
Stratos: Virtual Middleboxes as First-Class Entities

Aaron Gember‡ Robert Grandl‡ Ashok Anand†
∗

Theophilus Benson‡ Aditya Akella‡

‡University of Wisconsin – Madison

{agember,rgrandl,tbenson,akella}@cs.wisc.edu

†Bell Labs, India

ashok.anand@alcatel-lucent.com

ABSTRACT

Enhancing application deployments in today’s clouds using

virtual middleboxes is challenging due to the lack of network

control and the inherent difficult in intelligently scaling mid-

dleboxes to cope with application demands. Our position

is that application and middlebox composition and scaling

must occur in concert, and addressing the challenges that

arise requires a framework that recognizes middleboxes as

first-class entities. In this paper, we present the design, im-

plementation, and evaluation of such a framework, called

Stratos, that is targeted for immediate deployment over- or

under-the-cloud today. In Stratos, tenants specify rich mid-

dlebox and application topologies using high-level abstrac-

tions, and desired middlebox traversals are realized using a

novel distributed programmable data plane design. To avoid

degradation in middlebox performance, middleboxes are au-

tomatically scaled using a greedy heuristic to meet applica-

tion demands. Under-the-cloud deployments using network-

aware flow distribution and placement provide further per-

formance and scaling benefits. Our evaluation of an over-

the-cloud deployment atop EC2 and simulation of an under-

the-cloud deployment shows Stratos provides significant ben-

efits to both tenants and providers.

1. INTRODUCTION

Cloud computing can enable enterprises to deploy appli-

cations flexibly and at scale while eliminating the costs and

overhead of physical infrastructure management. For some

applications migrating to a public or private cloud is a great

choice. However, many such applications remain locked-in

to existing data centers due to a mismatch between cloud

capabilities and enterprise requirements.

One major roadblock is the lack of ground-up support

for network-based services. Enterprises often rely on load

balancers, intrusion detection and prevention systems, WAN

optimizers, and a host of other network services appliances,

or middleboxes, to ensure application security and improve

performance. Private data centers enable the inclusion of

dedicated appliances at network choke points to provide these

services, albeit with significant configuration overhead. In

contrast, today’s clouds offer little ability to enrich the net-

work between servers with network-based services (§ 2).

At the basic level, cloud tenants desiring to include third-

party services or middleboxes with their application must

∗
Ashok Anand completed this work while at the University of Wis-
consin – Madison.

retrofit middlebox functionality into generic virtual servers,

realizing the necessary traffic redirection and splitting be-

tween virtual middleboxes (VMbs) using cumbersome con-

figurations. Even if these issues were addressed, the perfor-

mance offered by individual VMbs, and in aggregate by a

VMb chain, may not meet the application requirements for

two as-yet-unresolved reasons. First, tenants may have to re-

provision (scale up or down) VMbs dynamically, to account

for application elasticity and, potentially, to mesh with the

“pay-as-you-go” model of cloud computing. Second, ten-

ants may experience poor performance due to the provider’s

placement of the tenant’s VMbs within the cloud data center,

which may negate some of the benefits of deploying VMbs.

Our position is that addressing these issues in concert,

and paving the way for rich application deployments in the

cloud, requires a fresh view-point that recognizes virtual mid-

dleboxes as first-class entities. Middleboxes should be dis-

tinguished from generic compute resources and the appro-

priate support infrastructure needs to be developed, akin to

cloud providers establishing storage systems as separate ser-

vice offerings. Our view is not restricted to provider-offered

services, e.g., Amazon Elastic Load Balancing [1], or to

third-party-offered software, e.g., in the form of VM images;

we believe that tenants should be able to mix andmatch both.

To realize this goal, we design Stratos. Stratos’s cen-

tralized management plane allows a cloud tenant to flexi-

bly compose, manage or dynamically alter virtual topolo-

gies that contain arbitrary middleboxes. Stratos’s novel pro-

grammable data-plane then allows the framework provider

(either a third-party vendor or cloud provider) to configure

the desired functionalities for the tenant. Stratos incorpo-

rates a novel greedy heuristic to dynamically scale tenant

topologies by deploying the appropriate number of VMb

replicas that optimize the tenant’s performance at low cost.

When application elasticity causes middleboxes to become

bottlenecks, the heuristic identifies and removes bottlenecks

by “scaling up”, based on a controlled exploration of the

scaling space with decisions based solely on application re-

ported performance; knowing the low-level details of the

functions of individual middleboxes is not necessary. Simi-

larly, when demand is low, the heuristic scales down.

The above make Stratos amenable to an over-the-cloud

(OtC) deployment, where some of the key benefits of Stratos

can be realized without the active participation of the cloud

provider. We also present an under-the-cloud (UtC) ver-

sion of Stratos, where the cloud provider implements spe-

cific placement and traffic distribution mechanisms to sup-

1



Figure 1: Example middlebox and server topology

port Stratos and further enhance its benefits. In doing so, the

provider treats a tenant’s entire deployment chain as a sin-

gle unit, as opposed to making decisions on a per-VM basis

as is common today. We present a heuristic for smart “rack-

aware” distribution of traffic amongmiddlebox instances (sub-

sets of which could be deployed in different racks). We also

present a scheme for intelligent localized placement of a ten-

ant’s initial topology and later middlebox instances added

due to scaling. Both of these reduce inter-rack bandwidth

demands reducing the likelihood of the network becoming

a bottleneck. This improves overall tenant performance and

makes the scaling heuristic more effective, and it also im-

proves provider utilization.

We prototype Stratos atop Amazon’s EC2 cloud [1] to

evaluate our OtC approach. We also build a simulator to

study the UtC version. Our evaluations and simulations show:

• Arbitrarily rich tenant deployments can be realized us-

ing our distributed programmable data plane without

performance degradation under modest loads.

• Our greedy scaling heuristic adequately eliminates mid-

dlebox bottlenecks providing suitable end-to-end per-

formance in a 45% more cost-effective manner com-

pared to naive scaling approaches.

• Network-aware flow distribution andmiddlebox instance

placement in UtC deployments enables up to 30%more

tenants to have their demands fully served, allows 45%

of tenants to use the optimal number of middleboxes

instances, and leaves up to an additional 20% of VM

slots unused for providers to support future tenants.

2. MOTIVATION

Middleboxes play a key role in enterprises and private

data centers [32] with an application server’s traffic often

traversing multiple middlebox appliances to meet security,

performance, or other objectives. As an examlpe, traffic

may enter the data center through a WAN optimizer or re-

dundancy elimination middlebox (RE), be mirrored to an in-

trusion detection system (IDS), directed to a load balancer,

and assigned to one of several application servers (Figure 1).

With enterprises migrating their applications to the cloud, a

wide-variety of cloud-provided appliances (e.g., Amazon’s

Elastic Load Balancer [1]) or third-party VM images have

emerged to supply the desired middlebox functionality. De-

spite this, we don’t see enterprises deploy rich applications

with complex sets of VMb in the cloud (see [8] for anec-

dotes). Using examples of network services we tried to de-

ploy on EC2, we elaborate on the major challenges involved.

Composition: Cloud providers don’t currently enable ten-

ants to control network topology or routing between VMs [1,

9], and third-party network overlay services [12] only facili-

tate topologies containing directly addressed endpoints (in

contrast, on-path middleboxes are frequently transparent).

As a result, tenants are forced to install VMb images on

generic VMs and piece together tunnels, traffic splitters, and

other software to forward the desired traffic along the de-

sired paths. Finding the right third-party tools and correctly

configuring these tools and the operating system is hard. For

example, implementing the relatively simple set of middle-

box traversals shown in Figure 1 required several days of

trial-and-error to construct a working setup in Amazon EC2.

The setup relies on several third-party tools and configura-

tions strewn across the VMs.

Manual, distributed configurationmakesmanaging the de-

ployment (i.e., dynamically add or remove existing or new

functionality) challenging. A change in middlebox traversal—

to add new functionality or route around failed middleboxes—

requires modifying configurations on several VMs. For ex-

ample, adding a new replica of a TCP optimization middle-

box between the WAN optimizer and load balancer requires

configuration changes to the WAN optimizer(s), load bal-

ancer(s), and the new TCP optimizer. Distributed configu-

rations also fail to provide administrators with a complete

view of the implemented middlebox topology. This makes

it difficult to verify that security policies and optimization

objectives are correctly implemented: e.g., is a copy of all

traffic being directed to one of the IDSs?

Recent proposals [16, 14] where providers enable tenants

to specify topologies and control routing among their VM

instances ease some of this pain. But, tenants need to specify

all constituent VMs (e.g., all replicas of a middlebox), the

detailed topology, and traffic splitting policies on a per VM-

pair basis, which can be complicated at scale. Also, they

don’t accommodate off-path middleboxes (e.g., IDS). In all

cases, identifying and responding to bottlenecks is hard.

Chain Elasticity: Imposing middlebox traversals on ap-

plication traffic causes middlebox performance to effect end-

to-end application performance. Even if application servers

are capable of handling the current request load, an upstream

middlebox may be a bottleneck. For example, consider a

simple setup where a single client generates 300 web re-

quests per second for a web page served by a single web

server (see § 7 for details on this setup). Without any mid-

dleboxes between the client and server, the average request

latency is 4ms. Forcing traffic to traverse two resource lim-

ited middleboxes—an intrusion prevention system and an

RE system—increases this latency to 838ms, indicating one

or both of the middleboxes is a bottleneck. In the cloud,

where applications are frequently scaled based on load, be-

ing aware of and addressing such bottlenecks is essential to

realizing the benefits of application elasticity.

Aside from a few cloud provided appliances (e.g., Ama-

zon Elastic Load Balancer [1]), tenants are largely respon-

sible for identifying and addressing middlebox bottlenecks

themselves. Identifying which middlebox is bottlenecked

is complicated. First, generic monitoring, e.g., cloud pro-

vided traffic counters, are insufficient for gauging the per-

2



formance of middleboxes which do not operate with one

packet in, one packet out semantics, e.g., a WAN optimizer.

Second, bandwidth between middlebox and/or application

server VMs may be the bottleneck, as opposed to the capac-

ity of the middlebox itself. The likelihood of encountering

an oversubscribed link increases with the number of middle-

boxes traffic must traverse. More middleboxes also compli-

cates the task of determining where the bottleneck resides.

Provider support: The extent to which the above two

issues enable rich enterprise applications in the cloud de-

pend on the level of support offered by the cloud provider.

A key issue pertains to how the provider manages the re-

source footprint of a tenant’s deployment. Today, providers

provision individual VMs, and don’t explicitly manage the

compute and network resources consumed by the tenant’s

network services deployment. While solutions to traversals

and scaling can operate in such an environment, the benefits

tenants see in this “agnostic” setting can be limited. This is

especially true for scaling, e.g., if network becomes bottle-

neck, the scaling benefits would be limited by network.

With growing demand for network services, we believe

that cloud providers will be eventually forced to build better

support for managing the static and dynamic resource con-

sumption of a tenant’s deployment as a whole. The provider

must consider at least two issues to ensure optimal support

for end-to-end tenant performance and enable effective scal-

ing decisions: (1) How to place a tenant’s initial topology

and later middlebox instances added due to scaling, and (2)

How to distribute traffic among tenant middlebox instances.

We show how Stratos addresses the challenges outlined

about in the next three sections.

3. NETWORK SERVICE COMPOSITION

Stratos enables cloud tenants to easily manage, monitor,

and verify the middlebox traversals they desire without any

of the complexity discussed earlier. Instead of composing

middlebox and application server topologies through a smat-

tering of third-party tools and configurations, tenants de-

fine logical topologies using a set of high-level abstractions.

These topologies are then automatically transformed into a

set of forwarding rules that define how application traffic

flows between server and middlebox instances. The rules

are installed into a programmable virtualized data plane that

ensures traffic follows the correct paths. Through this com-

bination of high-level abstractions, a virtualized data plane,

and centralized control, tenants are able to deploy rich appli-

cation and middlebox topologies with even less effort than

would be required in a private data center. We begin by

presenting the topology abstractions tenants use to compose

middlebox and server topologies. Then, we discuss our pro-

grammable data plane design: a programmable software switch

distributed across VMs (OtC) or hypervisors (UtC).

3.1 Topology Abstractions

In Stratos, tenants specify middlebox traversal require-

Figure 2: Example chain with middlebox traversals

Figure 3: Large server and middlebox topology

Figure 4: Several chains with repeat elements

ments using a set of high-level topology abstractions that

allow tenants to easily codify existing topologies, such as

the simple example in Figure 1, and more complex ones.

We use the notion of a chain as the basic abstraction for

describing the direction specific traffic flows should take. A

chain begins with a source of traffic (e.g., Internet clients),

contains a sequence of one or more middleboxes the traffic

should traverse (e.g., IDS and load balancer), and ends with

a destination (e.g., a set of web servers). Chains are defined

using four types of elements: external, service, middlebox,

and select. External and service elements represent two dif-

ferent types of traffic sources/destinations: External is used

for hosts outside of the cloud, defined by a set of IP subnets.

Service is used for hosts inside the cloud, defined by a set of

VMs running a specific application. A specific type of mid-

dlebox functionality, which is provided by a set of one or

more VMs1, is represented by a middlebox element. Lastly,

selects are used to limit the traffic traversing (part of) the

chain to a specific subset of flows. A select defines a set of

header fields and values that identify the traffic subset. The

example shown in Figure 2 codifies the path taken by appli-

cation traffic in Figure 1. Note: each element has a name

and a set of subnets, header fields, or VMs it represents.

The set of middlebox traversals specified by a chain only

applies to communications between the external subnets and/or

service VMs specified in the elements at the start and end of

the chain. In the example above, only traffic destined for

the web server VMs will traverse the RE, IDS, and load bal-

ancer; all other traffic originating from the Internet and des-

tined for some other VM will be forwarded normally. This

avoids the need for tenants to specify chains for services

whose traffic requires no middlebox traversals.

A tenant’s entire set of required middlebox traversals is

specified using one or more chains. For example, the larger

logical topology shown in Figure 3 can be specified using

three chains, as shown in Figure 4. All of a tenant’s chains

are considered in aggregatewhen programming the data plane

(§ 3.2) and making scaling (§ 4) and placement (§ 5) deci-

1A cloud provider may also offer middlebox functionality as an
add-on service, e.g., Amazon Elastic Load Balancer [1].

3



Figure 5: Data plane using a single central software switch

sions. The same external, service, and middlebox elements

may exist on multiple chains if they should handle traffic

from multiple applications; this does not affect program-

ming of the data plane, but it complicates scaling and place-

ment. Also, chains may be specified as bi-directional or uni-

directional, to allow requests and replies to traverse the same

or different sequences of middleboxes.

3.2 Programmable Data Plane

The flow of traffic codified in tenant-defined chains is re-

alized through the use of a programmable data plane. Such

a data plane provides several advantages: (i) the flexibility it

provides maps well to the flexibility we desire to provide to

tenants, (ii) changes in traffic forwarding can be made easily,

allowing us to accommodate potentially frequent changes,

e.g., due to scaling, and (iii) it can be automatically man-

aged by a central controller capable of transforming tenant-

specified topologies into simple forwarding rules, avoiding

the need for tenants to directly manage routing policies.

A programmable data plane, and accompanying controller,

capable of forwarding traffic between middleboxes and ap-

plication servers can be realized in several different ways.

We first consider following two approaches.

1. Programmable hardware switches: The most intuitive

approach is to push programmability into the data center

network itself and install forwarding rules in each hardware

switch along a physical path between two VMs2, similar to

CloudNaaS [16] and PLayer [24]. However, the controller

requires significantly more complexity to compute and in-

stall forwarding rules across a large scale network topology,

and programmable switching may not be feasible in all cloud

data center switches, especially core switches, due to speed

constraints and limited rule storage capacity—solutions like

DIFANE [38] may be able to help. Moreover, this data plane

design is only feasible for an UtC deployment of Stratos

in a cloud data center where all hardware switches are pro-

grammable, e.g., OpenFlow compatible [27]. Although this

may be true in the future, we want to design a framework

that tenants or cloud providers could deploy today.

2. Central programmable software switch: The second ap-

proach we consider lies at the opposite end of the spectrum:

a single central programmable software switch for each ten-

ant (Figure 5). With this approach, all communication be-

tween a tenant’s VMs occurs via the tenant’s software switch—

running in a regular VM (OtC) or on a provider-managed

server (UtC). Each of a tenant’s VMs establish a single tun-

nel to the switch, and all traffic is sent/received via the tun-

nels based on simple forwarding rules derived from the tenant-

2We use the term “VM” to refer to both application servers and
middleboxes, as we expect both to run on generic virtual servers.

Figure 6: Distributed programmable switch

specified chains. No routing or hardware changes are re-

quired in the data center network.

We initially adopted the single-central-switch approach

due to its simplicity: having a single point of forwarding

significantly simplifies the configuration and monitoring of

middlebox traversals. However, bandwidth limitations and

lack of reliability outweigh these benefits. Experiments show

that a software switch running OtC in a large Amazon EC2

instance can become a bottleneck with as few as three pairs

of small instances communicating across the switch and with

only one pair of large instances, due to the bandwidth con-

straints of the VM running the switch. We could use multiple

software switches, tunneling traffic from a few VMs to each

switch, but this does not guarantee the bandwidth bottleneck

is eliminated; we still may require high bandwidth for com-

munication between switches, which in the worst case de-

volves into using one software switch per-VM. Moreover, if

a software switch fails, then all communication between a

tenant’s VMs ceases. So we discard this approach.

3.2.1 Distributed programmable software switch

In Stratos, we adopt a programmable data plane design

that overcomes the limitations of other approaches by divid-

ing the functionality of a single programmable switch across

multiple entities, an approach we refer to as distributed pro-

grammable switch. The same design applies in both OtC and

UtC deployments of Stratos. The only difference is that an

OtC deployment implements the necessary switch function-

ality in each of the tenant’s VMs, while an UtC deployment

pushes this functionality to the hypervisor.

Our design is based on the principles employed by a sim-

ple hardware switch with three main components: ports,

a switch fabric, and a forwarding information base (FIB).

Ports receive packets from the network, perform a lookup in

the FIB using packet header fields to determine the egress

port(s), and place the packets on an appropriate queue. The

switch fabric transfers packets from a queue at the ingress

port to an output queue at the egress port, and the egress port

sends the packets into the network.

Our programmable distributed switch functions the same

as this simple hardware switch, except all three components

no longer exist on a single piece of hardware. Instead, we

move the logic for each switch port to each of a tenant’s VMs

(OtC), or to the hypervisor on which the VM resides (UtC),

and we rely on the existing data center network to serve as

the switch fabric. The FIB is divided among the ports, giving

each port the entries necessary for its proper functioning.

4



This division of functionality is shown in Figure 6.

The switch fabric, i.e., the network, transfers packets across

it using normal network routing. Thus, Stratos need not be

concerned with the “scheduling” of the fabric, as the paths

and ordering of transfers across the fabric will be chosen

by the IP routing scheme already in place in the network.

However, the switch fabric does need to know the egress

port, i.e., the VM or hypervisor to which the packet should

be sent. The ingress port communicates this information

by encapsulating a packet in an IP packet destined for the

VM/hypervisor where the egress port resides.

A central controller transforms the tenant-specified chains

into entries for the FIB. The FIB entries follow the Open-

Flow standard [27], with each entry containing the Ether-

net, IP, and TCP/UDP header fields on which to match, the

ingress port, and an action to apply—typically, forward out

a specific egress port. Dividing the entries among the ports

is as simple as adding entries with a given ingress port to the

FIB at that port. Although, the FIB entries are divided be-

tween ports, the Stratos controller still treats the FIB as if it

was a single table on a single switch.

4. ELASTICITY

The ability to dynamically scale server capacity is needed

is a major advantage of deploying applications in the cloud.

However, for application scaling to achieve the desired out-

come, middleboxes traversed by application traffic must also

be scaled to avoid becoming a performance bottleneck.

The central challenge (§2) is decidingwhichmiddlebox(es)

to scale. Several factors complicate this decision. First, dif-

ferent types of middleboxes require different CPU and mem-

ory resources. Several VMs of the same size providing dif-

ferent middlebox functionality will be able to handle vary-

ing traffic volumes in a given time frame. Second, middle-

box instances (VMs) will be placed at different locations and

traffic between them will be routed over different network

links; congested links will result in lower volumes of traffic

than their uncongested counter-parts. Finally, tenants may

construct paths with several sequential middlebox traversals

and use middleboxes from the cloud provider [8] or bring

their own third-party provided middleboxes [3, 4, 11] to the

cloud. Thus, a functionality-independent metric, e.g., per-

packet processing time, must be used to decide which mid-

dlebox is the bottleneck. Unfortunately, the complexity of

most middleboxes, and the presence of confounding network

factors like TCP flow control, make it difficult to identify and

monitor such a metric.

In this section, we first consider several simple approaches

to identify which middleboxes to scale, but we show that

these solutions are ineffective or impractical. Instead, we

design a greedy heuristic that leverages a measure of end-to-

end application performance to make scaling decisions. We

conclude by discussing changes in packet forwarding that

must occur to take advantage of scaled out middleboxes.

4.1 Bottleneck Identification

There are several simple approacheswe could leverage for

deciding which middlebox(es) to scale, but these solutions

are either inefficient or impractical:

• Scale all middleboxes The simplest solution for a bot-

tlenecked path is to scale all middleboxes on that path.

This guarantees that bottleneck will be eliminated, or

at the least reduced, assuming all middleboxes on the

path are successfully scaled. However, this potentially

wastes significant resources and imposes unneeded costs,

especially, when only one middlebox is bottleneck.

• Rely on functionality-specificmonitoringUsing a cus-

tom metric for each type of middlebox based on its

semantics—e.g., current number of connections being

tracked by an IPS—provides a detailed view of how

well each middlebox is performing. However, utiliz-

ing these metrics to inform scaling decisions requires

knowledge of middlebox semantics. In OtC case, the

tenants may not know the middlebox semantics. Even

in UtC case, the cloud provider may not know the mid-

dlebox semantics, since it may use third-party middle-

boxes. Furthermore, the performance of different types

of middleboxes may not be comparable directly.

• Rely on per-packet processing time estimates The

average per-packet processing time required at each

middlebox provides a common, semantic-independent

metric. If a path is determined to be bottlenecked, the

middleboxwith the greatest increase in per-packet pro-

cessing time is likely the culprit. However, not all mid-

dleboxes follow a one packet in, one packet out con-

vention, e.g., a WAN optimizer. It is unclear how to

calculate a meaningful per-packet processing time for

middleboxes which do not follow this convention.

• Scale based onCPU loadAlternatively, we could lever-

age CPU utilization as a common metric that is in-

dependent of functionality. However, purely scaling

based on CPU utilization ignores other potential causes

of middlebox bottlenecks: high memory utilization,

e.g., in TCP optimization middleboxes waiting for out

or order packets, or congested network links, which are

undetectable through metrics related to the middlebox

instance itself.

Ultimately, a tenant is concerned (i) their application’s

performance and (ii) the cost of running their middleboxes.

The former concern motivates a heuristic that bases scal-

ing decisions on an application-reported performance met-

ric, scaling out middleboxes when performance noticeably

degrades. We believe most applications already track such

metrics, e.g., requests/s, and could easily export them to our

framework. The later concern, can be addressed through

efficient scaling decisions, i.e., only keeping middlebox in-

stances when they enhance application performance.

4.1.1 Scaling Heuristic

5



We design a greedy heuristic that leverages both an application-

reported metric and the tenant-specified chains to efficiently

examine the space of potential middlebox scaling. The scal-

ing process can be initiated by a significant change in appli-

cation performance for a sustained period of time.

Our heuristic performs a set of scaling trials, scaling each

middlebox in a tenant-specified chain one (VM) instance at a

time. We begin by adding a new instance of the first middle-

box in the chain, monitoring for changes in the application-

report metric over a fixed time window. If application per-

formance improves beyond some threshold, then the new in-

stances is permanently added to the tenant’s topology. We

continue to add new instances of the middlebox as long as

we see improvement. No improvement means that the mid-

dlebox is not a bottleneck, so we discard the new instance.

We then move to the next middlebox in the chain and re-

peat the process. After scaling any later middlebox in the

chain, any of the earlier middleboxes may have become a

new bottleneck, causing application performance to remain

degraded. In this case, we make another pass over the chain.

Scaling terminates either when we reach the end of the chain

and application performance is suitable, or when a pass over

the chain does not result in any new instances being perma-

nently added. Scaling may also terminate early if adding

more instances would exceed a budget limit set by the ten-

ant.

Scale down occurs in a similar fashion. We start at the

beginning of a chain and remove one instance at a time from

the tenant’s topology. If no significant drop in application-

reported metric occurs, then the middlebox instance must

not be needed to maintain the current level of performance,

so we permanently discard the instance. Otherwise, the in-

stance is re-added to the topology and we move on to the

next middlebox in the chain. To prevent a constant loop of

scale up and scale down, we wait for some time before at-

tempting scaling on a chain again.

We choose to scale only one middlebox at a time because,

in most cases, no two middleboxes will be simultaneously

and equally bottlenecked. In the rare event we encounter this

case, we can perform a “scale all” trial where we add a new

instance of every middlebox at the same time. If application

performance improves, we add all the instances to the ten-

ant’s topology, and then perform a scale down pass over the

chain to remove instances which were added unnecessarily.

The heuristic readily extends to large tenant topologies

consisting of many chains because scaling occurs with each

chain individually. Hence, the maximum time required for

scaling is constrained by the length of the chain being scaled,

which anecdotal evidence suggests will usually be only a few

elements. Moreover, multiple chains can be scaled in paral-

lel.

4.2 Distributing flows among middleboxes

When our heuristic scales a particular type of middle-

box on a chain, traffic must be redistributed across middle-

(a) Uniform scheme (b) Network-aware distribution

Figure 7: Network-aware flow distribution reduces inter-

rack links usages

box instances to leverage the new capacity. Some middle-

boxes may be stateful, so packets belonging to the same flow

should still traverse same middlebox instances.

We first discuss the uniform scheme for flow distribution

amongmiddlebox instances, and then we discuss the network-

aware scheme for flow distribution. Finally, we discuss how

we achieve such distribution in practice and how we transi-

tion to new flow redistribution after scaling.

Uniform Flow Distribution. In the uniform scheme, each

intermediate middlebox instance splits flows equally among

all middlebox instances corresponding to the subsequentmid-

dlebox element in the chain. Figure 7a shows an example

of how flows are distributed among multiple middlebox in-

stances after scaling. The logical topology is a chain con-

necting IPS to RE and then RE to servers. After scaling, we

have 3 IPS instances and 4 RE instances. So if N flows ar-

rive at each IPS instance, then theseN flows gets distributed

equally among the RE instances. Thus each RE instance gets
3N
4
flows. This solution can be used OtC.

Network-aware Flow Distribution. When Stratos is de-

ployedUtC, the cloud provider can distribute flows in a network-

aware fashion, as it knows where VMs are placed. In Fig-

ure 7a, the uniform scheme results in 3N
2
flows traversing

the over-subscribed inter-rack links. Figure 7b shows an al-

ternate scheme, where only N
2
flows traverses the inter-rack

links, while each RE instance still gets 3N
4
flows as before.

Thus, smart flow distribution can significantly reduce inter-

rack flows, thereby reducing the likelihood of the network

becoming a bottleneck. This improves the performance ex-

perienced by tenants and enables the cloud provider to sup-

port more tenants.

We now describe a linear program formulation for the

problem of distributing flows among the subsequent middle-

box instances in the chain. Assume there are 1..M mid-

dleboxes in the chain, and rth middlebox has kr instances

(mr,1...mr,k). For each intermediatemiddlebox instancemr,i,

we introduce a variable xr,i,j representing the fraction of

traffic distributed to subsequent middlebox instancemr+1,j ,

such that
∑

j xr,i,j = 1 and 0 ≤ xr,i,j ≤ 1.
If there areN flows entering the chain, then each middle-

box instance in the rth stage should get N
kr
flows for load

6



balancing.3 So, N
kr

×
∑

i xr,i,j = N
kr+1
.

For every connection betweenmr,i andmr+1,j , we spec-

ify a constant cr,i,j , which is 1 if the connection traverses
inter-rack links and 0 if the connection is intra-rack.4 Then
the objective function is to minimize the total inter-rack com-

munications, i.e.,min(
∑

r,i,j
N
kr

× cr,i,j ×xr,i,j). The solu-
tion, xr,i,j , gives the fraction of flows departing middlebox

instance mr,i that should be passed to middlebox instance

mr+1,j .

We obtain the similar formulation for middleboxesM..1
in the reverse chain, and use variable yr,i,j to represent the

fraction of traffic distributed to the subsequent middlebox

instancemr−1,j in the reverse path.

In case of bi-directional chain, the forward path and re-

verse path of any flow should traverse same set of middle-

boxes; this requires a new constraint that number of flows

traversing from middlebox instance mr,i to mr+1,j should

be same as the number of flows traversing from middlebox

instancemr+1,j tomr,i, i.e.,
N
kr

× xr,i,j = N
kr+1

× yr+1,j,i.

Now instead of solving xr,i,j and yr,i,j separately, we op-

timize them together, i.e.,min(
∑

r,i,j
N
kr

× cr,i,j × xr,i,j +
∑

r,i,j
N
kr

×cr,i,j ×yr,i,j) and get the solutions for xr,i,j and

yr,i,j .

Achieving Flow Distribution in Practice. We now dis-

cuss how flows get distributed across different middlebox

instances as per the fractional solution. In one approach, the

first packet of every new flow from a middlebox goes to the

Stratos controller (§3.2), and the controller selects the next

middlebox instance for that flow. The subsequents packets

of the same flow traverse same set of middlebox instances.

For selecting a middlebox instance, the controller keeps a

count of flows5 spread across middlebox instances. When

a new flow comes, the controller chooses a middlebox in-

stance such that the flow distribution approaches the frac-

tional solution. This works fine for large flows, but the over-

head of the first packet traversing through the controller is

large for small flows. Instead, we take an alternate approach

where the subsequent middlebox instance for a new flow is

decided at the vswitch itself on the host where the VMb re-

sides. This eliminates the overhead of going to the controller

for every new flow. Once the decision is made, an entry for

the new flow is inserted into the vswitch so that the subse-

quent packets traverse the same set of middleboxes.

In the case of bi-directional chains, requests and responses

should traverse the same set of middleboxes. To handle this,

whenever we add an entry for the new flow in the vswitch,

we also add an entry for the reverse path of the new flow in

the vswitch.

3We assume the capacity of all instances of a given middlebox
mr,1...mr,k are equivalent.
4To provide a more optimal solution, cr,i,j could instead quantify
the link bandwidth available for the tenant’s traffic.
5We can also extend it to do more sophisticated load balancing,
e.g., based on the weighted sum of flows, where weights are as-
signed based on the number of packets in each flow.

When a new middlebox instance is added for scaling, the

fractional solution is recomputed. The challenge here is to

move from the existing fractional solution to the new frac-

tional solution quick enough, so that the middlebox bottle-

neck is resolved quickly. Initially, we assign most of the new

incoming flows to the added middlebox instance while being

careful not to make it a bottleneck. We keep count of flows

(new + existing) on all middlebox instances, and as the flow

distribution comes closer to the new fractional solution, the

new incoming flows are distributed as per solution.

5. PLACEMENT

Where we place the middleboxes can significantly affect

the performance of applications in the cloud. If not placed

carefully, they may cause the network to be a bottleneck,

worsen the performance of applications and reduce any scal-

ing benefits. We discuss the importance of middlebox place-

ment below.

• End-to-end application performance. The placement

of application and middlebox VMs within a cloud data

center determines which network links an application’s

traffic must traverse. If we don’t place middlebox VM

in the same rack as the application VM, it will cause

application traffic to traverse oversubscribed inter-rack

links that can impact end-to-end performance.

• Effectiveness of middlebox scaling. The volume of

traffic a middlebox instance can process depends on

both the capacity of the VM and the available band-

width. A middlebox VM which is reachable only via

oversubscribed links will be bandwidth limited, caus-

ing it to process less of a tenant’s traffic. Thus, the per-

formance benefit of this additional middlebox instance

will be reduced, and the added cost for the instance

may outweigh the benefits it provides.

• Network performance across tenants. When a ten-

ant uses more bandwidth along a shared link, e.g., to

direct traffic to a middlebox in a different rack, less

bandwidth will be available for other tenants. Placing

a tenant’s VMs in a way that reduces the use of shared

links, e.g., placing both the middlebox and application

VMs in the same rack, reduces the likelihood of a ten-

ant degrading the performance experienced by others.

When Stratos is deployed OtC, tenants have little control

over placement. They are subject to the existing placement

decisions of cloud providers, which tend to focus on the

placement of individual VMswithout regard to the traffic be-

tween them. There are some limited options for control over

placement in OtC deployments. Recent research [31] has un-

covered choices that provide some influence over placement

in Amazon EC2. First, VMs of the same size fall within

the same set of subnets and are likely to be more closely

placed than VMs of different sizes; a new VM should there-

fore be made the same size as the VMs which immediately

precede or follow it on tenant-specified paths. Second, VMs

7



which are launched at about the same time are more likely

to be placed nearby; hence, VMs on the same path should be

launched as close together in time as possible. While it may

be possible to leverage these techniques to exercise control

over placement, it is not clear how generic they are.

UtC deployments of Stratos allow for many more place-

ment options, resulting in substantially more performance

and scaling benefits. The key is to consider a tenant’s topol-

ogy as a whole when making placement decisions. This

includes consideration of which VMs traffic flows between

and the volume of traffic between them—both of which can

be garnered from the tenant-specific chains. Moreover, place-

ment should consider the fact that middleboxes (and applica-

tions) will likely be scaled in the future, requiring the place-

ment of VMs that communicate with already placed VMs.

We first present an algorithm for the initial placement of a

tenant’s VMs; then we present an algorithm for placing new

middlebox instances.

5.1 Initial VM Placement

The initial VM placement is important for the performance

of applications, as well as, for realizing the scaling bene-

fits. For example, consider that IPS → RE → server is

the tenant-specified chain and there is one VM instance for

each type, IPS, RE and server. Initially, VM instances

for IPS and RE are placed in one rack and the VM in-

stance for server is placed in another rack. If we add a new

RE instance, no matter where we place the new instance, it

would cause the inter-rack flow traversals. If the available

bandwidth between the two racks is low, the inter-rack flow

traversals would cause network to be bottleneck and reduce

the performance benefits of adding the new RE instance.

However, if we place VM instances in the same rack and

the rack has enough available slots, adding a new RE in-

stance would not cause any inter-rack flow traversals. Even

when we have to place VMs in different racks, as long as

there is enough available bandwidth between them, the net-

work would not become bottleneck in scaling middleboxes.

Thus, it is important to place VMs carefully in the beginning.

We now discuss our initial placement algorithm (overview

in Figure 8). The algorithm takes as input the tenant-specified

chains which describe the flow of traffic between middle-

box and application VMs (§ 3.1). We derive the VM-to-

VM communication matrix based on these interactions. We

also take into consideration the fact that some VMs may re-

quire more scaling than others. For example, a middlebox is

likely to be scaled if it is shared by multiple applications in

the tenant-specified paths. To accommodate such potential

future scaling easily, we “reserve” few extra VMs for such

middleboxes in the VM-to-VM communication matrix.

We assume the available bandwidth of of all links in the

data center topology could be available as input. The avail-

able bandwidth is based on some metric (e.g., mean, max-

imum or kth percentile) of link usages over a certain time

window. The choice of the specific metric depends on how

VM placement

1. Start withK = 2.

2. Parition VMs intoK clusters using VM-clustering algorithm

3. For each cluster

4. Determine S = candidate racks that can accommodate VMs

5. If S is empty, increment K , go to step 2.

6. call Assign-cluster-to-rack

7. for each cluster C

8. call Assign-VM-to-slots (C, assigned rack R)

Assign-cluster-to-rack

11. Estimate number of flows for each VM-to-VM communication

12. for each link l in topology, assigned #flows nl = 0

13. BWl is available bandwidth of the link

14. for each i, j

15. Estimate number of flows ni,j from cluster i to cluster j

16. Sort (cluster i, cluster j) pairs based on #flows between them

17. for each (cluster i, cluster j) pair in descending order

18. Ri = candidate racks for cluster i or rack ri, if already assigned

19. Rj = candidate racks for cluster j or rack rj , if already assigned

20. max = 0

21. for each ra in Ri, rb in Rj

22. Path p = path from ra to rb

23. Per-flow metric = min
BWl

nl+ni,j
for each link l in the path p

24. If metric > max, max = metric, remember (xi,xj = ra, rb)

25. Assign cluster i to xi, cluster j to xj

26. Update nl for links in path from xi to xj

Assign-VM-to-slot(C,R)

29. for I = 2 to #VMs in C

30. Partition VMs to I clusters

31. If I clusters can be assigned to machines in rack R

32. Return the assignment

Figure 8: VM-placement algorithm

aggressively we want to place VMs such that the network

does not become a bottleneck.

VM Placement:We adapt the classical min-cut algorithm

in a manner similar to [28] and partition VMs into K clus-

ters. The clustering tries to minimize the number of commu-

nications across clusters so that when clusters are assigned

to racks, there are few inter-rack communications. After

obtaining the clusters, they are assigned to racks in such a

way that the inter-rack flows get high available bandwidth.

The routine Assign-cluster-to-rack is called for

this purpose. Then, for each rack, the VMs are assigned

to slots in the physical machines by calling the routine

Assign-VM-to-slot.

Assign-cluster-to-rack:We first estimate the num-

ber of flows for each VM-to-VM communication assuming

the uniform flow distribution (§ 4) and equal number of flows

per chain. While this is a simplifying assumption, we be-

lieve that it is helpful in achieving the goal of minimizing the

number of VM communications traversing links with low

available bandwidth.

We first assign cluster-pairs having large number of flows

across them. The intuition here is to first provide high avail-

able bandwidth to these large number of flows, so that later

on, it is not the case that enough bandwidth is not available

for them. For a given such cluster pair, we explore their can-

didate racks and find the rack pair with high available band-

8



width on the path between the racks. We approximate this

metric by looking for situations where there are few flows

already assigned on the links in the path and the links have

high available bandwidth. This is shown in line 23 in Fig-
ure 8 when there is a single inter-rack path 6.

We then pick the next cluster-pair (in descending order of

number of flows across them) and assign them to clusters in

the similar manner. At the end of this routine, we have an

assignment of clusters to racks.

Assign-VM-to-slot: After assignment of clusters to

racks, we assign VMs within the cluster to slots in the racks.

In case there is just one slot per machine, we randomly pick

a slot and assign it to a VM. If there are more than 1 slot per

machine, we follow a similar procedure as above, namely, of

partitioning the VMs into multiple clusters so that VMs that

communicate more among each other can be assigned to the

same machine (details omitted for brevity).

Note that the above description applies for cases where

we don’t have the bandwidth demand estimates for tenant’s

VM-to-VM communications. If the tenant can provide this

information then the cloud provider can place VMs more ef-

fectively. In such a scenario,wemodifyAssign-cluster

-to-rack algorithm as follows: For assigning a pair of

clusters to a pair of racks, we find the minimum available

bandwidth along the path, and see if it can accommodate the

VM-to-VM communications between them. We select the

rack-pair that maximizes the number of VM-to-VM commu-

nications whose bandwidth demands can be accommodated.

After each assignment, we adjust the available bandwidth of

each link appropriately.

5.2 Placement of New Middlebox Instances

The cloud provider can place new VMs (due to scaling) in

a network-aware fashion so that the scaling benefits can be

realized more effectively. Figure 9 shows an example, where

a new VM for IPS has to be placed in either rack B or rack C.

If it is placed in rack B, the total number of inter-rack flows

is 3N
2
using network-aware flow distribution (§ 4.2), where

N flows enter the RE middlebox. However, if it is placed

in rack C, the total number of inter-rack flows is only N .

Thus, appropriate VM placement can significantly reduce

inter-rack flows benefitting both the tenant’s scaling exercise

as well as the provider’s ability to support more tenants.

We first consider the case for single tenant, when (s)he

adds a new VMb. If the middlebox instance can be accom-

modated in the same rack as its “input VMs” (those supply-

ing it traffic) and “output VMs” (those receiving its traffic),

we place the newmiddlebox instance in the same rack. How-

ever, if the new middlebox instance cannot be accommo-

dated in the same rack, we select a candidate rack (rack with

free slots) that has the maximum available bandwidth to the

6In case there are P > 1 paths between two racks, 1

P
of VM-flows

between the two racks would be assigned to each path. Following
this, we estimate the number of flows going through each link, find
the bandwidth share of each flow on the link, and find the minimum
value among all flows on all links. This is not shown in the figure.

(a) New instance in Rack B (b) New instance in Rack C

Figure 9: Better placement with scaling can significantly re-

duce inter-rack trasffic

rack for input and output VMs. When the input and output

VMs are in different racks, we consider each candidate rack

and estimate the inter-rack VM traffic using network-aware

flow distribution, assuming that the new VMb is placed in

the candidate rack. We select the rack that minimizes the

inter-rack VM traffic (or maximizes the bandwidth available

to inter-rack flows). We also consider the input and out-

put traffic ratio for the middlebox instance. This ratio can

be learned based on past usages; for example, with 50%

redundancy in traffic, a WAN optimizer would have an in-

put:output ratio of 1:2 (traffic entering (leaving) a WAN op-

timizer is compressed (decompressed)). Based on this ratio,

we can assign weights to input and output flows and mini-

mize the weighted sum of inter-rack flows.

We handle the case of multiple tenants carefully. Mul-

tiple tenants can scale their middleboxes in parallel. This

may create issues when the increased traffic due to their

scaling can create network bottlenecks. Consider an exam-

ple with tenants T 1 and T 2, where both of their VMs are
placed in rack A and rack B. Both tenants perform scal-

ing trials in parallel. Consider that based on current band-

width usages, our algorithm places their new VMbs in rack

B and that causes inter-rack traffic between rack A and rack

B. This can become problematic, when due to increased

inter-rack traffic, the network becomes bottleneck and both

tenants don’t see any improvement in their application per-

formance. As a result, both tenants end up not being able to

satisfy their traffic demands.

We handle this issue as follows. When tenant T 1makes a
request for addition of a new VMb and our algorithm makes

a placement decision of the new VMb, we also estimate the

increase in bandwidth usage of inter-rack links and use these

estimates to determine the available bandwidth; the actual

increase in bandwidth usage would happen when the new

VMb is actually placed, but other tenants’ requests for scal-

ing might have come before that. So when tenant T 2 makes
a request for a new VMb, we know that placing a new VMb

in the rack B can create network bottleneck, so we try to

find other placement. It may happen that both tenants make

request for new VMbs at the same time. In that case, we

choose an ordering between T 1’s request and T 2’s request
and serve them one after another.

6. IMPLEMENTATION

We implement a prototype of Stratos capable of running

OtC on Amazon EC2. Each tenant VM includes two pieces

of software to realize the port functionality of our distributed

9



programmable switch: Click [25] and Open vSwitch [7].

Click holds the responsibility for encapsulating packets for

transmission across the switch fabric (i.e., network) to other

ports (i.e., VMs). We use FromHost and ToDeviceClick

elements to send/receive traffic via tap interfaces. Each port

instance has a tap interface for every other port in the switch.

Packets sent to one of the tap interfaces are encapsulated

in an IP/UDP packet destined for the IP of the port (VM)

that tap interface represents.7 There is also a tap interface

for reaching the host on which the port resides; the host is

configured to use this tap for reaching all EC2-internal IPs.

Open vSwitch performs the FIB lookup and queuing func-

tionality of the port. The FIB consists of OpenFlow [27]

rules, installed by the controller. The rules determine which

queue (i.e., tap) a packet should be sent to, resulting in the

traffic being sent to the host or across the fabric to a port.

Our central controller runs NOX [21] and interfaces with

the Open vSwitch instances using the OpenFlow protocol [27].

We wrote our own NOX module that takes as input a topol-

ogy specification file. The specification defines each mid-

dlebox and application instance, indicating the distributed

switch port to which they are “connected”. Paths are spec-

ified as a sequential list of elements. The controller trans-

forms this topology specification into a set of forwarding

rules which are installed in each Open vSwitch instances.

7. EVALUATION

We evaluate Stratos using both our prototype implemen-

tation in Amazon EC2 (to study OtC deployment) and a set

of simulations (to study UtC deployment). We explore how

well each of the components of Stratos—composition, elas-

ticity and placement—contributes towards our goal of allow-

ing cloud tenants to flexibly compose virtual topologies in-

cluding middleboxes and dynamically scale to match current

demands. We also show how our mechanisms can help im-

prove provider utilization (UtC).

7.1 OtC Deployment

We evaluate an OtC deployment of Stratos using our pro-

totype implementation (§6) in Amazon EC2 [1]. First, we

evaluate the end-to-end application performance achievable

with our programmable distributed switch (§3.2.1). Second,

we evaluate the effectiveness of our greedy scaling heuristic

(§4.1.1) on individual tenant-specific chains.

7.1.1 Composition

Methodology. We evaluate the performance of Stratos de-

ployed OtC using the tenant topology shown in Figure 4.

The website VMs run Apache 2.2.17 [2] with a default con-

figuration and serve either a 100KB or 10KB text file. Ex-

ternal client subnets are represented by three EC2-resident

VMs (which we refer to simply as “clients”) generating web

7We use Ethernet-in-UDP encapsulation because EC2 does not al-
low IP-in-IP or GRE.

Task Time

Topology transformation 14ms

Port setup 23.33s (average 2.12s per port)

Rule installation 54ms (average 5ms per port)

Table 1: Distributed programmable data plane setup costs

requests using httperf 0.9 [6]. The middlebox VMs run ei-

ther a redundancy elimination module written in Click [13]

(RE), Suricata 1.2.1 [11] with the default ruleset (IPS), or

Balance 3.54 [3] (Load Balancer). All of the VMs are large

Amazon EC2 instances. Each VM also functions as a port

in our distributed switch, as described in §6. The controller

runs on a micro Amazon EC2 instance and installs forward-

ing entries in the ports based on the specified chains.

Setup Cost. We first measure the setup overhead associated

with our distributed programmable switch. The setup cost

includes the time required to transform the topology specifi-

cation into forwarding rules, launch a port on each VM, and

install appropriate forwarding rules in each port (Table 1).

The total setup time of the distributed programmable switch

for our example topology is ≈23.4s, a fairly low overhead.

Note that the time required to launch VMs, and install any

required software, is not included in this setup time. Since a

port of the programmable distributed switch cannot be setup

until after a VM is launched, the small per-port overhead of

≈2.1s will be incurred after a VM is launched.

Application Performance Impact. Next, we evaluate the

effect our programmable data plane deployed OtC has on

application performance. For this evaluation, we remove all

middlebox processing from our deployment and allow the

clients to directly communicate with the web servers to re-

quest/receive the 100KB text file. We measure the reply

throughput under increasing client request rates both with

and without the use of our programmable distributed switch.

We observe that the performance with and without the pro-

grammable distributed switch is equivalent—all requests are

served—for loads across all three clients totaling ≥750 re-

quests/s. With a total load of 900 requests/s, 7% of the re-

quests cannot be served when using the programmable dis-

tributed switch while all requests can be served without it.

However, increasing the request load even further (1050 re-

quests/s) causes not all requests to be served even without

the programmable distributed switch. Thus, the maximum

application load that can be handled with our programmable

distributed switch is only slight less than the maximum load

possible without, implying that our data plane setup imposes

minimal additional overhead.

Middlebox Bottlenecks.We empirically show how the pres-

ence of middleboxesmay limit application performance. We

generate increasing volumes of client requests, and mea-

sure the achieved request throughput. We assume no scal-

ing is employed. Figure 10 shows the achievable throughput

across different request loads when all three clients use the

same request rate. Note that Client 2 requests the 100KB

text file, while Clients 1 and 3 request the 10KB text file;

Client 2 therefore imposes about 10x as much traffic load at

10



Request Rate (Requests/s)
0 50 100 150 200 250

R
e
p
ly

 R
a
te

 (
R

e
p
lie

s
/s

)

0

50

100

150

200

250 Client 1

Client 2

Client 3

Figure 10: End-to-end application performance with equal

client load with programmable distributed switch OtC

the same request rate.

We observe that under small request load (≤ 100 requests/s),

the reply throughput matches the request rate for all three

clients, but higher request loads start to bottleneck middle-

boxes. The RE middlebox is the first middlebox to become

bottlenecked because it is shared by all three clients. How-

ever, the bottleneck has a greater impact on Client 2, which

has larger flows, compared to Clients 1 and 3: with 150 re-

quests/s, Client 2 only has 61% of requests served, while

Clients 1 and 3 still have almost all of the requests served;

Clients 1 and 3 only start be modestly affected with more

than 200 requests/s. The 50% drop in performance for Client

1 with 250 requests/s is a result of the IPS middlebox be-

coming bottlenecked. The significant effects of middlebox

bottlenecks on end-to-end performance motivates the need

for scaling, which we evaluate in the next subsection.

The only difference between an OtC and an UtC deploy-

ment of our programmable distributed switch is that the port

functionality is pushed into the hypervisor. This avoids CPU

overhead in tenants’ VMs, pushing the CPU load to the hy-

pervisor. Hence, we expect tenants may be able to serve

slightly higher maximum loads with an UtC deployment.

7.1.2 Elasticity

We now evaluate how well our greedy scaling heuristic

(§4.1.1) can address bottlenecks such as the ones exempli-

fied above in an OtC deployment of Stratos.

Methodology. We use a single chain for our scaling eval-

uation, consisting of client, IPS, RE, and server. Similar to

the setup above, Apache serves a 100KB text file, and client

requests are generated by httperf. Both requests and replies

pass through an IPS [11] and a RE [13] middlebox. Apache

and httperf run on non-bottlenecked large EC2 instances;

all middleboxes are small instances, a size purposely cho-

sen to induce bottlenecks. We induce middlebox scaling by

increasing the request rate from 25 to 100 requests/s over a

3 minute period; scale down is induced by decreasing the

request rate to 50 requests/s.

Results. Our first concern is the ability to detect the pres-

ence of a bottleneck in order to initiate scaling. Response

time is a simple and effective metric for this purpose. When

the request rate increases from 25 to 50 requests/s, causing

middleboxes to be a bottleneck, the response time increases

from 5ms to 2742ms; when the bottleneck is eliminated, the

response time drops back to 77ms.

The behavior of our scaling heuristic is shown Figure 11a,

which depicts application throughput and the number of IPS

Time
0 1 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

s
ts

/s
)

0

25

50

75

100

125

1

2

3

4

N
u

m
b

e
r 

o
f 

M
id

d
le

b
o
xe

s

IPS

RE

Demand

Served

(a) Scale up

Time
0 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

s
ts

/s
)

0

25

50

75

100

125

1

2

3

4

N
u

m
b

e
r 

o
f 

M
id

d
le

b
o
xe

s

IPS

RE

Demand

Served

(b) Scale down

Figure 11: Greedy scaling heuristic

Approach Max Through Rqsts/s/cost Time

Stratos scaling 99 requests/s 19.8 9min

No scaling 23 requests/s 11.5 0min

All scaling 97 requests/s 10.8 3min

Table 2: Comparison of middlebox scaling approaches

and RE middleboxes over time while our heuristic is run-

ning. With only 1 IPS and 1 RE middlebox, performance

is quite poor (≈25 requests/s). The first scaling action, in-

creasing to 2 IPSs, increases throughput by 50% (to≈ 50 re-

quests/s), and a second scaling, to 3 IPSs, increases through-

put an additional 23% (to 63 requests/s). Scaling to 4 IPS

is tried, but the 4th IPS is not kept due to the increase in

throughput being not significant enough. The algorithm then

moves on to scale the number of REmiddleboxes, increasing

to 2 REs for 37% increase in throughput (to 99 requests/s).

Scaling to 3 REs is tried, but the 3rd RE adds no improve-

ment in performance. In summary, we scale from 1 IPS

and 1 RE middlebox to 3 IPS and 2 RE middleboxes over

a period of 9 minutes, increasing application performance

by 75%. The resulting throughput, 99 requests/s, closely

matches the throughput of a setup with no middleboxes.

We also evaluate how well Stratos is able to scale down

when request load decreases. Figure 11b shows the applica-

tion throughput and number of middleboxes over time when

we cut the request load in half. Stratos first scales down to 1

RE and then scales down the IPSs to 2, ending with a request

throughput that is exactly the same as the throughput with no

middleboxes. The number of IPSs is not scaled back to 1 as

this causes a 46% decrease in request throughput.

We now compare our scaling algorithm against two alter-

native approaches: no scaling and scaling all middleboxes,

i.e., scale up creates one new instance of each middlebox.

Table 2 shows the maximum achievable throughput (show-

ing end-to-end performance), the ending requests/s/unit-cost

(showing cost-effectiveness), and the time required to scale

for all three approaches (showing delay overhead). We ob-

serve that Stratos scaling is 42-45% more cost effective than

no scaling and all scaling. No scaling and all scaling are both

faster than Stratos scaling, but this time savings is offset by

their inefficiency in the long run.

Summary. An OtC deployment of Stratos enables tenants to

realize rich topologies including middleboxes using our pro-

grammable distributed switch without a significant degra-

dation in end-to-end application performance. Moreover,

our greedy scaling heuristic is able to adequately eliminate

middlebox bottlenecks, providing suitable end-to-end per-

11



Figure 12: Chain used for simulation

formance in a cost-effective manner.

7.2 UtC Deployment

We next evaluate the enhancements that can be made to

end-to-end application performance and the effectives of scal-

ing in an UtC deployment of Stratos through improved place-

ment and flow distribution. We briefly describe the simulator

we developed, then we show the benefits improved place-

ment (§5) and flow-distribution (§4.2) provides to both ten-

ants and cloud providers.

Methodology. We developed a simulator to evaluate our

placement and flow-distribution heuristics at scale for an UtC

deployment of Stratos. The simulator takes as input a data

center topology of racks and switches, a tenant chain with

elements and initial instances, the number of tenants, and

a fixed application demand (in Mbps). First, the simula-

tor places all of the tenants’ initial instances in racks either

by randomly selecting a rack for each VM (rand) or by us-

ing our initial VM placement heuristic (pack). We do not

leave space in racks for future scaling. Second, the simu-

lator runs our greedy scaling heuristic for one tenant at a

time. Scaled instances are placed either by randomly se-

lecting a rack (rand) or by using our network-aware mid-

dlebox instance placement heuristic (aware). Traffic is dis-

tributed amongst middlebox instances using either uniform

or network-aware flow distribution. Each tenant runs the

greedy scaling heuristic until its full demand is satisfied or

no further performance improvement can be made. We as-

sume intra-rack links are very high capacity.

For our UtC evaluation, we run our simulator to place 20

tenants within a 50-rack data center. The data center is ar-

ranged in a tree topology with 7 VM slots per rack and a

capacity of 500Mbps on each network link. All tenants use

the same chain (Figure 12) which initially consists of 9 VMs;

thus every tenant is forced to spread their VMs across racks.

The capacity of each instance of the WAN optimizer, IPS,

and cache is fixed at 100, 120, and 220Mbps, respectively.

The application demand between each client and server pair

is 180Mbps, for a total traffic demand of 360Mbps.

7.2.1 Placement

We first use our simulator to evaluate our placement heuris-

tics (§5), comparing our initial placement (pack) and new

middlebox instance placement (aware) against random place-

ments in either case (rand). We assume traffic is distributed

amongstmiddlebox instances using uniformdistribution (§4.2);

we evaluate smarter distribution in the next subsection.

Tenant View: Aggregate Performance. Since end-to-end

application performance is paramount, we first look at the

tenant demand that can be served under three different com-

binations of initial andmiddlebox instance placement schemes:

rand/rand, pack/rand, and pack/aware. Figure 13 shows a

CDF of the percentage of demand that is able to be served

Percent of demand served
0 25 50 75 100

F
ra

c
ti
o

n
 o

f 
te

n
a

n
ts

0

0.2

0.4

0.6

0.8

1

Rand/Rand
Pack/Rand
Pack/Aware

Figure 13: Tenant demand served with placement schemes

No. of Instances
8 13 18 23

%
 S

e
rv

e
d

0

20

40

60

80

100

(a) Rand/Rand

No. of Instances
8 13 18 23

(b) Pack/Rand

No. of Instances
8 13 18 23

(c) Pack/Aware

Figure 14: Demand served vs. instances used for each tenant

for each tenant. We observe that almost all demand is served

for about 75% of tenants with our pack and aware placement

heuristics. Moreover, no tenant has more than 20% of its de-

mand unsatisfied. In contrast, tenants may have up to 70%

of their demand unsatisfied with rand/rand, although 70%

of tenants have almost all of their demand served.

Using our initial VM placement heuristic with random in-

stance placement (pack/rand) results in more tenants hav-

ing almost all of their demand served compared to using

pack/aware. In both cases, the traffic flows between the

tenants initial instances over only a few localized links, but

traffic exchanged with new middlebox instances is only lo-

calized with aware instance placement. This increase in lo-

calized traffic, makes it more likely the edge links of racks

used by the tenant will become bottlenecked, and causing

fewer tenants to have their demand fully served. Adding

bandwidth-awareness to instance placement, similar to our

awareness of bandwidth in initial placement, can reduce such

localized bottlenecks by spreading new instances amongmore

racks, and effectively more links. This effect can also be di-

minished using network-aware flow distribution in combina-

tion with aware placement, which we show later.

Tenant View: Cost vs. Performance. In the optimal case,

just enough middlebox instances are added for a tenant to

provide sufficient processing capacity to meet demand. Due

to system dynamics, however, some tenants may use more or

fewer instances than ideal and may still not be able to meet

demand. We now examine this issue in detail. Figure 14

shows the percent of demand served versus the number of

instances used, with a data point for each tenant. The opti-

mal number of instances required to meet demand is 13: 2

clients, 4 WAN optimizers, 3 IPSs, 2 caches, and 2 servers.

We first focus on tenants whose demand was not fully

served. Two cases arise: (i) Tenant has fewer than the ideal

number of instances: In this case, any new middlebox in-

stance is unable to improve end-to-end performance (i.e., in-

crease served demand) because the bandwidth available to

reach the new instance (from the instances that precede or

12



follow it in the chain) is insufficient; this causes the new in-

stance to be discarded and scaling to quit. This case only oc-

curs with rand/rand, for 25% of tenants. Random placement

distributes instances amongst many racks, forcing almost all

traffic to traverse network links, thus increasing the presence

of network bottlenecks that cannot be overcome by using

more instances. (ii) Tenant has more than the ideal num-

ber of instances: Although tenants may have added enough

middlebox instances to provide sufficient processing capac-

ity (compared to the ideal amount needed to match the de-

mand), the network bandwidth may be insufficient to handle

the tenant demand when a tenant attempts to fully utilize the

capacity of a middlebox instance. For example, at the start

of scaling, a tenant will add a new WAN optimizer instance,

increasing the middlebox capacity to 200Mbps. The end-to-

end demand that can be served now becomes limited by the

IPS, which can only process 120Mbpswith a single instance.

Thus, during the scaling experiment for the WAN optimizer,

only 60Mbps of traffic was sent to each WAN optimizer in-

stance. When the IPS is scaled, the traffic going to each IPS

will increase to 100Mbps, which the network may not be

able to handle. Even though sufficient middlebox process-

ing capacity is available, the network bandwidth available to

some instances is insufficient. This can cause more middle-

box instances to be added, with the tenant eventually giving

up. This case occurs for 5%, 10%, 25% of the tenants with

rand/rand, pack/rand, and pack/aware, respectively. The

higher occurrence of this case with smarter placement oc-

curs due to higher instance locality—instances are placed in

just a few nearby racks—causing localized network bottle-

necks that only manifest when attempts are made to utilize

the full processing capacity of middlebox instances.

We now consider tenants whose demandwas (almost) fully

met. Demand can be fully met when enough non-network-

bottlenecked middlebox instances are launched to provide at

least as much processing capacity as the optimal number of

instances provides. This occurs for 70%, 90%, and 75% of

tenants with rand/rand, pack/rand, and pack/aware, respec-

tively. Fewer tenants fully meet the demand with our scaled

VM placement heuristics, compared to pack/rand due to the

localized network bottlenecks that occur, as discussed above.

Such bottlenecks can be avoided with smarter flow distribu-

tion, as we show in the next subsection.

7.2.2 Flow Distribution

In addition to optimizing the placement of new middle-

box instances, we also seek to optimize the distribution of

flows among instances to reduce the likelihood of encoun-

tering network bottlenecks. We compare the uniform and

network-awaremethods of flow distribution (§4.2) with both

rand and aware placement of new middlebox instances.8

Tenant View: Performance. Figure 15a shows the per-

cent of tenant load that is able to be served with the two

different distribution mechanisms. We observe that all load

8Initial placement uses our pack heuristic.

Percent of demand served
70 80 90 100

F
ra

c
ti
o

n
 o

f 
te

n
a

n
ts

0

0.2

0.4

0.6

0.8

1

Rand/Uniform
Rand/Aware
Aware/Uniform
Aware/Aware

(a) Tenant load served

Percent of traffic inter−rack

0 25 50 75 100

F
ra

c
ti
o

n
 o

f 
te

n
a

n
ts

0

0.2

0.4

0.6

0.8

1

Rand/Uniform

Rand/Aware

Aware/Uniform

Aware/Aware

(b) Inter-rack tenant traffic

Figure 15: Tenant outcomes of distribution schemes

Percent of link used

0 25 50 75 100

F
ra

c
ti
o
n
 o

f 
li
n
k
s

0.5

0.6

0.7

0.8

0.9

1

Rnd/Rnd/Uni

Pck/Rnd/Uni

Pck/Rnd/Awr

Pck/Awr/Uni

Pck/Awr/Awr

Figure 16: Network link utilization

is able to be served for all tenants with both aware place-

ment and aware distribution. In contrast, with uniform flow

distribution, network-aware placement is unable to provide

the maximum benefit, with 25% of tenants having less than

(almost) their full demand served. Using aware distribution

with rand placement also provides benefits, decreasing the

max unserved demand by 89% (from 28% to 3% unserved).

Tenant View: Cost vs. Performance. We also see a reduc-

tion in the number of middlebox instances required to meet

tenant demand: With aware distribution and placement, 45%

of the tenants use the optimal number of instances (13) and

the remaining tenants only use one more than optimal.

We affirm the performance improvement and reduction

in middlebox instances required is a result of a decrease in

inter-rack network bandwidth by examining the link band-

width used by individual tenants. Figure 15b shows a CDF

of the percent of tenants’ traffic which crosses inter-rack

links for each tenant. Aware distribution results in a sig-

nificant decrease in inter-rack traffic for the median tenant

with both placement algorithms: 69%with aware placement

and 20% with rand. Moreover, aware distribution with rand

placement is able to decrease the inter-rack traffic to levels

equivalent to using basic distribution with aware placement.

7.2.3 Provider View

Our UtC placement and distribution heuristics also benefit

providers by reducing the network and rack utilization.

First, we compare network link utilization across all com-

binations of placement and distribution we consider. Fig-

ure 16 shows a CDF of the percent of link bandwidth used

for each link in the data center. The highest fraction of net-

work links (43%) are utilized with rand initial placement,

because all of tenant’s instances are spread across the data

center causing significant inter-rack communication. Using

pack, instead of rand initial placement reduces the traffic

traversing core links, but this is only beneficial when edge

links are also less utilized. A reduction in both core and edge

link utilization only occurs with the localized placement and

13



Uniform Distribution Aware Distribution

Rand/Rand Place 87% -

Pack/Rand Place 90% 78%

Pack/Aware Place 97% 77%

Table 3: VM slot utilization across all racks

minimized inter-rack communication that occurs with pack

initial placement, aware instance placement, and aware dis-

tribution. In this case, the smallest fraction of network links

(only 10%) are utilized, leaving the most network capacity

for supporting additional tenants.

The spare network capacity available with aware instance

placement and distribution is accompanied by the largest

number of unused VM slots in racks. Table 3 shows the

percent of slots used under all evaluated combinations of

placement and distribution. With aware instance placement

and distribution, tenants perform less unnecessary scaling,

as noted earlier, leaving an additional 20% of slots unused

compared to aware instance placement and basic distribu-

tion and an additional 13% of slots unused compared to rand

instance placement and basic distribution.

Summary. Using our network-aware initial placement and

distribution heuristics leaves 90% of links and 23% of VM

slots unutilized, allowing a provider to support more addi-

tional tenants than under other schemes.

8. RELATED WORK

Networked services in the cloud: Recent proposals [8, 5,

12, 16] and third party middleware [12] have begun to incor-

porate limited support for middleboxes. CloudNaaS [16],

CloudSwitch [5] and VPNCubed [12] aim provide flexible

composition of virtual topologies; however, they don’t have

the mechanisms for scaling of networked services. Embrane [8]

introduces a framework that allows for the flexible scaling

of networked services. However, it is limited to provider-

offered middleboxes, and does not allow composing them

with each other or with third-party VMbs.

Studies have looked at the properties of clouds that impact

application performance [36, 26], introduce security viola-

tions [31], and that affect application reliability [34]. Others

have sought to enrich the networking layer of the cloud by

adding frameworks that provide control over bandwidth [14,

22], security [23, 18, 29], and performance of virtual migra-

tion [37]. All of these are largely complementary to Stratos,

but understanding how to integrate these systematically into

Stratos is a non-trivial issue that we leave for future.

Middleboxes in enterprises and datacenters: Issues in

deployment and management of middleboxes have been ex-

amined in the context of enterprise [32] and data-center [24]

networks. But the focus is on composition in physical in-

frastructures and thus performance challenges introduced by

the lack of tight control in clouds are not addressed.

VMPlacement: Oversubscriptionwithin current data cen-

ter networks and its impact on application performance and

link utilizations have beenwidely studied [36, 26, 15]. While

many have sought to overcome the performance issues by

modifying routing [17, 30] or altering the data center’s ar-

chitecture [20, 19, 35], only a few recent works [16, 28] have

explored using VM placement as a solution. Our placement

approach is novel in that it utilizes both knowledge about

the communication patterns between the VMs and the fu-

ture scaling demands to determine placement. Unlike prior

work, which focuses on placing individual VMs in isolation,

our work focuses on discovering groups of related VMs with

dense communication patterns and collocating them.

Scaling in the Cloud: Recent studies [33, 1, 10] have

viewed elasticity within the cloud as scaling the number of

virtual machines in each tier of a tenant’s hierarchy. While

many of these studies rely on CPU utilization to determine

scaling, we use a more comprehensive approach that exam-

ines the impact on end-to-end application performance and

helps identify scaling strategies that may not be apparent

from per VM CPU monitoring (e.g., when multiple MBs

show high resource utilization, when memory is the bottle-

neck resource, or when there is network contention).

9. CONCLUSION

Enhancing application deployments in today’s clouds us-

ing virtual middleboxes is challenging due to the lack of net-

work control and the inherent difficulty in intelligently scal-

ing middleboxes to cope with application demands. Over-

coming the challenges in a systematic way requires a new

ground-up framework where middleboxes are elevated to a

first class citizen in the cloud, akin to other cloud resources

such as storage. In this paper, we presented the design, im-

plementation, and evaluation of one such framework called

Stratos that is targeted for immediate deployment OtC or

UtC today. We developed a variety of mechanisms for ef-

ficiently realizing arbitrary middlebox and application com-

positions and providing suitable end-to-end performance through

greedy scaling and network-aware flow distribution and place-

ment. Our evaluation of a prototype OtC deployment of

Stratos atop EC2 and simulation of an UtC deployment showed

the benefits Stratos provides to both tenants and providers.

10. REFERENCES
[1] Amazon web services. http://aws.amazon.com.

[2] Apache. http://apache.org.

[3] Balance. http://www.inlab.de/balance.html.

[4] CloudOpt. http://cloudopt.com.

[5] CloudSwitch. http://www.cloudswitch.com.

[6] httperf. http://hpl.hp.com/research/linux/httperf.

[7] Open vSwitch. http://openvswitch.org.

[8] Powering virtual network services. http://embrane.com.

[9] Rackspace cloud. http://rackspace.com/cloud.

[10] Right Scale. http://www.rightscale.com.

[11] Suricata. http://openinfosecfoundation.org.

[12] VPN-Cubed. http://cohesiveft.com/vpncubed.

[13] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundancy in

network traffic: Findings and implications. In SIGMETRICS, 2009.

[14] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards Predictable

Datacenter Networks. In SIGCOMM, 2011.

[15] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data

centers in the wild. In IMC, 2010.

[16] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A cloud networking

platform for enterprise applications. In SoCC, 2011.

[17] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: fine grained traffic

engineering for data centers. In CoNEXT, 2011.

14



[18] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and

A. Krishnamurthy. ETTM: a scalable fault tolerant network manager. In NSDI

’11.

[19] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch

architecture for modular data centers. SIGCOMM, 2010.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.

Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data center

network. In SIGCOMM, 2009.

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. NOX: towards an operating system for networks. ACM SIGCOMM

Computer Communication Review, 38(3), 2008.

[22] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang.

Secondnet: a data center network virtualization architecture with bandwidth

guarantees. In Co-NEXT ’10.

[23] F. Hao, T. Lakshman, S. Mukherjee, and H. Song. Secure Cloud Computing

with a Virtualized Network Infrastructure. In HotCloud, 2010.

[24] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for

data centers. In SIGCOMM, 2008.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

modular router. TOCS, 18:263–297, 2000.

[26] A. Li, X. Yang, and S. K. M. Zhang. Cloudcmp: Comparing public cloud

providers. In IMC ’10, Melborne, Australia, 2010.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation in

campus networks. ACM SIGCOMM Computer Communication Review,

38(2):69–74, 2008.

[28] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center

networks with traffic-aware virtual machine placement. In INFOCOM, 2010.

[29] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, and I. Stoica. CloudPolice: taking

access control out of the network. In HotNets ’10.

[30] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.

Improving datacenter performance and robustness with multipath tcp. In

SIGCOMM, 2011.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds. In CCS,

2009.

[32] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The middlebox

manifesto: enabling innovation in middlebox deployment. In HotNets, 2011.

[33] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource scaling

for multi-tenant cloud systems. In SoCC, 2011.

[34] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hardware

reliability. In SoCC, 2010.

[35] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng,

K. Papagiannaki, and M. Ryan. c-Through: Part-time optics in data centers. In

Proc. ACM SIGCOMM, New Delhi, India, Aug. 2010.

[36] G. Wang and T. S. E. Ng. The impact of virtualization on network performance

in Amazon EC2 data center. In INFOCOM, 2010.

[37] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe. CloudNet:

dynamic pooling of cloud resources by live WAN migration of virtual

machines. In VEE ’11.

[38] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based

networking with difane. In SIGCOMM, 2010.

15


