
Queue	Messaging	Systems	
(QMS)	

28th	October,	2016	
Arjun	Singhvi	



Overview	

•  MoAvaAon	
•  IniAal	Use	Case	
•  QMS	Architecture	Choices	
•  Deep	dive	into	KaJa	



MoAvaAon	
•  Data	Explosion	in	the	last	10	years	due	to	
emergence	of	IoT	

	
	



MoAvaAon	
•  Sheer	volume	of	these	datasets	lead	to	the	
emergence	of	Big	Data	systems	

	



MoAvaAon	
•  Need	an	efficient	way	to	deal	with	this	
heterogeneous	data	coming	in	from	different	
sources	

•  Need	to	process	the	same	data	in	various	
ways	
– Real-Ame	analyAcs	
– Batch	analyAcs		



MoAvaAon	-	Pre-QMS	Era	

•  Custom	data	pipeline	for	each	unique	source-
desAnaAon	pair	

•  Does	not	scale	well	



MoAvaAon	

•  Efficiently	aggregate	all	types	of	data	and	
provide	at	–	
– High	throughput	
– Low	latency	
– Real	Ame	

•  Lead	to	emergence	of	various	QMS		



QMS	Architecture	Choices		

•  Message	Queues	
– AcAveMQ	
– RabbitMQ	

•  Publish-Subscribe	Systems	
– KaJa	
– Kestrel	

Queue	P	 C	

Queue	P	 C	



IniAal	Use	Case	

•  Mainly	used	in	the	data	processing	pipelines	
for	data	ingesAon	or	aggregaAon	

•  Envisioned	mainly	to	be	used	at	the	beginning	
or	end	of	a	data	processing	pipeline	

•  Example	–		
–  Incoming	data	from	various	sensors		
–  Ingest	this	data	into	a	streaming	system	for	real-
Ame	analyAcs	or	a	distributed	file	system	for	
batch	analyAcs	



KaJa:	IntroducAon	

•  Producers	–	Publish	data	streams	to	KaJa	cluster	
•  Consumers	–	Subscribe	to	one	or	more	data	
streams	

•  KaJa	Cluster	–	Distributed	log	of	data	over	
serves	known	as	brokers	



KaJa:	IntroducAon	

Broker-1	 Broker-2	 Broker-n	

KaJa	Cluster	



KaJa:	Topics	

•  Category	to	which	the	messages	are	published	
•  For	each	topic,	the	KaJa	cluster	maintains	a	
parAAoned	log	



KaJa:	ParAAons	

Broker-1	 Broker-2	 Broker-n	

KaJa	Cluster	

Leader	 Followers	



KaJa:	ParAAons	

•  Ordered,	immutable	sequence	of	records	that	
is	conAnually	appended	to	

•  Each	record	is	associated	with	a	sequenAal	id	
number	called	as	offset	

•  ParAAons	are	distributed	over	the	servers	in	
KaJa	

•  Each	parAAon	is	replicated	for	fault	tolerance	
•  ParAAon	and	replicas	follow	the	leader-
followers	pa^ern	



KaJa:	Producers	

Broker-1	 Broker-2	 Broker-n	

KaJa	Cluster	

Leader	 Followers	

Producers	



KaJa:	Producer	

•  Publishes	data	to	topics	of	their	choice	
•  In	fact	also	responsible	for	choosing	which	
record	to	assign	to	which	parAAon	within	the	
topic	

•  Think	of	publishers	as	data	sources	



KaJa:	Consumer	

•  Consumer	Group	maps	to	a	logical	subscriber	
•  Each	group	consists	of	consumer	instances	for	
scalability	and	fault	tolerance	

•  Advantages	of	both	queuing	as	well	as	publish-
subscribe	



KaJa:	ZooKeeper		
•  ZooKeeper	is	a	distributed,	open-source	
coordinaAon	service	for	distributed	applicaAons	

•  KaJa	uses	it	to	coordinate	between	the	
producers,	consumers	and	brokers	

•  ZooKeeper	stores	metadata		
–  List	of	brokers	
–  List	of	consumers	and	their	offsets	
–  List	of	producers	

•  ZooKeeper	runs	several	algorithms	
–  Consumer	registraAon	algorithm	
–  Consumer	rebalancing	algorithm	



KaJa:	Design	Choices	

•  Push	vs.	Pull	model	for	Consumers	
– Push	model	

•  Challenging	for	the	broker	to	deal	with	diverse	
consumers	as	it	controls	the	rate	at	which	data	is	
transferred	
•  Need	to	decide	whether	to	send	a	message	
immediately	for	accumulate	more	data	and	send	

– Pull	model	
•  In	case	broker	has	no	data,	consumer	may	end	up	busy-
waiAng	for	data	to	arrive	



KaJa:	Ordering	Guarantees	

•  Messages	sent	by	a	producer	to	a	parAcular	
topic	parAAon	will	be	appended	in	the	order	
they	are	sent	

•  Consumer	instance	sees	records	in	the	order	
they	are	stored	in	the	log	

•  Provides	a	total	order	over	records	within	a	
parAAon,	not	between	different	parAAons	in	a	
topic.	Per-parAAon	ordering	combined	with	
the	ability	to	parAAon	data	by	key	is	sufficient	
for	most	applicaAons.	



KaJa:	Fault	Tolerance	

•  Replicates	parAAons	for	fault	tolerance	
•  KaJa	makes	a	message	available	for	
consumpAon	only	aber	all	the	replicas	
acknowledge	to	the	leader	replica	a	successful	
write	

•  Implies	that	a	message	may	not	be	
immediately	available	for	consumpAon	



KaJa:	Producer	Batching	



KaJa:	LimitaAons	
•  KaJa	follows	the	pa^ern	of	acAve-backup	
with	the	noAon	of	“leader”	parAAon	replica	
and	“follower”	parAAon	replicas	

•  KaJa	stores	a	parAAon	on	a	single	disk		

DistributedLog	from	Twi^er	claims	to	solve	
these	issues		



KaJa:	In	Real	World	
•  50+	companies	are	using	KaJa	as	their	
primary	infrastructure	to	handle	data	and	
make	it	available	in	real-Ame	



KaJa:	In	Real	World	
•  Nehlix	uses	KaJa	for	data	collecAon	and	
buffering	so	that	it	can	be	used	by	
downstream	systems	



KaJa:	In	Real	World	
•  Uber	uses	KaJa	for	real-Ame	business	driven	
decisions	(For	example	–	Surge)	



KaJa:	Only	for	data	ingesAon?	

•  Samza	is	a	distributed	stream	processing	
framework	

•  It	uses	KaJa	for	data	management	layer	for	
the	streaming	system	

•  KaJa	being	used	even	within	a	data	
processing	pipeline		



KaJa:	Only	for	data	ingesAon?	

•  A	Samza	job	consists	of		
– KaJa	consumer,	an	event	loop	that	calls	
applicaAon	code	to	process	incoming	messages	

–  	KaJa	producer	that	sends	output	messages	back	
to	KaJa	



Summary	–	QMS	Era	

•  QMS	are	an	essenAal	part	of	the	enAre	big	
data	processing	pipeline	

•  No	longer	just	used	for	data	ingesAon	and	
aggregaAon	


