
Appeared in 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12)

Performance Isolation and Fairness for
Multi-Tenant Cloud Storage

David Shue?, Michael J. Freedman?, and Anees Shaikh†
?Princeton University, †IBM TJ Watson Research Center

Abstract
Shared storage services enjoy wide adoption in commer-
cial clouds. But most systems today provide weak per-
formance isolation and fairness between tenants, if at
all. Misbehaving or high-demand tenants can overload
the shared service and disrupt other well-behaved tenants,
leading to unpredictable performance and violating SLAs.

This paper presents Pisces, a system for achieving
datacenter-wide per-tenant performance isolation and fair-
ness in shared key-value storage. Today’s approaches for
multi-tenant resource allocation are based either on per-
VM allocations or hard rate limits that assume uniform
workloads to achieve high utilization. Pisces achieves
per-tenant weighted fair shares (or minimal rates) of the
aggregate resources of the shared service, even when dif-
ferent tenants’ partitions are co-located and when demand
for different partitions is skewed, time-varying, or bot-
tlenecked by different server resources. Pisces does so
by decomposing the fair sharing problem into a combina-
tion of four complementary mechanisms—partition place-
ment, weight allocation, replica selection, and weighted
fair queuing—that operate on different time-scales and
combine to provide system-wide max-min fairness.

An evaluation of our Pisces storage prototype achieves
nearly ideal (0.99 Min-Max Ratio) weighted fair sharing,
strong performance isolation, and robustness to skew and
shifts in tenant demand. These properties are achieved
with minimal overhead (<3%), even when running at high
utilization (more than 400,000 requests/second/server for
10B requests).

1. Introduction
An increasing number and variety of enterprises are mov-
ing workloads to cloud platforms. Whether serving exter-
nal customers or internal business units, cloud platforms
typically allow multiple users, or tenants, to share the
same physical server and network infrastructure, as well
as use common platform services. Examples of these
shared, multi-tenant services include key-value stores,
block storage volumes, SQL databases, message queues,
and notification services. These leverage the expertise of
the cloud provider in building, managing, and improving
common services, and enable the statistical multiplexing
of resources between tenants for higher utilization.

Because they rely on shared infrastructure, however,
these services face two key, related issues:
• Multi-tenant interference and unfairness: Tenants

simultaneously accessing shared services contend
for resources and degrade performance.
• Variable and unpredictable performance: Tenants

often experience significant performance variations,
e.g., in response time or throughput, even when they
can achieve their desired mean rate [8, 16, 33, 35].

These issues limit the types of applications that can mi-
grate to multi-tenant clouds and leverage shared services.
They also inhibit cloud providers from offering differ-
entiated service levels, in which some tenants can pay
for performance isolation and predictability, while others
choose standard “best-effort” behavior.

Shared back-end storage services face different chal-
lenges than sharing server resources at the virtual machine
(VM) level. These stores divide tenant workloads into dis-
joint partitions, which are then distributed (and replicated)
across different service instances. Rather than managing
individual storage partitions, cloud tenants want to treat
the entire storage system as a single black box, in which
aggregate storage capacity and request rates can be elas-
tically scaled on demand. Resource contention arises
when tenants’ partitions are co-located, and the degree
of resource sharing between tenants may be significantly
higher and more fluid than with VM resource allocation.
Particularly, as tenants may use only a small fraction of a
server’s throughput and capacity,1 restricting nodes to a
few tenants may leave them highly underutilized.

To improve predictability for shared storage systems
with a high degree of resource sharing and contention,
we target global max-min fairness with high utilization.
Under max-min fairness, no tenant can gain an unfair
advantage over another when the system is loaded, i.e.,
each tenant will receive its weighted fair share. Moreover,
given its work-conserving nature, when some tenants use
less than their full share, unconsumed resources are di-
vided among the rest to ensure high utilization. While our
mechanisms may be applicable to a range of services with
shared-nothing architectures [31], we focus our design
and evaluation on a replicated key-value storage service,
which we call Pisces (Predictable Shared Cloud Storage).

1Indeed, at today’s Amazon S3 prices, a single server handling
50,000 GET reqs/second would cost $180/hour in request pricing alone.

Providing fair resource allocation and isolation at the
service level is confounded by variable demand to differ-
ent service partitions. Even if tenant objects are uniformly
distributed across their partitions, per-object demand is
often skewed, both in terms of request rate and size of
the corresponding (read or write) operations. Moreover,
different request workloads may stress different server
resources (e.g., small requests may be interrupt limited,
while large requests are bandwidth limited). In short,
simply assuming that each tenant requires the same pro-
portion of resources per partition can lead to unfairness
and inefficiency. To address these issues, Pisces makes a
number of contributions:

(1) Global fairness. To our knowledge, Pisces is the
first system to provide per-tenant fair resource sharing
across all service instances. Further, as total system ca-
pacity is allocated to tenants based on their normalized
weights, such a max-min fair system can also provide min-
imal performance guarantees given sufficient provisioning.
In comparison, recent commercial systems that offer re-
quest rate guarantees (i.e., Amazon DynamoDB [1] do
not provide fairness, assume uniform load distributions
across tenant partitions, and are not work conserving.

(2) Novel mechanism decomposition. Pisces intro-
duces a clean decomposition of the global fairness prob-
lem into four mechanisms. While operating on different
timescales and with different levels of system-wide visibil-
ity, these mechanisms complement one another to ensure
fairness under resource contention and variable demand.

(i) Partition Placement ensures a fair allocation by (re)-
assigning tenant partitions to nodes (long timescale).

(ii) Weight Allocation distributes overall tenant fair
shares across the system by adjusting local per-tenant
weights at each node (medium timescale).

(iii) Replica Selection load-balances requests between
partition replicas in a weight-sensitive manner (real-time).

(iv) Weighted Fair Queuing at service nodes enforces
performance isolation and fairness according to the local
tenant weights (real-time).

(3) Novel algorithms. We introduce several novel al-
gorithms to implement Pisces’s mechanisms. These in-
clude a reciprocal swapping algorithm for weight alloca-
tion that shifts weights when tenant demand for local re-
sources exceed their local share, while maintaining global
fairness. We use a novel application of optimization-
inspired congestion control for replica selection, which
complements weight allocation by distributing load over
partition replicas in response to per-node latencies. Fi-
nally, to manage different resource bottlenecks on con-
tended nodes, we enforce dominant resource fairness [9]
between tenants at the node level, while providing max-
min fairness at the service level. To do so, we extend
traditional deficit-weighted round robin queuing to han-
dle per-tenant multi-resource scheduling.

Tenant A Tenant B Tenant C

Node 2 Node 3

VM VM VM VM VM VM VM VM VM

3

Node 1

RR

wa1 wb1

GET 1101100

wc1

WeightA WeightB WeightC
Tenant D
VM VM VM

WeightD

PP
RS

FQ

wd1 wa2 wb2 wc2 wd2 wa3 wb3 wc3 wd3

Controller

WA

tenant partitions

de
m

an
d

wc4 : local weight

Figure 1: Pisces multi-tenant storage architecture.

(4) Low overhead and high utilization. Pisces is de-
signed to support high server utilization, both high request
rates (100,000s requests per second, per server) and full
bandwidth usage (Gbps per server). To do so, its mecha-
nisms must apply at real time without inducing significant
throughput degradation. Through careful system design,
our prototype achieves <3% overhead for 1KB requests
and actually outperforms the unmodified, non-fair version
for small requests. Commercial systems like DynamoDB,
on the other hand, typically target lower rates (e.g., more
than 10,000 reqs/s requires special arrangements [2]).

Through an extensive experimental evaluation, we
demonstrate that Pisces significantly improves the multi-
tenant fairness and isolation properties of our key-value
store, built on Membase [3], across a range of tenant
workloads. We also show that its replica selection and
rebalancing policies optimize system performance, even
as workloads shift dynamically. While this paper frames
the partition placement problem and implements a simple
greedy placement algorithm for our evaluation, we do not
fully explore and evaluate its design space.

2. Architecture and Design
We consider multi-tenant cloud services with partitioned
workloads (i.e., data sets), where each partition is disjoint
but may be replicated on different service nodes. Client
requests are routed to the appropriate node based on the
partition mapping, and the replica selection policy in use.
Ultimately, request arbitration for fairness and isolation
between tenants occurs at the service nodes.

Figure 1 shows the high-level architecture of Pisces,
a key-value storage service that provides system-wide,
per-tenant fairness and isolation. Pisces provides the se-
mantics of a persistent map between opaque keys (bit-
strings) and unstructured data values (binary blobs) and
supports simple key lookups (get), modifications (set),
and removals (delete). To partition the workload, the keys
are first hashed into a fixed-size key space, which is then
subdivided into disjoint segments.

Pisces enforces per-tenant fairness at the system-wide
level. As shown in Figure 1, each tenant t is given a

2

single, global weight wt that determines its fair share of
overall system resources (i.e., throughput). These weights
are generally set according to the tenant’s service-level
objective (SLO). To support service models with rate guar-
antees, the provider can simply convert a specified rate
into a corresponding system resource proportion (weight)
given the current capacity. The service provider can also
adjust the tenant weights, e.g., in response to new tenant
requirements or changes in system capacity.

Pisces allows a cloud service provider to offer a flexible
service model, in which customers pay for their consumed
storage capacity, with an optional additional tiered charge
for an “assured rate” service. Assured service users can
reserve a minimum service throughput—which, when
normalized, translates to a minimum fair share of the
global service throughput—with the price dependent upon
this rate. The system ensures this minimum rate, yet
also allows users to exploit unused capacity (perhaps
while charging an additional “overage” fee). Such multi-
tiered charging is common in many Internet contexts, e.g.,
network transit and CDNs often use burstable billing and
charge differently for rate commitments and overages.

While Pisces’s general mechanisms should extend to
other shared storage systems, our current prototype makes
some simplifying assumptions. It does not support more
advanced queries, such as scans over keys. It is designed
primarily to serve keys out of an in-memory cache for
high throughput, and only asynchronously writes data to
disk (much like Masstree [19] and the MyISAM storage
engine in MySQL). We do not focus on consistency issues,
and assume that a separate protocol keeps the partition
replicas in sync.2 Further, we assume a well-provisioned
network (e.g., one with full bisection bandwidth [5]); we
do not deal explicitly with in-network resource sharing
and contention, which has been considered by comple-
mentary work [26, 27, 28]. Finally, we assume a reason-
ably stable tenant workload distribution. While Pisces can
support highly-skewed demand distributions across par-
titions and can handle short-term fluctuations in demand
for particular keys, we assume that the relative popularity
of entire partitions shifts relatively slowly (e.g., on the or-
der of minutes). This provides the system with sufficient
time to rebalance partition weights when needed.

2.1 Life of a Pisces Request
Before a tenant can read (get) and write (set) data in the
system, a central controller first performs partition place-
ment (PP) to assign its data partitions (and their replicas)
to service nodes. Each tenant has its own key space, but
partitions from different tenants may be co-located on
the same service node. The controller then disseminates

2Our implementation is built on Membase [3], which asyn-
chronously replicates from a partition’s primary copy to its backup(s),
and by default reads only from the primary for strong consistency.

the partition mapping information to each of the request
routers. These request routers can be implemented in
client libraries running on the tenants’ (virtual) machines,
or deployed on intermediate machines (as illustrated in
Figure 1). The controller also translates each tenant’s
global fair-share into local shares at individual storage
nodes through weight allocation (WA).

When a client tenant, C, issues a request to Pisces, the
request router dispatches the request based on its key (e.g.,
1101100) and partition location to an appropriate server.
If enabled, replica selection (RS) allows the request router
to flexibly choose which replica to use (e.g., Nodes 1 or
4). Otherwise, the router directs the request to the primary
partition. Once the replica has been selected, the router
adds the request to a windowed queue of outstanding
operations—one queue per server, per tenant.

Since partitions from multiple tenants may reside on
this node, the tenants’ requests will contend for resources.
To enforce fairness and isolation, the service node applies
fair queuing (FQ) to schedule tenant requests accord-
ing to each tenant’s local weight (wc,4). When a request
reaches the server, the server adds the request to a queue
specific to that tenant (C). Every “round” of execution,
the server allocates tokens to each tenant according to
its local weight (wc,4), which it then consumes when pro-
cessing requests from the tenant queues. If the request
consumes more than the allocated resources, it must com-
plete on a subsequent round after tenant C’s tokens have
been refilled. This guarantees that each tenant will receive
its local fair share in a given round of work, if multiple
tenants are active. Otherwise, tenants can consume excess
resources left idle by the others without penalty.

2.2 System-wide Fair Sharing: Example
The challenge of achieving system-wide fairness can be il-
lustrated with a few scenarios, as shown in Figure 2. From
these, we derive design lessons for how Pisces should (1)
place partitions to enable a fair allocation of resources,
(2) allocate local weights to maintain global fairness, (3)
select replicas to achieve high utilization, and (4) queue re-
quests to enforce fairness. In the examples, two tenants (A
and B) with equal global shares access two Pisces nodes
with equal capacity (100 kreq/s). Each tenant should
receive the same aggregate share of 100 kreq/s.

Partitions should be placed with respect to demand
and node capacity constraints. For per-tenant fairness
to be feasible, there must exist some assignment of tenant
partitions that can satisfy the global tenant shares with-
out violating node capacities. Not all placements lead
to a feasible solution, however, as shown in Figure 2a.
Here, each tenant has the same skewed distribution of
partition demand: 40, 30, 20, and 10. Arbitrary partition
assignment can easily lead to capacity overflow: with A
and B both demanding 60 kreq/s for the partitions on the

3

first node, each tenant receives 10 kreq/s less than their
global share. If we take partition demand into account and
shuffle tenant B’s partitions between the nodes, then we
can achieve a fair and feasible placement. Although the
skew in this example may be extreme, Internet workloads
often exhibit a power-law (or Zipf) distribution across
keys, which can induce skewed partition demand.

Local weights should give tenants throughput
where they need it most. Even with a feasible fair par-
tition placement, if the local weights simply mirror the
global (uniform: 50 each) weights, as in Figure 2b, global
fairness may still suffer. Although fair queuing allows
tenant B to consume more than its local share (60 > 50) at
the first node when A consumes less (40 < 50), if tenant
A increases its demand, it will consume its remaining
local allocation. This will increase its global share and eat
into tenant B’s global share. However, if we adjust each
tenant’s local weights to match their demand (60/40 and
40/60), we can preserve fairness even under excess load.

Replicas should be selected in a weight-sensitive
manner. When replica selection is enabled, the fairness
problem becomes easier, in general, since each replica
only receives a fraction of the original demand. By spread-
ing partition demand across multiple servers, replica se-
lection produces smoother distributions that makes par-
titions easier to place. Further, once placed, the reduced
per-replica demand is easier to match with local weights.

However, the replica selection policy must be carefully
tuned, otherwise fairness and utilization may still diverge
from the system-wide goals. In Figure 2c, tenant A can
send requests to replicas on either node. However, since
its local weights are skewed to match the resident partition
demand, simple replica-selection policies are insufficient
to exploit the variation between the local weights. For
example, equal-split round robin would lead to a 10 kreq/s
drop in A’s global share. Instead, by adjusting per-tenant
replica selection proportions to reflect the local weights,
we can fully exploit replicated reads for both improving
performance and facilitating fairness.

Request queuing should enforce dominant resource
fairness. Up to this point, our examples have illustrated
multiple tenants with identical weights competing for
identical request rates, which implicitly assumes that all
requests have equivalent cost. In practice, requests may
be of different input or output sizes, and can activate
different bottlenecks in the system (e.g., small requests
may be bottlenecked by server interrupts, while large
requests may be bottlenecked by network bandwidth).
Thus, each tenant’s workload may vary accordingly across
the different resources, as seen in Figure 2d.

Each tenant’s resource profile shows the relative pro-
portion of each resource—bytes in, bytes out, and number
of requests—that the tenant consumes. These resources
are the likely limiting factor for writes, reads, and small

PP

4

50 50 40 40

ShareA = 90 ShareB = 90 ShareA = 100 ShareB = 100

Co-located high demand partitions
exceed node capacity (100)

place partitions according to
tenant shares and node capacities

60 40 40 60

tenant partition

de
m

an
d 403020 10Equal fair share = 100

Node capacity = 100
DemandA = DemandB = 100

WeightA = WeightB

= 1

unfulfilled demand
fulfilled demand

WeightA = WeightB : Equal fair share = 100

40 40 40 4030 3020 20 2020 30 30

(a) Random partition placement can lead to infeasibility

5

ShareA = 90 ShareB = 110

50 50 40 60 60 40 40 60

WB1

= 40
WA1

= 60
WB2

= 60
WA2

= 40
WA1 = WB1 = 50

ShareA = 100 ShareB = 100
Tenant B sends 1.5x demand (150)

and consumes extra share

WA2 = WB2 = 50

allocate local weights where
tenants need it most

WA

(b) Mirrored local weight allocation can impair fairness and performance

RS

ShareA = 90 ShareB = 100 ShareA = 100 ShareB = 100

6

50 40 40 60

RR
50 50

60 40 40 60

60 40

WB1

= 40
WA1

= 60
WB2

= 60
WA2

= 40
WB1

= 40
WA1

= 60
WB2

= 60
WA2

= 40

distribute requests according to
local weights

even request splitting leaves
capacity unused

(c) Equal split replica selection can degrade fairness and performance

Tenant A
out=50%

Tenant B
req=62. 5%

out

4
0.5 1

4
0.5

3.2

50
12.5

50
62.5

in req

6.3 7.8

outin req

Tenant A
out=55%

Tenant B
req=55%

Different resource bottlenecks
can lead to unfairness

enforce tenant shares based on
their dominant resource

ShareA1 = 50 ShareB1 = 62.5 ShareA1= 55 ShareB1= 55

FQ

4
0.5 1

4
0.5

3.2

55
13.8

44 55
6.9 6.9

outin req outin req

(d) Single-resource queuing can violate fairness

Figure 2: Illustrating the difficulty in achieving
system-wide fairness. Both tenants have the same
global weight (equal fair share); Share is the normal-
ized rate actually achieved by each tenant. Left-hand
figures correspond to settings lacking Pisces’s mecha-
nisms; right-hand figures apply its techniques.

requests, correspondingly. Tenant A is read bandwidth
bound, consuming 4% of the out bandwidth for every
1% of request capacity it uses. Tenant B, on the other
hand, is interrupt-bound for its smaller reads, consuming
more request resources (4%) than out bandwidth (3.2%).
Applying fair queuing to a single resource (bytes out)
gives each tenant a fair share of 50%, but also allows

4

tenant B to receive a larger share (62.5%) of its dominant
resource (requests). Instead, using dominant resource fair-
ness (DRF) [9] ensures that each tenant will receive a fair
share of its dominant resource relative to other tenants:
tenant A receives 55% of out bytes and tenant B receives
55% of requests, while out bytes remains the bottleneck.

3. Pisces Algorithms
Pisces implements four complementary mechanisms ac-
cording to the design lessons discussed above. Each mech-
anism operates on different parts of the system at different
timescales. Together, they deliver system-wide fair ser-
vice allocations with minimal interference to each tenant.

3.1 Partition Placement
The partition placement mechanism ensures the feasibility
of the system-wide fair shares. It assigns partitions so that
the load on each node (the aggregate of the tenants’ per-
partition fair-share demands) does not exceed the node’s
rate capacity. Since our prototype currently only imple-
ments a simple greedy placement scheme, here we only
outline the algorithm without providing details. The cen-
tralized controller first collects the request rate for each
tenant partition, as measured at each server. It then com-
putes the partition demand proportions by normalizing
the rates. Scaling each tenant’s global fair share by these
partition proportions determines the per-partition demand
share that each tenant should receive. Next, the controller
supplies the demand and node capacity constraints into
a bin-packing solver to compute a new partition assign-
ment relative to the existing one. Finally, the controller
migrates any newly (re)assigned partitions and updates
the mapping tables in its request router(s).

Partition placement typically runs on a long timescale
(every few minutes or hours), since we assume that tenant
demand distributions (proportions) are relatively stable,
though demand intensity (load) can fluctuate more fre-
quently. However, it can also be executed in response
to large-scale demand shifts, severe fairness violations,
or the addition or removal of tenants or service nodes.
While the bin-packing problem is NP-hard, simple greedy
heuristics may suffice in many settings, albeit not achieve
as high a utilization. After all, to achieve fairness, we only
need to find a feasible solution, not necessarily an optimal
one. Further, many efficient approximation techniques
can find near-optimal solutions [22, 29]. We intend to
further explore partition placement in future work.

3.2 Weight Allocation
Once the tenant partitions are properly placed, weight
allocation iteratively adjusts the local tenant shares (R)
to match the demand distributions. As sketched in Al-
gorithm 1, the weight-allocation algorithm on the con-

troller (i) detects tenant demand-share mismatch and (ii)
decides which tenant share(s) (weights) to adjust and by
what amount, even while it (iii) maintains the global fair
share. A key insight is that any adjustment to tenant
shares requires a reciprocal swap: if tenant t takes some
rate capacity from a tenant u on some server, t must give
the same capacity back to u on a different server. This
swap allows the tenants to maintain the same aggregate
shares even while local shares change. Each tenant’s local
weight is initially set to its global weight, wt, and then
adapts over time. To adapt to distribution shifts yet allow
replica selection to adjust to the current allocation, weight
allocation runs in the medium timescale (seconds).

Detecting mismatch: While it is difficult to directly
measure tenant demand, the central controller can monitor
the rate each tenant receives at the service nodes. Weight
allocation uses this information (D), together with the
allocated shares (R), to approximate the demand-share
mismatch that each tenant experiences on each node. We
tried both a latency-based cost function using the M/M/1
queuing model of request latency—i.e., ltn = 1 / (Rt

n −Dt
n)

for tenant t on node n—as well as a more direct rate-based
cost. Unfortunately, in a work-conserving system, it can
be difficult to determine how much rate R was actually
allocated to t, as it can vary depending on others’ de-
mand. For example, if a tenant t has weight wt

n = 1
4 on a

node with capacity cn, then its local rate under load is just
R̂t

n = 1
4 cn, even though Rt

n ≥
1
4 cn if t has excess demand

and other tenants are not fully using their shares. Instead,
by using the difference between the consumed rate and
the configured local share, et

n =
∣∣∣ Dt

n − R̂t
n

∣∣∣, we can largely
ignore the variable allocation and instead focus on the ten-
ant’s desired rate under full load (i.e., R̂). Fortunately, the
allocation algorithm can easily accommodate any convex
cost function to approximate demand mismatch.

Determining swap: Since the primary goal of Pisces
is fairness, weight allocation seeks to minimize the max-
imum demand-share mismatch (or cost). However, giv-
ing additional rate capacity to the tenant t that suffers
maximal latency necessarily means taking away capac-
ity from another tenant u at the same node n. If too
large, this rate (weight) swap may cause u’s cost to
exceed the original maximum. To ensure a valid rate
swap, the algorithm uses the linear bisection for latency,
take(t, u, n) =

(
(Ru

n − Du
n) − (Rt

n − Dt
n)
) /

2, or the min of
the differences for rate: min(et

n, e
u
n).

Maintaining fair share: Before committing to a final
swap, weight allocation must first find a reciprocal swap
to maintain the global fair share: if tenant t takes from
tenant u at node n, then it must reciprocate at a different
node. Given a reciprocal node m, the controller computes
the rate swap as the minimum of the take and give swaps,
swap = min

(
take(t, u, n), give(u, t,m)

)
, and translates the

rates into the corresponding local weight settings.

5

Algorithm 1 Weight Allocation: medium timescale (s)

T : tenants, N: nodes, W: global tenant weights,
R: local tenant resource share

function Controller.AllocateWeights(T,N,W,R)
D← monitor node rates(T,N)
C ← compute cost estimates(D,R)
R← compute weight swap(max(C))
reassign weight allocations(R)

Algorithm 2 Replica Selection: real-time (ms)
j: request/response, t: tenant, M: partition mappings
n: node, qt: per-tenant request queue

function RequestRouter.SendRequest(j, t,M)
p← get partition of(j)
for n ∈ M[t, p] do

if window wt
n > outstanding st

n then
send request(j, n)
st

n ← st
n + 1 return

if not sent then queue request(j, qt)

function RequestRouter.RecvResponse(j, t, n)
lresp,n ← latency of response(j)
st

n ← st
n − 1

update window(wt
n, lresp,n)

SendRequest(dequeue request(qt), t,M)

Algorithm 3 Fair Queuing: real-time (µs)
j: request, t: tenant, r: round, R: local tenant share

function ServiceNode.QueueRequests(R)
while j, t ← dequeue request() do

if t.state = inactive then
t.state← active
allocate tenant tokens(R)

if tokens available for t then
consume request resources(j, t)
if j unfinished then

queue request(j)
else

if resources left for j then
refund unused resources(j,t)

if no requests left for t then
t.state← inactive

else
queue exhausted request(j, t)
t.state← exhausted

if ∃ t ∈ T such that t.state = exhausted then
r ← r + 1 (increment round)
allocate tenant tokens(R)

3.3 Replica Selection
To maintain fairness while balancing load, request routers
distribute tenant requests to partition replicas in propor-
tion to their local shares (i.e., normalized weights). While
the controller (or alternatively, each server) could dissem-
inate the local share information to each request router,
Pisces avoids the need for explicit updates by exploiting
implicit feedback. Explicit updates could be prohibitively

expensive for a system with tens of thousands of tenants,
request routers, and service nodes.

As delineated in Algorithm 2, when a request router (or
client) sends a request, it round-robins between partition
replicas (nodes), consuming slots from their respective
request windows. Once the windows fill up, the request
router locally queues requests until server responses free
additional window slots. Due to per-tenant fair queuing at
the nodes, requests sent to nodes with a larger tenant share
experience lower queuing delay than nodes with a smaller
share. The request router uses the relative response la-
tency between replicas as a proxy for the size differential
between the local rate allocations. It thus adjusts the re-
quest windows according to the FAST-TCP [34] update:

w(m + 1)t
n = (1−α) · w(m)t

n + α ·
(

lbase
lest

)
Each iteration of the algorithm adjusts the window

based on how close the tenant demand is to its local rate
allocation, which is represented by the ratio of a desired
average request latency, lbase, to the smoothed (EWMA)
latency estimate, lest. The α parameter limits the window
step size. Thus, each request router makes proper adjust-
ments in a fully decentralized fashion: it only uses local
request latency measurements to compute the replica pro-
portions. The convergence and stability guarantees for
this approach follow from those given by FAST-TCP.

Because replica selection balances a tenant’s demand
distribution in real-time, the per-tenant demand at each
service node equilibrates before the next iteration of
the weight-allocation algorithm. Weight allocation then
attempts to match the local tenant shares (normalized
weights) to the new demand distribution. The conver-
gence and stability of this interlocking coordinate-ascent
algorithm arises from the convex nature of the problem.

3.4 Fair Queuing
Ultimately, system-wide fairness and isolation comes
down to mediating resource contention between tenants
at the individual storage nodes. To implement fair queu-
ing, Pisces uses the deficit (weighted) round robin [30]
(DWRR) scheduling discipline for its simplicity, low time
complexity, and bounded deviation from the ideal Gener-
alized Processor Sharing model. In DWRR, the basic unit
of work is called a token, which represents a normalized
request or quantum of work. Pisces applies Dominant Re-
source Fairness, as mentioned in Section 2.2, to translate
a token into a tenant-specific resource allocation vector.
Currently, our implementation accounts for the number
of bytes received, bytes sent, and requests (the latter for
request-bound workloads). The queuing algorithm can
also support additional resources like disk IOPs, which
we intend to explore in the future. Multiple tokens may
be needed to serve a large request, or a single token’s
resources may span several small requests. In any given

6

round of request processing, each tenant can consume up
to its weighted share of the total fixed number of available
tokens. By bounding the number of tokens per round, the
scheduler can ensure fairness within a definite timeframe.

Request processing in DWRR proceeds in rounds. Per
Algorithm 3, on each scheduling round, the scheduler
allocates tokens to each active tenant (those with queued
requests) in proportion to their local weight. As it pro-
cesses requests, the scheduler consumes resources from
the token resource allocation. If a request requires addi-
tional resources, the scheduler adds it back on the request
queue to mitigate head-of-line blocking. Otherwise, it
refunds the tenant with any unconsumed resources. If
a tenant runs out of tokens, the scheduler adds its out-
standing requests to an exhausted queue. The scheduler
advances the round and refreshes tokens only when every
tenant is either inactive (no work) or exhausted (work but
no tokens) and there is work to do in the next round.

To compute the proper Dominant Resource Fair (DRF)
shares, the scheduler on each node tracks the resource con-
sumption of each tenant. Periodically (every half second
in our prototype), it recomputes the resource allocation.
First, the scheduler determines each tenant’s resource
utilization

(
e.g., U t

bytes-out =
bytes-outt

bytes-outcap
)

and its dominant
resource

(
U t

dom =maxi(U t
i)
)
, using the latter to normalize

each utilization. The scheduler computes the limiting
DRF allocation by finding the minimum of the inverse of
the weighted utilization sums: mini

(1∑
i wtU t

i

)
. Any excess

resources are distributed equally among all tenants.
Despite the fact that Pisces only enforces DRF on a per-

node level, it still provides global max-min fair shares for
each tenant. When two tenants have different dominant
resources at a node, DRF allocates each tenant a larger
local share than it would have received if the tenants had
contended for the same resource. In other words, each
tenant’s share of its dominant resource is lower bounded
by the max-min fair share of a single common resource.
Thus, even if a tenant’s dominant resource varies from
node to node, its aggregate share will still equal or ex-
ceed its max-min fair share (proportion) of total system
resources. This allows Pisces to use a single weight to
represent the per-tenant global and local shares, rather
than a more complicated weight vector.

4. Pisces Optimizations
Pisces’s algorithms and its four part decomposition can
be conceptually derived as a distributed optimization
problem [24]. In designing Pisces, we consider a multi-
timescale decomposition of the fair-sharing problem into
the corresponding Pisces mechanisms. Such a formula-
tion allows us to craft the Pisces algorithms in a princi-
pled way and to make assertions about their feasibility,
optimality, stability, and convergence under the standard

t’

t

t’ → u @ n: 5 t’ → v @ n: 3

u → v @ m: 4

v →u @ o: 4

v → t @ o: 5u → t @ m: 3

vu

Figure 3: Reciprocal weight exchange modeled as a
Maximum Bottleneck Flow problem.

assumptions of convex optimization. In the remainder of
this section, we discuss additional design and implemen-
tation considerations in the Pisces weight allocation and
fair queuing mechanisms.

4.1 Finding Multilateral Weight Swaps
While a bilateral exchange between two tenants (as de-
scribed in Section 3.2) may suffice, a multilateral ex-
change may optimize local shares even further. We model
this exchange as a path through a flow graph, as shown in
Figure 3. Nodes in the graph represent tenants and each
directed edge represents a possible swap with capacity
equal to the swap rate (e.g., tenant u can take rate 4 from
tenant v at server m). The swap rate must be positive,
and it is computed as the maximum over all server nodes
where the edge’s tenants have co-located partitions.

The max latency tenant t is modeled as both the source
t′ and sink of the flow graph, as it must first take rate
to minimize its cost (latency or rate-distance) and then
reciprocate to maintain the global fair-share invariant. In
the example, both bilateral exchanges (t′ → u→ t and
t′→ v→ t) are bottlenecked by the edge with smallest
capacity (i.e., 3). Instead, weight allocation should choose
the multi-hop path (t′→u→v→ t) with bottleneck 4 that
corresponds to the Maximum Bottleneck Flow (MBF).
The MBF not only minimizes the max cost for t by the
greatest extent, but also reduces the cost for u and v.

On each iteration of the weight allocation loop in Al-
gorithm 1, the controller constructs the flow graph from
the collected node latency data and solves the MBF prob-
lem using a variant of Dijkstra’s shortest path algorithm.
Then, just as with bilateral swaps, the algorithm converts
the rates into weights and sets the local tenant shares ac-
cordingly. To avoid oscillations around the optimal point,
both the tenant latencies and the swap rate must exceed
minimal thresholds, in order to ensure that the weight
adjustment results in the desired rate change.

4.2 Getting Fair Queuing Right
Enforce queuing at the appropriate software layer.
Implementing the server DWRR scheduler may seem
straightforward at first, but it presents an engineering
challenge to do so with low overhead. The most natural
approach is simply to place tenant request queues right
after request processing in the application, as in Figure 4b.

7

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant data
partitions

tenant
connection

per-tenant queue

generic queue
tenant
request DWRR schedulingWT worker

thread

work stealing

(a) DWRR scheduler legend

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant
connection

per-tenant queue

generic queue

tenant data
partitions

tenant
request FQ schedulingWT worker

thread

(b) Per-request DWRR

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant
connection

per-tenant queue

generic queue

tenant data
partitions

tenant
request FQ schedulingWT worker

thread

(c) Per-connection

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant
connection

per-tenant queue

generic queue

tenant data
partitions

tenant
request FQ schedulingWT worker

thread

(d) Non-blocking

Figure 4: Scheduling per-connection (c) instead of
per-request (b) achieves fairness. Decoupling threads
and work-stealing (d) optimizes performance.

The problem, however, is that resources have already
been consumed (to receive bytes and parse the request),
which prevents the scheduler from enforcing fairness and
isolation for certain network I/O bound workloads. Thus,
the Pisces scheduler instead operates prior to application
request handling, as in Figure 4c, and mediates between
connections before any resources are consumed. Now,
however, the scheduler no longer knows how much work
remains in each connection queue. To handle this uncer-
tainty, the DWRR scheduler allocates a fixed number of
tokens from the tenant’s token pool when a connection is
dequeued for processing. As in Algorithm 3, any unused
tokens and resources are refunded back to the tenant.

Avoid queue locking at all costs. Even with the sched-
uler in the right place, we still need to worry about the
queue’s implementation and efficiency. Maintaining a
centralized active queue—per-connection DWRR in Fig-
ure 4c—is a natural design point for fair-queuing. A sin-
gle thread enqueues connections, and separate worker
threads pull tenant connections off this queue one-at-
a-time, servicing them by consuming token resources.
While simple and fair, this design is flawed: whenever
the active queue is empty, the worker threads must wait
on a conditional lock. We found that the overhead of this
conditional waiting and waking can reduce the processing
of small requests by over 30%. To combat this overhead,
Pisces uses a combination of non-blocking per-tenant con-
nection queues [21] and a distributed form of DWRR [18].
In this scheme, each worker thread handles its own set
of tenant connections by sub-allocating tenant tokens for
local use. If a worker thread’s connections have either
quiesced or run out of tokens, it tries to steal work or to-
kens from the other threads. If nothing can be stolen, then
the worker thread can safely advance the round, since all
tenants are either inactive or exhausted.

Eliminate intermediary queuing effects. While this
non-blocking design (Figure 4d) is highly efficient, it

faces one final barrier to max-min fairness: our mea-
surements showed good performance for small requests
bottlenecked by server interrupts, but poor fairness for
bandwidth-bound workloads. This arises for two reasons.
First, if the scheduler does not properly wait for write-
blocked connections (EAGAIN) to finish consuming re-
sources before advancing the round, then high-weight,
bandwidth-bound tenants could see their remaining to-
kens wiped out prematurely. Second, over-sized TCP
send buffers (128 KB) mask network back pressure. On a
1Gbps link with sub-ms delay, the bandwidth delay prod-
uct is on the order of tens of kilobytes. When multiple
tenant connections (>64) contend for output bandwidth,
writes can succeed even when the outbound link is con-
gested, which again causes the scheduler to advance the
round too soon. In response, Pisces uses small connec-
tion send buffers (6 KB), and the scheduler waits for
I/O-bound connections to finish consuming resources be-
fore advancing the round. To prevent worker threads from
excessive idling due to non-local network congestion, the
scheduler uses a short timeout (2 ms) that wakes all I/O
quiescent threads and allows the round to advance.

5. Prototype on Membase
We implemented Pisces on top of the open-source Mem-
base [3] key-value storage system (part of the Couchbase
suite). Built around the popular memcached in-memory
caching engine, Membase adds object persistence, data
replication, and multi-tenancy. Membase relies heavily
on the in-memory key-value cache to serve requests and
dispatches disk-bound requests to a background thread.
Key-value set or delete operations are committed first in
memory and later asynchronously written to disk.

Membase creates even-sized explicit partitions and di-
rectly maps the partitions to server nodes. It can replicate
and migrate partitions for fault tolerance, and synchro-
nizes primary and secondary replicas in an eventually
consistent manner. For evaluation purposes, we replaced
Membase’s uniform partition-placement mechanism with
one based on a simple greedy heuristic, with which we
pre-compute a feasible fair placement based on known
(oracle) tenant demand distributions.

We integrated Pisces’s fairness and isolation mecha-
nisms into Membase using a mix of languages. Imple-
menting the optimized multi-tenant, non-blocking DWRR
scheduler in the core server codebase required an exten-
sive overhaul of the connection threading model in addi-
tion to adding the scheduling and queuing code in C (3000
LOC). Replica selection was implemented in Java (1300
LOC) and integrated directly in the spymemcached [4]
client library. Our centralized controller, which imple-
mented both weight allocation and partition placement,
comprised approximately 5000 LOC of Python.

8

6. Evaluation
In our evaluation, we consider how the mechanisms in
Pisces build on each other to provide fairness and perfor-
mance isolation by answering the following questions:

• Are each of the four mechanisms (PP, WA, FQ and
RS) necessary to achieve fairness and isolation?
• Can Pisces provide global weighted shares and en-

force local dominant resource fairness?
• How well does Pisces handle demand dynamism?

We quantify fairness as the Min-Max Ratio (MMR) of
the dominant resource (typically throughput) across all
tenants, xmin

xmax . This corresponds directly to a max-min
notion of fairness.

6.1 Experimental Setup
To evaluate Pisces’s fairness properties, we setup a testbed
comprised of 8 clients, 8 servers, and 1 controller host.
Each machine has two 2.4 GHz Intel E5620 quad-core
CPUs with GigE interfaces, 12GB of memory, and run
Ubuntu 11.04. Pisces server instances are configured with
8 threads and two replicas per partition. All machines are
connected directly to a single 1 Gbps top-of-rack switch
to provide full bisection bandwidth and avoid network
contention effects. Similarly, replica selection and request
routing are handled directly in a client-side library to
minimize proxy bottleneck effects.

On the clients, we use the Yahoo Cloud Storage Bench-
mark (YCSB) [7] to generate a Zipf distributed key-value
request workload (α = 0.99). Each client machine runs
multiple YCSB instances, one for each tenant, to mimic a
virtualized environment while avoiding the overhead of
virtualized networking. Each tenant is pre-loaded with a
fully cached data set of 100,000 objects which are hashed
over its key space and divided into 1024 partitions. Object
sizes are set to 1kB unless otherwise noted. Tenant re-
quest workloads include read-only (all GET), read-heavy
(90% GET, 10% SET) and write-heavy (50% GET, 50%
SET). All clients send their requests over TCP.

6.2 Achieving Fairness and Isolation
To understand how Pisces’s mechanisms affect fairness
and isolation, we evaluated each mechanism in turn and
in combination, as shown in Figure 5. Starting with an
unmodified base system (Membase) without fair queu-
ing, we alternately add in partition placement (PP), which
we pre-compute using our simple greedy heuristic, and
replica selection (RS). We then repeat the combination
with fair queuing (FQ) and static (uniform) local weights
and complete the set of permutations with weight allo-
cation (WA + FQ). In each experiment, 8 tenants with
equal global weights attempt to access the 8-node sys-
tem with the same demand. For illustrative purposes, we

first present results for a simple GET workload, and sum-
marize results for more complex workloads in Table 1.
For the 1kB GET workload, the fair share (1.0 MMR) is
bandwidth-limited at 109 kreq/s per node.

Unmodified Membase: The unmodified system pro-
vides poor throughput fairness (0.57 MMR) between ten-
ants. This is largely due to the inherent skew in the tenant
demand distribution which, per Section 2.2, can lead to
an infeasible partition mapping. Figure 6a shows ten-
ants 3 and 7 contending for hot partitions at server 2,
while tenants 2, 4, and 6 collide on server 3 under the de-
fault, demand-oblivious placement. In contrast, Figure 6b
shows how packing the partitions according to demand
resolves the node capacity violations, which improves
fairness. Once replica selection is enabled, though, the
infeasibility issue largely disappears. By splitting request
demand across replicas, RS smoothes out the hot spots.
This relaxes partition bin-packing problem and allows
the system to achieve high fairness both with and with-
out PP (≥ 0.92 MMR). While PP and RS help improve
fairness, without request scheduling, Membase still fails
to provide performance isolation. In the bottom half of
Figure 5a, half the tenants double their demand, which
degrades fairness across the board.

Multi-tenant Weighted FQ: Unsurprisingly, with
weighted dominant resource fair queuing, fairness barely
improves under the default placement due to over-
contention for resources on the servers, as shown in Fig-
ure 5b. Even with PP, fairness fails to improve despite
the feasible placement, since the tenants still access each
server at different rates, as seen in Figure 6b. Although
FQ enforces local (equal) weights, without aligning those
weights to tenant demand, tenants with more weight than
fair partition demand on a given node can still consume
up to their limit and violate the global fair share. How-
ever, despite the need for weight tuning, fair queuing
still proves essential for performance isolation. Where
Membase falls flat under excess demand from the 2x ten-
ants, fair queuing maintains fairness in all conditions.
Unmatched weights may allow tenants to consume more
than their fair share, but the tenants cannot consume more
than their local allocation, which bounds the deviation
from global fairness. Again, by smoothing out hot spots,
replica selection resolves the demand imbalance and im-
proves fairness with or without PP (∼ 99 MMR).

Weight Allocation and FQ: Enabling weight allo-
cation unlocks Pisces’s full potential, especially when
replica selection is disabled (e.g. for consistency). By
adapting to local tenant demands, weight allocation opti-
mizes the system for fairness even when the placement is
infeasible (0.79 MMR), as seen in Figure 5c. However,
since the tenant shares are limited by the over-loaded
nodes, overall throughput diminishes. Under a feasible
placement, weight allocation is able to find the optimal

9

 30
 60
 90

 120
 150
 180 No FQ, No PP, No RS

MMR = 0.57

No FQ, PP, No RS

MMR = 0.95

No FQ, No PP, RS

MMR = 0.92

No FQ, PP, RS

MMR = 0.97

 0
 30
 60
 90

 120
 150

 10 20 30 40 50 60 70

N
o

Q
ue

ue
 (k

re
q/

s)

MMR = 0.36
 10 20 30 40 50 60 70

MMR = 0.49
 10 20 30 40 50 60 70

MMR = 0.75
 10 20 30 40 50 60 70 80

MMR = 0.68
2x demand
1x demand

(a) Membase (no queuing): Unfair unless partition placement or replica selection are enabled and provides no isolation.

 0
 30
 60
 90

 120
 150
 180

FQ, No PP, No RS

MMR = 0.59

FQ, PP, No RS

MMR = 0.60

FQ, No PP, RS

MMR = 0.98

FQ, PP, RS

MMR = 0.98

 0
 30
 60
 90

 120
 150

 10 20 30 40 50 60 70

Fa
ir

Q
ue

ue
 (k

re
q/

s)

MMR = 0.58
 10 20 30 40 50 60 70

MMR = 0.61
 10 20 30 40 50 60 70

MMR = 0.99
 10 20 30 40 50 60 70 80

MMR = 0.99
2x demand
1x demand

(b) Fair Queuing (equal local weights): Provides strong isolation, but struggles with fairness unless replica selection is enabled.

 0
 30
 60
 90

 120
 150
 180

WA, FQ, No PP, No RS

MMR = 0.79

WA, FQ, PP, No RS

MMR = 0.95

WA, FQ, No PP, RS

MMR = 0.98

WA, FQ, PP, RS

MMR = 0.99

 0
 30
 60
 90

 120
 150

 10 20 30 40 50 60 70

W
A

+
FQ

 (k
re

q/
s)

MMR = 0.85
 10 20 30 40 50 60 70

Time (s)

MMR = 0.97
 10 20 30 40 50 60 70

MMR = 0.99
 10 20 30 40 50 60 70 80

MMR = 0.99
2x demand
1x demand

(c) Weight Allocation + Fair Queuing: Achieves the fairness under all conditions, even under infeasible partition mappings (no PP).

Figure 5: System-wide fairness and isolation under a combination of Pisces mechanisms.

weights for the tenant demand on each server, as de-
picted in Figure 6c, while preserving global fairness (0.95
MMR). Since replica selection balances demand, weight
allocation has little additional affect on fairness, but re-
mains necessary to adapt to demand fluctuations. Excess
demand can actually heighten the awareness of demand
mismatch without PP, though, again, global throughput
suffers. For all other cases, weight allocation tunes fair
queuing to mediate between the tenants, which ensures
high fairness (≥ 0.97 MMR) and performance isolation.

In addition to throughput fairness and isolation, Pisces
also provides a measure of latency isolation as well. The
first two groups in Figure 7 show the average median
latencies for the 1x and 2x demand tenants in the previ-
ous experiments. The max error bar indicates the 95th
percentile, while the min error bar indicates the spread
between the tenants’ median latencies. Without fair queu-
ing, there is little isolation with median latencies for both
1x and 2x tenants hovering around 4 ms. Adding replica

selection improves isolation where the 2x tenants experi-
ence about 1.7 times the median latency as the 1x tenants.
However, the latency spread (3.2 ms) spans the entire gap
between them. With fair queuing, the median latencies
are far more well-behaved. The 2x tenants receive a 2.1
times latency penalty with minimal (<1 ms) spread.

For a more thorough evaluation of Pisces fairness, we
experimented over a range of log-normal distributed ob-
ject sizes, where each tenant has object sizes drawn from
a distribution with the same mean value (1kB or 10B)
and standard deviation (0, 0.5, or 1). We also varied
the workloads between all read-only, all read-heavy, or a
mix of read-only, read-heavy, and write-heavy. Table 1
summarizes these results for Pisces with all mechanisms
enabled. We measured mean bandwidth consumption for
1kB objects and mean request rates for 10B objects, as
well as median request latency (1ms averaged) and aver-
age fairness (in terms of bandwidth consumed or request
rates, respectively). For mixed workloads, values for both

10

Fixed Size Objects LogNormal 0.5 LogNormal 1.0

1kB Mean BW (Gbps) Lat (ms) MMR MMR ratio BW (Gbps) Lat (ms) MMR MMR ratio BW (Gbps) Lat (ms) MMR MMR ratio
Out/In GET/SET Out/In Out/In Out/In GET/SET Out/In Out/In Out/In GET/SET Out/In Out/In

Read-Only 6.95 2.48 0.99 1.73 6.93 3.67 0.99 1.57 6.94 5.20 0.99 2.15
Read-Heavy 6.87/1.30 2.99/2.15 0.98/0.98 1.56/1.58 6.82/1.32 3.34/2.62 0.99/0.98 1.32/1.29 6.90/1.35 4.70/3.45 0.99/0.99 1.65/1.57
Mixed 6.81/2.06 2.55/2.41 0.68/0.77 1.62/1.05 6.81/2.08 3.11/2.75 0.67/0.77 1.81/0.92 6.76/2.01 4.01/3.71 0.63/0.74 1.85/1.19

10B Mean Tput (kreq/s) Lat (ms) MMR MMR ratio Tput (kreq/s) Lat (ms) MMR MMR ratio Tput (kreq/s) Lat (ms) MMR MMR ratio
GET/SET GET/SET Requests Requests GET/SET GET/SET Requests Requests GET/SET GET/SET Requests Requests

Read-Only 3,160 3.37 0.97 1.33 3,151 3.52 0.97 1.26 3,104 3.36 0.96 1.35
Read-Heavy 2,567/285 3.04/8.19 0.98 1.28 2,593/288 2.96/8.30 0.98 1.42 2,540/282 3.00/8.49 0.94 1.34
Mixed 2,343/445 2.80/7.79 0.96 1.5 2,325/444 2.88/7.84 0.96 1.32 2,295/437 2.94/7.78 0.94 1.38

Table 1: Pisces performance over a range of log-normally distributed object sizes and GET/SET workloads

 0
 20
 40
 60
 80

 100
 120
 140

s1 s2 s3 s4 s5 s6 s7 s8

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Servers

(a) Uniform partition placement

 0
 20
 40
 60
 80

 100
 120
 140

s1 s2 s3 s4 s5 s6 s7 s8

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Servers

t1
t2

t3
t4

t5
t6

t7
t8

(b) Demand-aware placement

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Server 1

Server 2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60

Te
na

nt
 W

ei
gh

t

Server 3
 10 20 30 40 50 60

Time (s)

Server 4

t1
t2
t3
t4

t5
t6
t7
t8

(c) Local tenant weights evolving with weight allocation

Figure 6: Skewed demand can lead to infeasible par-
tition mappings (a). Placing partitions according to
tenant demand and node capacities ensures feasibility
(b). Weight allocation, in turn, adjusts the per-node
tenant weights to the demand (c) (4 of 8 shown).

 0

 5

 10

 15

 20

 25

 30

No RS RS No RS RS No RS RS

La
te

nc
y

(m
s)

1x demand
2x demand

1.3x demand
4x demand

WFQ(4:3:2:1)Fair QueuingNo Queuing

Figure 7: Fair queuing protects request latencies for
even and weighted tenant shares.

GET/SET (Out/In bandwidth) requests are shown.We also
include a fairness comparison in terms of the MMR ratio
between Pisces and unmodified Membase.

Pisces is able to achieve over 0.94 MMR fairness for
most size variations and workloads. Moreover, Pisces
exceeds the fairness of the unmodified base system by

more than 1.3 times for most cases as well. The mixed
workload for 1kB objects, however, proved to be a particu-
larly troublesome combination. While the read-heavy and
write-heavy tenants received their appropriate shares of
inbound write bandwidth (0.99 MMR), the read-only ten-
ants were able to consume more outbound read bandwidth
than either one, resulting in an overall fairness between
0.63 and 0.64 MMR. One reason for this is the head-of-
line blocking of a tenant’s read requests due to its write
requests fully consuming its current inbound bandwidth
allocation. This can push subsequent read requests to
the next scheduler round, despite having unconsumed
outbound bandwidth remaining. Since read-only tenants
never bottleneck on inbound bandwidth, they can fully
consume their share (and more) of outbound bandwidth.

To fix this issue, we modified the clients to prioritize
read requests over write requests when sending requests
to the servers. While this largely resolved the issue for
read-heavy tenants (> 0.9 MMR), the write-heavy ten-
ants remained obstructed by the bandwidth bottleneck.
The low MMR ratio for writes (bytes in) compared to
Membase is also attributable to this performance write-
bottlenecking variance. For 10B workloads, the prob-
lem disappears (≥ 0.95 MMR) since both read and write
workloads share a single bottleneck: request-rate without
suffering packet-level congestion effects. Pisces is able
to once again claim its fairness crown from Membase for
these cases (> 1.28x more fair than Membase).

6.3 Service Differentiation
So far, we have demonstrated that Pisces’s mechanisms,
working in concert, can achieve both isolation (FQ) and
nearly ideal even fair sharing (PP + WA or RS). We now
turn our attention to providing weighted fairness at the
global level (for service differentiation) and at the local
level (for dominant resource fairness).

Global Differentiation: In Figure 8a, the tenant are as-
signed global weights in decreasing order 4:4:3:3:2:2:1:1
to differentiate their aggregate share of the system re-
sources. Both with and without replica selection, Pisces
is able to achieve high global weighted fairness (> 0.9
MMR) for both in and out bandwidth under a 1kB request
read-heavy workload. Similarly, request latency remains
strongly isolated between the tenants. Since all tenants

11

 0

 40

 80

 120

 160

 200

WA, FQ, PP, No RS (GET)

 0

 4

 8

 12

 16

 20

WA, FQ, PP, No RS (SET)

 0

 40

 80

 120

 160

 200

 20 30 40 50 60 70 80 90 100

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

WA, FQ, PP, RS (GET)

 0

 4

 8

 12

 16

 20

 20 30 40 50 60 70 80 90 100
SE

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s)

WA, FQ, PP, RS (SET)

(a) Global weighted 90% GET / 10% SET throughput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

100x weight (10)
10x weight (40)

1x weight (50)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

100x weight (4)
10x weight (20)

1x weight (40)

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60

1x weight
2x weight

3x weight
4x weight

 0

 5

 10

 15

 20

 20 25 30 35 40 45 50 55 60

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s)

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s)

S
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s) Time (s)

(b) 64 tenant weighted thruput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

100x weight (10)
10x weight (40)

1x weight (50)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

100x weight (4)
10x weight (20)

1x weight (40)

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60

1x weight
2x weight

3x weight
4x weight

 0

 5

 10

 15

 20

 20 25 30 35 40 45 50 55 60

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s)

G
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s)

S
E

T
R

eq
ue

st
s

(k
re

q/
s)

Time (s) Time (s)

(c) 100 tenant weighted thruput

Figure 8: Subfigure (a) demonstrates global 4:3:2:1
weighted fair sharing for a read-heavy workload.
In (b) and (c), Pisces abides by the skewed tenant
weights on an 8 and 20 node cluster respectively.

generate the same demand, the lower weight tenants (3,
2, and 1) exceed their share by 1.3, 2, and 4 times respec-
tively. Per Figure 7, the latencies of these tenants closely
mirror their demand ratios. In both cases, the median (or
mean) latency spread is small (<1 ms), except for that of
the smallest-weight tenant (<2.7 ms).

To further stress the fairness properties of the system,
we ran two larger scale experiments where the number
of tenants far exceeded the number of servers, to mimic
more realistic service scenarios. In Figure 8b, each of
64 tenants reside on 4 out of the 8 available servers with
each server housing 32 tenants. To reflect the highly
skewed nature of tenant shares, i.e. a few heavy hitters
and many small, low-demand users, we configured the
tenant weights along a log-scale: 4 tenants with weight
100, 20 with weight 10, and 40 with weight 1. Within
each weight class, Pisces achieves > 0.91 MMR. Be-
tween classes, however, weighted fairness decreases to
0.56 MMR. This deviation is due to the limits of the
DWRR scheduler token granularity. With such highly
skewed weights, tenants in the smallest weight class (1)
only receive fractional tokens, which means their requests
are processed once every few rounds, which results in a
lower relative share. Fairness between the weight 100 and
weight 10 tenants, however, remains high (0.91 MMR).
In practice, to work around the limited resolution of the
WFQ scheduler, the service provider can cap the number
of tenants per server to ensure reasonable local weights
(token) and match the desired rate guarantees. Figure 8c

 0

 200

 400

 600

 800

 1000

 1200

 20 30 40 50 60 70 80

O
ut

 B
an

dw
id

th
 (M

bp
s)

Time

76% of effective bandwidth

1kB requests
10B requests

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 20 30 40 50 60 70 80

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time

76% of effective throughput

Bottleneck resource = request rate

(a) Dominant resource fairness between 1kB and 10B workloads

16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

BN Ratio

BN Perf

Class Fair

BN Ratio

BN Perf

Class Fair

BN Ratio

BN Perf

Class Fair
even 2xBW,1xRQ 1xBW,2xRQ

DRFQ
Single-WFQ

(b) Bottleneck ratio fairness and performance with and without multi-
resource queuing

Figure 9: Pisces provides dominant resource fairness
between bandwidth (10kb) and request-rate (10B)
bound tenants (a). Compared to single-resource fair
queuing, DRF provides a better share of the bottle-
neck resource (BN Ratio) and better performance
(BN Perf) over different tenant weights.

shows a larger scaled out experiment, with 100 tenants
resident on 6 of 20 servers (30 tenants per server). While
we see a qualitatively similar result, the actual fairness
degrades considerably (average 0.68 MMR between high
and medium weight tenants, 0.46 MMR across all classes).
However, this is mostly due to performance variance on
the scale-out testbed [25] arising from CPU scheduling
and network bottleneck effects, which affects the high-
weight tenants disproportionately. As a result, the low-
weight tenants can consume a larger share.

Local Dominant Resource Fairness: While Pisces
provides weighted fairness on the global level, we want
to ensure that each tenant receives a weighted share of its
dominant resource on the local level. To stress different
dominant resources and their corresponding bottlenecks,
we experimented with four tenants requesting 1kB ob-
jects (bandwidth limited), while another four operated on
10B objects (request-rate limited). Under even weighting,
Figure 9a shows how Pisces enforces fairness within each
dominant resource type (>0.95 MMR) and evenly splits
the dominant resource shares between types: the 1kB ten-
ants receive ∼76% of the effective outbound bandwidth
and the 10B tenants receive ∼76% of the effective request
rate.3 Although the tenants differ in dominant resource,
they share the same bottleneck resource (request rate in
this case). By computing the bottleneck resource ratio
(BNR) between the different dominant resource tenants,

3This is lower than the optimal rates since transmitting a 1kB
request takes longer than processing a 10B request.

12

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time

WA, FQ, PP, No RS

1x bursty
2x diurnal

1x constant
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time

WA, FQ, PP, RS

Figure 10: Pisces responds to demand dynamism ac-
cording to tenant weights.

we can directly determine the dominant resource shares as
shown in section 2.2 without having to estimate the effec-
tive resource rates. In this instance, the BNR is around 3.2,
which gives the 10B tenants 76% of the request rate, and
allows the 1kB tenants to consume 76% of the bandwidth.

Using BNR, we compare the dominant resource fair-
ness of the DRF-enabled scheduler versus the single-
resource (request) version for even weighted tenants, 2x
weighted 1kB (bw) vs. 1x weighted 10B (rq) tenants, and
1x weighted 1kB vs. 2x weighted 10B tenants. For the
even and 1x bandwidth, 2x request cases, the bottleneck
resource is request rate. In the 2x bandwidth, 1x request
scenario, the tenants bottleneck on bandwidth. As Fig-
ure 9b shows, the DRF scheduler outperforms the single
resource version in all cases, achieving the best normal-
ized BNR value and bottleneck resource performance
(BN Perf). The single-resource scheduler holds a slight
edge in fairness between tenants of the same dominant
resource class (Class Fair) in the even and 1x bandwidth,
2x request cases. As in the mixed workload experiments,
achieving the highest 10B request throughput required
additional packet prioritization. We enabled the linux
priority queue scheduling discipline to reduce the sched-
uler delay for small requests while waiting for connection
send buffers to clear for the 1kB tenants.

6.4 Dynamic Workloads
Dynamic workloads present a challenge for any system to
provide consistent, predictable performance. In Figure 10,
2 bursty demand tenants (weight 1), 2 diurnal demand
tenants (weight 2), and 4 constant demand tenants (weight
1) access the storage system. Initially, the tenants con-
sume less than the full system capacity which allows the
constant tenants to consume a larger proportion. As the
diurnal tenants ramp up between 0 and 20 seconds, they
begin to consume their share of throughput which cuts
into the excess share consumed by the constant tenants.
Around 20s, both the bursty tenants and diurnal tenants
ramp up to their full load, which results in a nearly 2 to 1
ratio, according to the tenant weights. The diurnal tenants
tail off around 50s along with the bursty tenants which al-
lows the constant demand tenants to, once again, consume
in excess of their fair share (∼ 80 kreq/s). Lastly, at 70s,
the bursty tenants issue one last barrage of requests, which
forces the constant tenants to share the throughput equally.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

La
te

nc
y (

m
s)

Throughput (kreq/s)

(a) Pisces µ-benchmark (1kB)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200 250 300 350 400 450 500

La
te

nc
y (

m
s)

Throughput (kreq/s)

(b) Pisces µ-benchmark (10B)

Figure 11: Median throughput versus latency micro-
benchmark with 99th-percentile error bars.

Both with and without replica selection enabled, Pisces is
able to handle the demand fluctuations and provide fair
access to the storage resources.

6.5 Efficiency and Overhead
To assess the efficiency and overhead, we ran a micro-
benchmark of a single WFQ Pisces node. In this experi-
ment, tenants issue requests at increasing rates to a single
service node. As shown in Figure 11, Pisces is able to
achieve over 106 kreq/s for 1kB requests, which is > 96%
of Membase throughput, with the same average request
latency (0.14 ms). For 10B requests, Pisces actually out-
performs Membase by 20% (485 vs. 405 kreq/s) with
lower average request latency (0.15 vs. 0.16 ms) due to
the DWRR scheduler’s work stealing mechanism.

7. Related Work
Sharing the network. Most work on sharing datacenter
networks has used either static allocation or VM-level
fairness. The static allocations by SecondNet [13] and
Oktopus [6] guarantee bandwidth but can leave the net-
work underutilized. While more throughput efficient,
Gatekeeper’s ingress and egress scheduling [27], Sea-
wall’s congestion-controlled VM tunneling [28], and Fair-
Cloud’s per-endpoint sharing [26], respectively provide
fairness on a per-VM, VM-pair, or communicating-VM-
group basis, rather than on a per-tenant basis.

NetShare [17] and DaVinci [14] take a per-tenant
network-wide perspective, but the former allocates lo-
cal per-link weights statically, while the latter requires
non-work-conserving link queues and does not consider
fairness. In contrast, Pisces achieves per-tenant fairness
by leveraging replica selection and adapting local weights
according to demand, while maintaining high utilization.

Sharing services. Recent work on cloud service re-
source sharing has focused mainly on single-tenant scena-
rios. Parda [11] applies FAST-TCP congestion control to
provide per-VM fair access, which Pisces uses as well, but
for replicated service nodes. mClock [12] adds limits and
reservations to the hypervisor’s fair I/O scheduler to differ-
entiate between local VMs, while Pisces’s DWRR sched-
uler operates on a per-tenant level. Argon [32] uses cache
management and time-sliced disk scheduling for perfor-
mance insulation on a single shared file server. Pisces

13

could adapt these techniques for memory and disk I/O re-
sources. Stout [20] exploits batch processing to minimize
request latency, but does not address fairness.

Several other systems focused on course-grained alloca-
tion. Autocontrol [23] and Mesos [15] allocate per-node
CPU and memory to schedule batch jobs and VMs, using
utility-driven optimization and dominant resource fair-
ness, respectively. They operate on a coarse per-task or
per-VM level, however, rather than on per-application
requests. In [10], the authors apply DRF to fine-grained
multi-resource allocation, specifically to enforce per-flow
fairness in middleboxes. However, their DRF queuing
algorithm relies on virtual time, and it scans each per-flow
packet queue for the lowest virtual start time.

8. Conclusion
This paper seeks to provide system-wide per-tenant
weighted fair sharing and performance isolation in multi-
tenant, key-value cloud storage services. By decom-
posing this problem into a novel combination of four
mechanisms—partition placement, weight allocation,
replica selection, and fair queuing—our Pisces system
can fairly share the aggregate system throughput, even
when tenants contend for shared resources and demand
distributions vary across partitions and over time. Our pro-
totype implementation achieves near ideal fairness (0.99
Min-Max Ratio) and strong performance isolation.

Acknowledgments. We thank Jennifer Rexford for help-
ful discussions early in this project. Funding was provided
through NSF CAREER Award #0953197.

References
[1] http://aws.amazon.com/dynamodb/faqs/, 2012.
[2] http://docs.amazonwebservices.com/

amazondynamodb/latest/developerguide/
Limits.html, 2012.

[3] http://www.couchbase.org/, 2012.
[4] http://code.google.com/p/spymemcached/, 2012.
[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity,

data center network architecture. In SIGCOMM, 2008.
[6] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM, 2011.
[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC, 2010.

[8] S. L. Garfinkel. An evaluation of Amazon’s grid computing ser-
vices: EC2, S3 and SQS. Technical Report TR-08-07, Harvard
Univ., 2007.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation of
multiple resource types. In NSDI, 2011.

[10] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource
scheduling for middleboxes. In SIGCOMM, 2012.

[11] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: Proportional
allocation of resources for distributed storage access. In FAST,
2009.

[12] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling
throughput variability for hypervisor IO scheduling. In OSDI,
2010.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network virtualization
architecture with bandwidth guarantees. In CoNext, 2010.

[14] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang.
Davinci: dynamically adaptive virtual networks for a customized
internet. In CoNext, 2008.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI, 2011.

[16] A. Iosup, N. Yigitbasi, and D. Epema. On the performance vari-
ability of production cloud services. In CCGrid, 2011.

[17] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese. Netshare:
Virtualizing data center networks across services. Technical Report
CS2010-0957, UCSD, 2010.

[18] T. Li, D. Baumberger, and S. Hahn. Efficient and scalable multi-
processor fair scheduling using distributed weighted round-robin.
In PPoPP, 2009.

[19] Y. Mao, E. Kohler, and R. Morris. Cache craftiness for fast
multicore key-value storage. In EuroSys, 2012.

[20] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren.
Stout: an adaptive interface to scalable cloud storage. In USENIX
Annual, 2010.

[21] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC,
1996.

[22] R. M. Nauss. Solving the generalized assignment problem: An
optimizing and heuristic approach. INFORMS J. Computing, 15
(Summer):249–266, 2003.

[23] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In EuroSys, 2009.

[24] D. Palomar and M. Chiang. A tutorial on decomposition methods
for network utility maximization. JSAC, 24(8):1439–1451, 2006.

[25] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A programmable
cloud-computing research testbed. Technical Report TR-912-11,
Princeton CS, 2011.

[26] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica. FairCloud: Sharing the network in cloud
computing. In SIGCOMM, 2012.

[27] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes.
Gatekeeper: supporting bandwidth guarantees for multi-tenant
datacenter networks. In WIOV, 2011.

[28] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing
the data center network. In NSDI, 2011.

[29] D. B. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem. Math. Prog., 62(1):461–474,
1993.

[30] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit
round-robin. Trans. Networking, 4(3):375–385, 1996.

[31] M. Stonebraker. The case for shared nothing. IEEE Database Eng.
Bulletin, 9(1):4–9, 1986.

[32] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R. Ganger.
Argon: Performance insulation for shared storage servers. In
FAST, 2007.

[33] J. Wang, P. Varman, and C. Xie. Optimizing storage performance
in public cloud platforms. J. Zhejiang Univ. – Science C, 11(12):
951–964, 2011.

[34] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: Motivation,
architecture, algorithms, performance. Trans. Networking, 14(6):
1246–1259, 2006.

[35] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce performance in heterogeneous environ-
ments. In OSDI, 2008.

14

http://aws.amazon.com/dynamodb/faqs/
http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/Limits.html
http://www.couchbase.org/
http://code.google.com/p/spymemcached/

	Introduction
	Architecture and Design
	Life of a Pisces Request
	System-wide Fair Sharing: Example

	Pisces Algorithms
	Partition Placement
	Weight Allocation
	Replica Selection
	Fair Queuing

	Pisces Optimizations
	Finding Multilateral Weight Swaps
	Getting Fair Queuing Right

	Prototype on Membase
	Evaluation
	Experimental Setup
	Achieving Fairness and Isolation
	Service Differentiation
	Dynamic Workloads
	Efficiency and Overhead

	Related Work
	Conclusion

