obvious nu-
meric functions, as well as ones for integration and differentiation of signals. Of
course one can also define new signal functions. For example, here is a definion
for sigfun above that simply returns a signal that always takes the sine of one
greater than its input:

sigfun :: SF Float Float

sigfun = proc x → do

y ← sin −≺ x + 1
returnA−≺ y

The first line in this program is a type signature that declares sigfun to be a signal
function that converts continuous values of type Float into continuous values of
type Float . The notation proc x → do... in the body of sigfun introduces a signal
function, giving the name x to the input signal. We then use the specialized arrow
syntax var ← sf −≺exp introduced above to feed signals through signal functions
and to name intermediate signals, in this case y . Finally, we denote the output
of the signal function by feeding y into returnA, a special signal function that
returns the final result.

In Nettle we can use signals and signal functions in this way to program,
for example, controllers that alter traffic flow based on signals that measure the
volume of traffic on particular links. Indeed, we present an example of such a
controller in Sec. 6. However, in this paper we place more emphasis on a different
use: we will use signals to represent streams of control messages flowing to and
from our OpenFlow switches – you can think of each signal (i.e. wire) as being
a stream of messages.

In a conventional language, an event-based system might be implemented
by some kind of call-back mechanism and a loop that handles messages as they
arise, one by one. But in Nettle, it is done much more declaratively, where we
think of, and program with, message streams as a whole.

Nettle simply and elegantly unifies message streams with continuous signals
by representing message streams as continuous signals that are only defined
at discrete points in time. More concretely, Nettle represents a discrete signal
that periodically carries information of some type α as a signal that takes on
values of the Event α datatype, whose values are either NoEvent or Event a

for some a :: α. Note that Event α is isomorphic to Haskell’s Maybe α data
type. For example, a signal function that converts a message stream carrying
messages of type M1 into a message stream carrying messages of type M2 has
type SF (Event M1) (Event M2).

Nettle provides several constructs that convert between discrete and contin-
uous signals. One we will use later is hold ::a → SF (Event a) a, that converts a
stream of events carrying values of type a into a continuous, piece-wise constant
signal of a values. The output signal of hold a0 “holds” the last a value received
on its input line, and starts out as a0.



Another useful stateful signal function is accum :: a → SF (Event (a →
a)) (Event a). accum a0 takes as input an event stream carrying state-modifying
functions. At each event in its input stream, it applies the state-modifying func-
tion carried by the event to the current state, updates the current state with
that new value, and outputs an event carrying the updated value.

4 FRP for OpenFlow Control

OpenFlow switches maintain a flow table containing flow entries consisting of
a match condition, a list of forwarding actions, expiration settings, and flow
statistics. The match condition can optionally match on most Ethernet, IP, or
transport protocol header fields. The forwarding actions include forwarding to
specific ports on the switch, flooding the packet, dropping the packet and many
other options. When a packet is received by a switch, it searches for a matching
entry. If matches are found, the highest priority one is chosen, its forwarding
actions are executed and its statistics are updated. If the list of actions is empty,
the packet is dropped. If no match is found, the packet is encapsulated and
sent to the controller in a format defined by the OpenFlow protocol. Optional
expiration settings cause a flow entry to expire after some prescribed time.

OpenFlow switches attempt to establish a connection with a controller at
a pre-configured IP address, using TCP. Typically, the switch-controller com-
munication takes place over a control network that is separate from the main
data network. The switches and controller communicate using the OpenFlow
protocol, which defines message formats that allows controllers to query for in-
formation and command switches to perform actions or change state and allows
switches to inform controllers of events.

We model messages from switches with a data type SwitchMessage and com-
mands to switches (including queries) with a data type SwitchCommand . For ex-
ample, one variant in the SwitchMessage data type is SwitchJoin SwitchID SwitchFeatures .
Values of this form will signal that a switch has connected with the controller and
hence “joined” the network, and such values carry information about the joining
switch. Commands include commands to send packets, modify flow tables, and
request information.

A Nettle program is a signal function having an input type carrying switch
messages from all switches in the network and output type carrying switch com-
mands to any switches in the network, i.e. it has a type:

SF (Event SwitchMessage) (Event SwitchCommand)

4.1 Basic Event Handling and Switch Commands

The simplest possible controller is one that does nothing at all:

controller0 = proc evt → do

cmdEvent ← never −≺ evt

returnA−≺ cmdEvent



We use the library signal function never which never outputs any events.
It is a good idea to clear the flow table of every switch as soon as it con-

nects with the controller, so that our switches start in a known state. We can
do this by executing a clearTable command whenever a SwitchJoin event occurs:

clearOnJoin = proc evt → do

switchJoinEvt ← switchJoins −≺ evt

returnA−≺ (clearTable switchJoinEvt)

Here we use switchJoins to extract the stream of switch join events from the
switch message stream. We name the output of this signal function switchJoinEvt

and for each such event, we apply clearTable to the event, deleting all entries
from the flow table of the joining switch.

Having cleared the table of all connected switches, the switches will send any
incoming packets to the controller. In a network that doesn’t contain any cycles
among its switches, it is safe to simply flood packets, and we can accomplish this
in Nettle by writing:

floodPackets
1
= proc evt → do

packetInEvt ← packetIns −≺ evt

returnA−≺ sendReceivedPacket flood packetInEvt

Here we use packetIns to extract only the PacketIn messages from the incom-
ing message stream. For each such event, we apply sendReceivedPacket flood ,
instructing the switch to send the port using the action flood , which results in
the switch forwarding the packet on every port except the incoming port (i.e.
the port on which the packet was received).

We can now create a single controller that combines both the table clearing
and packet flooding controllers, as follows:

controller1 = proc evt → do

clearCmd ← clearOnJoin −≺ evt

floodCmd ← floodPackets
1
−≺ evt

returnA−≺ clearCmd ⊕ floodCmd

In this signal function we feed the incoming message stream to both signal func-
tions. We then combine their outputs with the expression clearCmd ⊕floodCmd

which combines the two commands in sequence, i.e. the effect of the combined
command is the effect of the first command followed by the effect of the second
command.

4.2 Programming the Flow Table

In the previous controller, our switches sent a PacketIn message to the con-
troller for every incoming packet, and the controller responded with an explicit



command for the switch to flood the packet. We can dramatically improve the
performance of this controller by taking advantage of the special-purpose switch-
ing hardware present in the switches. We can do this by installing an appropriate
flow rule whenever a switch joins the network:

floodPackets
2
= proc evt → do

joinEvt ← switchJoins −≺ evt

returnA−≺ liftE f joinEvt

where f (sw , ) = insertRule (anyPacket =⇒ flood) sw

Here we use the function liftE :: (a → b) → Event a → Event b to lift an or-
dinary function to operate over events. Again, we can combine this in parallel
with clearOnJoin to form a complete controller:

controller2 = proc evt → do

clearCmd ← clearOnJoin −≺ evt

floodCmd ← floodPackets
2
−≺ evt

returnA−≺ clearCmd ⊕ floodCmd

In this case, clearCmd and floodCmd will occur simultaneously, and hence the
order in which the commands are combined is crucial.

5 Learning Switch

In this section, we will program a so-called learning switch. Traditionally, a
learning switch is an Ethernet switch which initially acts much like an Ethernet
bridge, flooding frames received on one port to all other ports. However, a learn-
ing switch also maintains a table of Ethernet addresses and ports, such that if
(a, p) is in the table, then p is the port at which the switch most recently received
a frame from the host with address a. Since the switch received a packet from a
on port p, port p must be on the path to a (assuming our network is loop-free).
Consequently, when a switch receives a frame addressed to a, it forwards the
frame on port p if (a, p) is in its table at that time, or else floods it on all ports
other than the incoming one. In addition, a learning switch typically expires
entries in the flow table after some period of inactivity.

As a first step to building our learning switch controller, we will program
a component which performs the “learning” part; that is, it builds the table
described above for each switch, inferring the direction of each host from every
switch in the network. We implement this table using the Map data type from
Haskell’s standard library and will use that data type’s insert function. We will
build the table by transforming each packet-in event into a table update, ac-
cumulating these updates with accum, and finally using hold to hold the most
recent table between events:

hostDirectionTracker = proc evt → do

packetEvt ← packetIns −≺ evt



tblEvent ← accum empty −≺ liftE updateMap packetEvt

hold empty −≺ tblEvent

The function updateMap is straightforward: it updates the table for key
(swid , addr) to be the port ID of the port on which the packet was received:

updateMap (swid , pktInfo) tbl = insert (swid , ethSrcAddr) inPort tbl
where inPort = packetInPort pktInfo

ethSrcAddr = sourceAddress (enclosedFrame pktInfo)

In this code we make use of a Nettle library function enclosedFrame which parses
the enclosed packet data into a prefix of an Ethernet frame.

We can use hostDirectionTracker to write a signal function tableManager

that outputs forwarding rules incrementally:

tableManager = proc evt → do

clearCmd ← clearOnJoin −≺ evt

hostDirTable ← hostDirectionTracker −≺ evt

packet ← packetIns −≺ evt

returnA−≺ clearCmd ⊕mapFilterE (packetToCmd hostDirTable) packet

Here we simply evaluate packetToCmd hostDirTable on every incoming packet,
which results in a Maybe SwitchCommand value. Applying mapFilterE , results
in outputting no events if the value is Nothing , and outputting an event carrying
cmd whenever the value is Just cmd . The function packetToCmd looks up the
source and destination ports in the hostDirTable and if these are both present,
returns a command, and otherwise returns nothing:1

packetToCmd hostDirTable (swid , pktInfo) =

do ps ← lookup (swid , s) hostDirTable

pr ← lookup (swid , r) hostDirTable

return (makeCommand swid s ps r pr)

where ethFrame = packetInFrame pktInfo

(s , r) = (sourceAddress ethFrame, destAddress ethFrame)

In turn, the function makeCommand outputs a command consisting of three
commands in sequence:

makeCommand swid s ps r pr =

deleteRules (ethSourceDestAre s r ∨ ethSourceDestAre r s)) swid ⊕
insertRule (flowFromTo s ps r pr) swid ⊕

1 This code uses the Maybe monad. If any computation in a Maybe monad evaluates
to Nothing then the entire computation returns Nothing . Only if every computation
succeeds with then the entire computation returns Just result .



insertRule (flowFromTo r pr s ps) swid

where flowFromTo s ps r pr =
((inPortIs ps ∧ ethSourceDestAre s r) =⇒ sendOnPort pr)
‘expireAfterInactiveFor ‘ 30

The first deletes any existing rules at the switch for this pair of hosts by apply-
ing deleteRules to the predicate ethSourceDestAre s r ∨ ethSourceDestAre r s

deleting any rule that matches packets from source with Ethernet address s to
destination with Ethernet address r or vice versa. The second command inserts
a rule that forwards any incoming traffic on port ps from s with destination r on
outgoing port pr . The third rule is similar. Both inserted flows are set to expire
after 30 seconds of inactivity.

We can wire all the pieces together to define our controller, as follows:

controller3 = proc evt → do

tableCmd ← tableManager −≺ evt

floodCmd ← floodPackets
1
−≺ evt

returnA−≺ tableCmds ⊕ floodCmd

6 Time-Varying Quantities

In this section, we show how we can use a seemingly exotic feature of FRP,
namely quantities that vary over continuous time, i.e. defined at all points in
time, to good effect in programming a load balancing controller. This is a feature
that other controller frameworks do not provide, but which we expect will be
very useful in programming control systems for networks.

In this example, we will consider a load balancing problem in which a single
switch, S , has three links l1, l2 and l3, as shown in Fig. 2. We assume that there
are many traffic sessions in the network so that we can approximately model the
network traffic using traffic flow rates. We will name the flow rates for links l2 and
l3 as f2 and f3, respectively. In this highly simplified scenario, we imagine that
traffic enters the system on link l1 and that the switch can reach all destinations
of this traffic by forwarding on either l2 or l3. Further, an operator specifies the
desired ratio, rideal, of traffic that should flow over link l2. Let ractual be the
actual ratio of flow on link 2 to total flow, i.e.

ractual =
f2

f2 + f3

and let the error, e(t) be

e(t) = rideal(t)− ractual(t) .

We would like our controllers to maintain a balance of traffic such that e(t) ≈ 0.
Note that the sign of e indicates whether the flow on port 2 should be increased
or decreased: when e < 0, then ractual > rideal and the flow on port 2 should be
decreased, while if e > 0 the flow on port 2 should be increased.



Switch

Controller

link 3 (f3)

f2f3

link 1
link 2 (f2)

unhandled packetscontrol

rideal

Fig. 2. Control system for Sec. 6. Solid lines correspond to physical links used by the
network to send data traffic. Dashed lines indicate switch-controller communication.

We will present two controllers for accomplishing this control. The first con-
troller is a simple feedback system, while the second is based on the proportional-
integral-derivative (PID) controller used in many control systems. Before we do
this, however, we will discuss how we can measure traffic flows in the network
and react to operator input.

6.1 Measuring Traffic Flows

OpenFlow switches track various statistics, including packet and byte counts for
packets received and sent for each port. Nettle includes commands and events
that allow a controller to query the switch for port statistics and to handle the
switches’ responses to these requests. To monitor the port statistics of a switch,
we periodically query the switch for this information, and process the responses.
Nettle includes a library function

portFlowMonitor :: Time → SF (Event SwitchMessage) (Event SwitchCommand)

that queries the connected switches in the network for port statistics periodi-
cally, with periodicity defined by the first Time argument. As a result, connected
switches will send port statistics periodically, and these can be processed using
the signal function:

portStatistics :: SwitchID → PortID →
SF (Event SwitchEvent) (Event PortStatsVector)

which returns a record containing numerous statistics. In our case, the quantity
of interest is the number of bytes sent, which can be accessed by sentBytes ::
PortStatsVector → Double. Assuming that we have a signal processor, sampledDerivative::
SF (Event Double) Double, that returns the rate of change of a discretely sam-
pled numeric signal, we can write a signal function that computes the byte send
rate of a port:

portBytesSentRate :: SwitchID → PortID → SF (Event SwitchEvent) Double



6.2 Operator Input

We can track the ideal rate rideal as follows: we start with a rate of 0.5 (i.e.
balanced); at any time an operator may input a new decimal number between 0
and 1, which becomes the new rate:

operatingRate = proc msgIn → do

hold 0.5−≺mapFilterE parseRate msgIn

where parseRate :: String → Maybe Double parses a floating point value from a
string input by the user. We omit the definition of parseRate here for brevity.

6.3 Discrete Feedback Controller

Using the components defined above, we can define a simple controller for ap-
proximately balancing the flows over links 2 and 3 according to the desired
operating rate. We simply monitor the flow rates, f2 and f3 of links 2 and 3 and
we let our preferred link be link 2 if more flow should be placed on link 2 to
achieve our desired operating rate, and link 3 otherwise. That is, we define:

preferredLink rideal f2 f3
| err > 0 = 2
| otherwise = 3
where ractual = f2 / (f2 + f3)

err = rideal − ractual

We can write a signal function to track the preferredLink dynamically as:

preferredLinkSF = proc (switchEvent , userEvent)→ do

f2 ← portBytesSentRate switch1 port2 −≺ switchEvent

f3 ← portBytesSentRate switch1 port3 −≺ switchEvent

rideal ← operatingRate −≺ userEvent

returnA−≺ preferredLink rideal f2 f3

We will use a simple strategy to control our traffic according to this dynam-
ically changing preffered link quantity. We begin with an empty flow table at
the switch. Whenever an unhandled packet arrives, we install a new flow rule at
the switch with a narrowly defined match condition - that is, roughly matching
only packets in the session being initiated by the packet - and forwarding on the
link that is most preferred at that moment. Since, by assumption, there will be
many sessions, this strategy will allow the controller to implement fine-grained
load-balancing control. Furthermore, we will expire installed flows after some
time period, to ensure that the controller has the opportunity to change its for-
warding decisions for particular flows. Therefore, we write our packet handler as:

handlePacketIn = proc (switchEvent , preferredLink)→ do

packetEvt ← packetIns −≺ switchEvent



returnA−≺ (liftE (flowForPacket preferredLink) packetEvt)⊕
(sendReceivedPacket (sendOnPort preferredLink) packetEvt)

where flowForPacket preferredLink (swid , pktInfo) =
insertFlow ((exactPredicate pktInfo =⇒ sendOnPort preferredPort)

‘expireAfter ‘ 60)

In this code we use the Nettle library function exactPredicate to compute a match
condition that matches the packet as narrowly as possible with OpenFlow’s
match conditions.

Finally, we combine these signal functions to create our controller:

controller4 = proc (switchEvent , userEvent)→ do

clearCmd ← clearOnJoin −≺ switchEvent

preferredLink ← preferredLinkSF −≺ (switchEvent , userEvent)
tableCmd ← handlePacketIn −≺ (switchEvent , preferredLink)
monitorCmd ← portFlowMonitor 0.1−≺ ()
returnA−≺ clearCmd ⊕ tableCmd ⊕monitorCmd

We have run this controller in a virtualized test bed, using a traffic generator
that simulates traffic according to stochastic process models of the initiation
and termination of traffic sessions and the traffic sent during each session. In the
sample shown in Fig 3, we run the controller with an operating rate to 0.5, and
with a traffic generator that creates a new traffic flows every 5 seconds, causing
the total byte rate to increase over time. The sample run demonstrates how the
controller assigns flows to ports to bring the total flow more in balance.

Out[27]=

10 20 30 40 50 60 70
timeHsL

500

1000

1500

2000

port 2 rate Hbytes�sL

10 20 30 40 50 60 70
timeHsL

-0.2

0.2

0.4

error

10 20 30 40 50 60 70
timeHsL

500

1000

1500

2000

port 3 rate Hbytes�sL

10 20 30 40 50 60 70
timeHsL

2.2

2.4

2.6

2.8

3.0

preffered link

Fig. 3. A sample run of the controller of Sec. 6.3. The plots on the left are the byte
rates on ports 2 and 3. The plot on the top right is the error while the bottom right is
the preferred link. The values of these quantities were sampled every 0.5 seconds.



6.4 Continuous Control

Using OpenFlow we can implement a simple “dial” that we can use to control
the switch. We will have a “dial”, named a, that ranges over IP addresses, viewed
as 32 bit integers. At any moment in time, we will forward all traffic destined
to addresses less than or equal to a via link 2 and any traffic destined toward
address greater than a via link 3. This dial is depicted in Fig. 4. Note that the
ratio of addresses less than a to the total addresses does not indicate how much
traffic will flow over links 2 and 3, since traffic could be unevenly distributed over
the address space. Still, under a given traffic distribution, the dial’s setting will
determine how much traffic flows on each link: increasing a increases traffic on
link 2 while decreasing it increases traffic on link 3, and it makes sense to change
the dial setting in proportion to the size of the current error. Furthermore, since
traffic patterns change over time, there is no single right setting, and we will
have to adjust it as our system evolves.

0.0.0.0, 0.0.0.1, ... 99.1.17.243, ... 255.255.255.255

to link 2 to link 3a(t)

Fig. 4. The “dial”: the manipulated vari-
able for the control system of Sec. 6.4.

ǫ−ǫ e

ê

Fig. 5. Graph of the dead zone in ê.

In order to use traditional control theory techniques, we first turn the problem
into a continuous one. We define a new, real-valued version of our a(t) dial, u(t),
ranging over [0, 1]. We can translate from u to a as follows:

a(t) = ⌊232 ∗ u(t)⌋ .

As we argued above, we would like to change u(t) in proportion to the error. We
can write this as a simple differential equation:

u̇ = ke

Integrating, we find that:

u(t) = k

∫

t

0

e(τ)dτ + u(0)

We have now arrived at a familiar integral control. However, due to the discrete
nature of our control, our control will be unstable. At any time there are a finite
number of flows, and it will not be possible to split these flows in two groups so
that the error is zero. We can mitigate this problem by introducing a dead zone

into the error signal. We define a new error signal ê(t) as follows:

ê(t) =







e(t)− ǫ if e(t) > ǫ
e(t) + ǫ if e(t) < −ǫ

0 otherwise



Fig. 5 graphs the relationship between e and ê. Introducing the dead zone into
the error term effectively turns the error signal off, once the controller is suffi-
ciently close to reducing the error to 0. The size ǫ we need will depend on our
assumptions about the minimum number and size of flows in our network.

We can now directly translate this mathematical model into Nettle code. The
following defines a signal function that tracks the continuous dial u(t), assuming
the initial value u0, gain k , dead zone size eps, and a suitable definition of deaden
are defined elsewhere:

uSF = proc (f2, f3, rideal)→ do

let ractual = f2 / (f2 + f3)
let error = rideal − ractual
i ← integral −≺ deaden eps error

returnA−≺ k ∗ i + u0

We omit the overall controller, which is very similar to previous controllers.
While this controller does not yet perform well enough for a practical network, it
illustrates the possibility of programming with continuous quantities for network
control.

7 Related Work

NOX [2] is an open-source library for writing controllers for OpenFlow switches
in C++ and Python. Both NOX and Nettle provide a framework for writing
controllers that hide low-level details from the user, allow fine-grained control
over switch behavior, and provide an event-based programming model in which
users can extend the types of events in the system.

But Nettle provides a more declarative approach to event-based program-
ming by handlng entire message streams, instead of individual messages. Nettle
also has a more expressive language for composing controllers – in parallel as
in NOX, but also in sequence, and in many other combinations. The interac-
tions between controllers is made explicit through lightweight input and output
types of the components. In contrast, the interaction of NOX components re-
quires investigating the internals of each component, since modules may interact
imperatively by method invocation. Nettle also provides an elegant, declarative
mechanism for describing time-sensitive and time-varying behaviors, whereas in
NOX these must be simulated by delays and timers. Finally, Nettle has contin-
uous quantities that reflect abstract properties of a network, such as the volume
of messages on a network link. We are not aware of any other language that has
this capability.

Flow-based Management Language (FML) [6] is a declarative policy lan-
guage for configuring and managing enterprise networks, built on top of NOX.
An FML program is a Datalog-like set of rules that define when certain facts
hold of a flow, and ultimately define which forwarding actions should hold of a
given flow. Although FML is higher-level than Nettle, presenting a logic-based
abstraction that is convenient in some applications, many applications cannot be



expressed in FML. For example, FML has no way of expressing dynamic policies,
where forwarding decisions change over time. Nettle provides a more concrete
abstraction that exposes the message-passing interface to OpenFlow switches,
but within a strongly typed language, Haskell, and within an expressive FRP
layer.

The Declarative Networking [8] approach uses a Datalog-like language to
express routing protocols as recursive queries executing over a distributed col-
lection of routers. Declarative Networking thus targets a different type of system
than Nettle, since Nettle is aimed at OpenFlow-based systems in which switches
have no query-processing capabailities.

Acknowledgements This research was supported in part by STTR grant number
ST061-002 from the Defense Advanced Research Projects Agency.

References

1. http://www.openflowswitch.org/

2. http://noxrepo.org/wp/

3. Caesar, M., Rexford, J.: BGP routing policies in ISP networks. Network, IEEE
19(6), 5 – 11 (nov-dec 2005)

4. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming. pp. 263–273 (Jun 1997)

5. Griffin, T.G., Jaggard, A.D., Ramachandran, V.: Design principles of policy lan-
guages for path vector protocols. In: SIGCOMM ’03: Proceedings of the 2003 con-
ference on Applications, technologies, architectures, and protocols for computer
communications. pp. 61–72. ACM, New York, NY, USA (2003)

6. Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S.: Practical
declarative network management. In: WREN ’09: Proceedings of the 1st ACM
workshop on Research on enterprise networking. pp. 1–10. ACM, New York, NY,
USA (2009)

7. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Robots, arrows, and functional
reactive programming. In: Summer School on Advanced Functional Programming,
Oxford University. Springer Verlag, LNCS 2638 (2003)

8. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:
extensible routing with declarative queries. In: SIGCOMM ’05: Proceedings of
the 2005 conference on Applications, technologies, architectures, and protocols for
computer communications. pp. 289–300. ACM, New York, NY, USA (2005)

9. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration.
In: SIGCOMM. pp. 3–17. Pittsburgh, PA (Aug 2002)

10. Peterson, J., Hager, G., Hudak, P.: A language for declarative robotic program-
ming. In: International Conference on Robotics and Automation (1999)

11. Ramachandran, V.: Foundations of Inter-Domain Routing. Ph.D. thesis, Yale Uni-
versity (5 2005)

12. Voellmy, A., Agarwal, A., Hudak, P., Feamster, N., Burnett, S., Launchbury, J.:
Don’t configure the network, program it! domain-specific programming languages
for network systems. Tech. Rep. YALEU/DCS/RR-1432, Yale University (July
2010)


