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ABSTRACT
For years, the conventional wisdom [7, 22] has been that the con-
tinued stability of the Internet depends on the widespread deploy-
ment of “socially responsible” congestion control. In this paper,
we seek to answer the following fundamental question: If network
end-points behaved in a selfish manner, would the stability of the
Internet be endangered?

We evaluate the impact of greedy end-point behavior through
a game-theoretic analysis of TCP. In this “TCP Game” each flow
attempts to maximize the throughput it achieves by modifying
its congestion control behavior. We use a combination of analysis
and simulation to determine the Nash Equilibrium of this game.
Our question then reduces to whether the network operates effi-
ciently at these Nash equilibria.

Our findings are twofold. First, in more traditional environ-
ments – where end-points use TCP Reno-style loss recovery and
routers use drop-tail queues – the Nash Equilibria are reasonably
efficient. However, when endpoints use more recent variations of
TCP (e.g., SACK) and routers employ either RED or drop-tail
queues, the Nash equilibria are very inefficient. This suggests
that the Internet of the past could remain stable in the face of
greedy end-user behavior, but the Internet of today is vulnerable
to such behavior. Second, we find that restoring the efficiency
of the Nash equilibria in these settings does not require heavy-
weight packet scheduling techniques (e.g., Fair Queuing) but in-
stead can be done with a very simple stateless mechanism based
on CHOKe [21].

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—network com-
munication

General Terms
Design, Performance
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1. INTRODUCTION
Over a decade ago, the Internet suffered a series of congestion

collapses leading to the development of TCP’s congestion control
algorithms [15, 3]. This “socially responsible” congestion con-
trol behavior, implemented by the bulk of Internet end-points,
has been given credit for the continued stability of the network.
This paper is an attempt to understand if these social congestion
control algorithms were aptly credited. We ask whether greedy
behavior by network end-points actually results in unstable net-
work conditions such as congestion collapse. The answer to this
question has important implications to network operation. If the
answer is that greedy behavior results in instability, then the rea-
son that the Internet is functioning correctly is either that end-
users are consciously socially responsible or that it is too difficult
to modify end-hosts to behave greedily. Clearly, network opera-
tors cannot rely on either of these conditions persisting and they
should deploy new network mechanisms to ensure that network
end-points do not behave greedily in the future. On the other
hand, if selfishness does not result in poor network behavior, then
perhaps there is no need for such mechanisms.

We evaluate the impact of greedy end-point behavior by per-
forming a game-theoretic analysis of TCP. We choose to analyze
TCP since the bulk of bytes transferred in the Internet use TCP.
In addition, as long as applications require reliable data trans-
fer, this preponderance of TCP is likely to continue. We define
the TCP Game in which TCP flows in a network can adjust their
Additive-Increase Multiplicative-Decrease (AIMD) congestion be-
havior in order to optimize the goodput they achieve. These flows
are allowed to freely change and set their congestion control pa-
rameters, (α, β), where α is the additive increase component and
β is the multiplicative decrease component. Also, these flows
must continue to use the traditional loss-recovery techniques of
timeouts and fast retransmission to provide reliable data transfer.

One might think that a greedy/selfish flow could always gain
by using more aggressive congestion control. However, more ag-
gressive congestion control leads to higher loss rates. Since TCP
loss recovery is not a perfect process, there is always some “cost”
associated with the higher loss rate. When the potential benefit
and cost balance, a flow has nothing to gain.1

Our aim is to determine the congestion parameters (αE , βE)
that are chosen by the flows at Nash equilibrium (where no flow
can gain throughput by unilaterally adjusting its behavior). In
evaluating the impact of greedy end-points, we are not as inter-
ested in the actual value of (αE , βE) as much as the behavior
and efficiency of the network under this operating condition. To
evaluate efficiency, we measure the the average goodput of any
flow and the average per-flow loss rate at Nash equilibrium.

Since the Nash equilibrium reflects a balance between the gains
and the cost related to aggressive behavior, any factor affecting
this balance results in a change of the parameter settings and
the network efficiency at Nash equilibrium. Two such factors

1This is in contrast to using modern coding techniques that don’t
rely on loss recovery to achieve reliable transfer. With such meth-
ods, loss recovery is essentially perfect, and aggression will always
pay. In this paper we restrict out attention to TCP and its im-
perfect loss-recovery.



that we vary in our analysis are the form of loss recovery used by
TCP flows and the queuing discipline implemented by the routers
in the network. More modern loss recovery techniques, such as
SACK [10], reduce the overhead of loss recovery, thereby chang-
ing the balance in favor of more aggressive behavior. Queuing
disciplines (like RED [13], CHOKe [21]) affect the loss rate that
results from varying levels of aggression. For example, at the
extreme, Fair Queuing techniques [7] prevent any flow from re-
ceiving more than its fair share by assigning all additional losses
to the more aggressive flows, thereby removing any incentive to
be aggressive.

Taking the above observations into account, we seek to address
the following questions in this paper:

1. What are the parameter settings of the flows at Nash equi-
librium?

2. How efficient/inefficient is the operation of the network at
Nash equilibrium?

3. What impact do TCP’s loss recovery mechanisms and the
AQM schemes implemented at routers have on the efficient
operation of the network at Nash equilibrium?

Our analysis of a simplified version of the TCP Game and
simulations in NS-2 [1], show that when flows implement tradi-
tional loss recovery mechanisms (TCP-Reno) and FIFO drop-tail
buffers are employed, the network operates efficiently at the re-
sulting Nash equilibrium (i.e. there is no danger of congestion
collapse). However, the allocation of bandwidth at this equilib-
rium is somewhat unfair [6, 2]. This combination of Reno and
FIFO drop-tail is significant since it was common in the Internet
until quite recently. Unfortunately, in all other cases, the Nash
equilibrium is undesirable since either the per-flow goodput is too
low or the per-flow loss rate is too high. We also show that heavy-
weight queueing mechanisms requiring explicit per-flow state are
not necessary to avoid congestion collapse at the Nash equilib-
rium. We show that a minor modification to the CHOKe [21]
active queue management policy ensures efficient operation as
well as reasonable fairness at Nash equilibrium.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present related work. Section 3 discusses the TCP Game
in detail and also presents our analysis methodology. In Section 4,
we present analytical and simulation results for the Nash equilib-
rium of the simplified TCP Game. Section 5 discusses a simple
low-overhead mechanism that encourages a desirable Nash equi-
librium. Finally, Section 6 summarizes the contributions of this
paper.

2. RELATED WORK
There is a substantial literature of game-theoretic approaches

to network resource allocation in general and to congestion control
in particular. We do not provide a detailed review of this work
here, but direct interested readers to a small sampling of the
literature [9, 14, 9, 8, 11, 22]. The approach we take here differs
from these earlier papers in several key respects.

First, the previous literature typically used models where flows
were represented by Poisson streams and routers by M/M/1 queues,
and congestion control consists of adjusting the Poisson transmis-
sion rate. In this paper, we consider the simulated performance
of TCP’s actual packet-level congestion control algorithms, in-
cluding loss-recovery and window adjustment. Second, instead of
considering general congestion control algorithms, we restrict our
attention to the AIMD family of window adjustment algorithms.
Third, while these previous treatments considered a wide class of
utility functions (often concave functions of delay and through-
put), we assume all users are interested in maximizing goodput.
Thus, our work uses a more realistic but more limited model of
congestion control, and we pay careful attention to the impact of
loss-recovery algorithms. Our modeling choices reflects our un-
derlying question: what would happen if users freely chose their
TCP AIMD parameters?

Our work is also closely related to [2]. In this work, the authors
evaluate the four linear congestion control algorithms - AIMD,
AIAD, MIMD and MIAD - in the context of various loss recov-
ery and queue management algorithms and under a variety of

variations in the available bandwidth. The paper concludes that
AIAD provides comparable (and sometimes better) efficiency to
AIMD in most settings. We use these results as a guide to judge
the efficiency/inefficiency of the Nash equilibria we analyze in this
paper.

Finally, the simple penalty-based model for the variants of TCP
that we present in Section 3.3 is similar to that presented in [16].

3. THE TCP GAME
In this section, we describe the TCP Game in detail. We first

state the assumptions we make in order to simplify the game.
Next, we discuss the dimensions along which the TCP Game can
be analyzed. Finally, we describe a penalty-based model for TCP
that we use in our analysis of the TCP Game in later sections.

3.1 A Few Simplifying Assumptions
In the TCP Game each TCP end-point attempts to maximize

its own goodput. To achieve this goal, each TCP end-point
is given the freedom to adjust its congestion control behavior.
Formally, we assume that we are given a set of n TCP flows,
F1, . . . , Fn, all implementing the Additive Increase Multiplicative
Decrease (AIMD) algorithm for congestion avoidance and control.
We allow each flow Fi to modify its additive increase constant
(αi ≥ 1) and its multiplicative decrease constant (βi ∈ (0, 1)).

In addition, we make the following simplifying assumptions:

(I) All flows in the network implement the same algorithms for
loss recovery (e.g. timeout, fast retransmission, selective
acknowledgments, etc.).

(II) All the flows have an infinite amount of data to send.

(III) All the flows encounter a single common bottleneck. We
assume that the capacity of the bottleneck link, defined as
the number of packets that it can transmit in unit time, is
fixed.

(IV) All flows have identical round-trip times.

(V) The amount of buffering at the bottleneck router is fixed
at the bandwidth-delay product of the simple topology re-
sulting from the above assumptions.

When packets are successfully acknowledged, each flow Fi in-
creases its transmission rate as dictated by the increase parameter
αi. Flows react to packet loss by decreasing their transmission
rate. This rate reduction is dictated by two factors: the decrease
parameter βi and the loss recovery algorithm implemented by the
flow. This is described in greater detail in Section 3.3.

Let Gi denote the average number of useful (i.e., distinct) pack-
ets of flow Fi that are successfully delivered in unit time (where
we choose the common RTT as the unit of time). Gi is the good-
put of flow Fi. In the TCP Game, the aim of each flow is to
choose its parameters (αi, βi) so that Gi is as high as possible.
Notice that such a choice for flow Fi is dependent on the setting
chosen by each of the remaining n− 1 flows. When for each flow
Fi, the parameters (αi, βi) are chosen such that, given the pa-
rameters (αj , βj) for j �= i, no other choice of parameters for flow
Fi yields a higher value of Gi, the TCP Game is said to be at a
Nash equilibrium.

In our analysis of the TCP Game, we are interested in two
key properties of the Nash equilibrium: the parameter settings
of the flows and the resulting efficiency of the network. We are
not concerned with how the Nash equilibrium is attained through
iterative adjustment of the flow control parameters. Our paper
thus addresses the following question: If the Internet were such
that all TCP-AIMD flows were at Nash equilibrium, how would
their parameters be set and how efficiently would the Internet
be operating? We use the average per-flow statistics of goodput
and loss rate to measure the efficiency of the network at Nash
equilibrium.

3.2 Factors Affecting the TCP Game
The value of Gi attained by a flow in this game, and therefore

the Nash equilibrium of the TCP Game, is dependent on many
factors. Important among these are: (i) the congestion control



parameters, (ii) the nature of the loss recovery algorithm, and
(iii) the way losses are assigned at the bottleneck router. Factor
(iii) depends on the router queueing and buffer management algo-
rithms, and thus is under the control of network administrators.
Factor (ii) is controlled by the set of algorithms supported by
a TCP implementation and the contents of TCP packet headers
(e.g., SACK blocks). As a result, only Factor (i) is under complete
control of a single end-user (the source), and is the only factor
we allow users to adjust to gain advantage; we consider the other
two factors as being important components of the environment
in which the agents are playing the TCP Game. In this section,
we describe each of these factors in turn.

The congestion control algorithm employed by a TCP flow can
be looked upon as a mechanism that the flow uses to probe for
available bandwidth. There are two axes along which each AIMD
flow could change its parameters:

• Varying α. By choosing a higher α, a greedy flow could
try to grab the available bandwidth at a much quicker rate
and gain an advantage over competing flows.

• Varying β. By choosing a β closer to one, a greedy flow
can choose to give up bandwidth more slowly upon conges-
tion.

In general, flows would adjust both α and β simultaneously.
However, to make both the analysis and the presentation of the
results more accessible, in this paper we focus on two restricted
cases: (i) all flows vary their α but hold β fixed and (ii) all flows
vary their β but hold α fixed. We present results from both
analysis and simulations for these two cases in detail in Section 4
of this paper. In addition, we also summarize the initial results
from our simulations of the more general scenario, where flows are
allowed to adjust α and β simultaneously, in Section 4 without
presenting the relevant analysis.

The loss recovery schemes in early versions of TCP, like Reno,
are primitive and cause the TCP flow to show a rather drastic re-
action to losses. For example, when a TCP-Reno flow loses more
than a couple of packets within a single congestion window, it
is forced to time-out and restart [10]. Modern versions of TCP,
like SACK, use more tolerant loss recovery mechanisms that can
sustain many more losses without the flow having to incur time-
outs. Since by being more aggressive a flow has a greater chance
of losing packets and since the reaction to losses is directly de-
pendent on the loss recovery algorithm, the form of loss recovery
implemented by the flows participating in the TCP Game has an
effect on the the nature of the Nash equilibrium.

Traditional queueing and buffer management schemes like drop-
tail and RED do not actively penalize aggressive flows. How-
ever, drop-tail may unintentionally penalize aggressive flows since
packet bursts, a common characteristic of aggressive behavior, of-
ten incur drops under drop-tail queue management. In addition,
several proposed (but not widely deployed) queueing and buffer
management schemes, such as CHOKe and Fair Queueing, inten-
tionally punish aggressive flows (to varying degrees). Thus, the
queueing and buffer management schemes will have an effect on
the resulting Nash equilibrium.
Symmetry is another important aspect of the Nash equilibrium

of the TCP Game that warrants discussion. In this paper, we
only consider situations where the flows are symmetric (i.e., have
the same RTTs) and we only analyze symmetric Nash equilibria
(i.e., Nash equilibria where the congestion control parameters of
the flows are all equal). We leave the analysis of asymmetric Nash
equilibria for future work.

Summarizing, in this paper we analyze the symmetric Nash
equilibria for the TCP Game under varying combinations of the
queueing and buffer management schemes employed at the routers
and the loss recovery mechanisms implemented by the TCP end-
points.

3.3 A Penalty-Based Model for TCP
In this section, we present a penalty-based model for TCP sim-

ilar to that described in [16]. We use this model in our analysis
of the Nash equilibrium. These results will be compared to what
we find using more realistic simulations. The purpose is to find

a simple model that captures most of the behavior found in the
packet-level simulations but yet remains fairly accessible to anal-
ysis.

We divide the duration of transmission of each flow into rounds
each corresponding to one round-trip time (RTT) of the flow. Let
Nt

i denote the number of packets that flow Fi has outstanding

in the network in round t. Let Lt
i denote the number of packet

losses experienced by flow Fi in round t. Lt
i depends on the value

of
P

i N
t
i and the queue management algorithm employed by the

bottleneck router. Each flow changes the maximum number of
packets it is allowed to keep outstanding in the network in the
round following t as follows: if Lt

i > 0 then Nt+1
i = βiNt

i (multi-

plicative decrease), and if Lt
i = 0 then Nt+1

i = Nt
i +αi (additive

increase). This models the congestion avoidance/control behav-
ior of each flow. Here, we assume that each flow knows about the
losses assigned to it in a given round at the start of the following
round.

Suppose a TCP flow incurs L > 0 losses at time t. Let N be the
number of packets of the flow outstanding at time t. When the
TCP flow experiences one or more losses, it not only adjusts its
window (as described above) but also must recover from the loss.
We model this loss recovery mechanism by a penalty function
that defines exactly how many packets the flow is allowed have
outstanding in the round(s) immediately following a loss. At
the very high level, there are three forms of penalty: Severe,
Gentle, Hybrid. In a Severe reaction to losses, the TCP flow does
not transmit any data for τS rounds, irrespective of the value of
L. This is equivalent to entering slow-start after incurring losses
(e.g., TCP Tahoe). At time t+τS+1 (after the time out), the TCP
flow restarts by allowing βN packets to be in flight. In a Gentle
reaction to losses, a TCP flow incurs a penalty proportional to the
number of losses observed (by transmitting γL fewer packets than
usual at time t + 1, where γ is a small positive constant). This
penalty reflects the cost of retransmissions without time-outs.2

In a Hybrid reaction to losses, the TCP flow incurs a purely
gentle penalty up to a threshold number of losses (L = 1) and
a purely severe penalty after that. The severe part of a Hybrid
reaction differs from a pure Severe penalty in two key aspects.
Firstly, the former models a time-out followed by a slow-start
while the latter models just a slow-start. Secondly, at the end of
the severe penalty in a Hybrid reaction to losses (when L > 1),
the TCP flow restarts with N0 packets outstanding, where N0 is
a positive constant. The reason for these differences from Severe
penalty will be explained later in this section.

The Severe form of penalty models TCP-Tahoe flows. Tahoe
flows exhibit mostly fixed reaction (fast-retransmit and slow-start)
to losses, irrespective of their number. Also, Tahoe flows reduce
their ssthresh variable by β upon incurring losses, before entering
slow-start. Severe penalty in this form does not explicitly model
the time outs in TCP-Tahoe. In fact, this form of penalty is more
representative of versions of TCP that preceded Tahoe.

TCP-Reno loss recovery can be modeled as a Hybrid penalty.
A Reno flow incurs a gentle penalty for up to a single loss within a
window after which it incurs a severe penalty (by timing out and
slow-starting). In fact, a Reno flow undergoes a few successive
multiplicative decreases spread over as many round-trip times
before timing out. In addition, the value of ssthresh is reduced by
β with each such decrease. By stating that in a Hybrid Reaction,
a TCP flow times out immediately after observing more then a
single loss and that after a time out, the flow restarts by keeping
a constant number of packets outstanding, we are approximating
the effect of these multiple decreases on a Reno flow. The severe
part of the Hybrid penalty subsumes both the time out and the
subsequent slow-start. Thus, the exact value of τS for a Severe
penalty is smaller than that for a Hybrid penalty.

TCP SACK flows can sustain many losses within a single con-
gestion window. In fact, unless a SACK flow sees so many losses
within a window that there are less than 3 duplicate acknowl-

2For convenience, when a TCP flows shows a Severe reaction to
losses, we say that it incurs or implements a Severe penalty and
we refer to it as a Severe flow. Similarly, the terms Gentle penalty
and Gentle flow can be defined.



Severe penalty (Tahoe):

Nt+1
i = Nt

i + αi if Lt
i = 0

= 0 if Lt′
i ≥ 1 where t− τS < t′ ≤ t

= βiNt′
i if Lt′

i ≥ 1 and t = τS + t′

Gentle penalty (SACK):

Nt+1
i = Nt

i + αi if Lt
i = 0

= βiN
t
i − γLt

i if Lt
i ≥ 1

Hybrid Penalty (Reno):

Nt+1
i = Nt

i + αi if Lt
i = 0 and Nt

i > 0
= βiN

t
i − γ if Lt

i = 1

= 0 if Lt′
i > 1 where t− τS < t′ ≤ t

= βiN0 if Lt′
i ≥ 1 and t = τS + t′

Here, N0 is a constant.

Table 1: The Penalty Models for TCP-Tahoe, TCP-
SACK and TCP-Reno. γ > 0 is a small constant.

edgments received or unless a retransmitted packet is lost again,
it will not time-out. Since such time-outs for SACK are highly
uncommon in reality, we consider TCP SACK flows to implement
a Gentle penalty. The definitions of the three penalty models are
stated formally in Table 1.

In the above model, the number of losses Lt
i seen by a flow is

determined by the queue management algorithms used. This fact
is discussed in greater detail in the next section.

It should be noted, however, that we do not claim that this
model is realistic. We only claim, and show in our later results,
that it reproduces the TCP Game behavior seen in the more
realistic simulations. Thus, it appears to capture the aspects of
reality most relevant to the question we are addressing.

4. ANALYSIS OF THE TCP GAME
In this section, we describe the results from analysis and sim-

ulation of the TCP Game. For the analysis, we use the penalty-
based model presented in the previous section. We begin this
section by describing the simulation set-up and the methodology
used for obtaining the Nash equilibrium experimentally. We then
present the results of these simulations and of our analysis of the
penalty-based model. We do so by considering each combina-
tion of loss-recovery and queue management algorithm in turn,
first describing the analytical results for that setting and then
presenting the corresponding simulation results.

4.1 Simulation Methodology
Since we assume that all flows traverse a single common bottle-

neck, we use the standard dumb-bell topology shown in Figure 1
for our simulations. Flow Fi, i = 1 . . . n, traverses the path from
Si to Di. In all our simulations, we set the bottleneck capacity
C to 10Mbps and we fix n = 10. We now describe our simulation
methodology for arriving at the Nash equilibrium of the TCP
Game when the flows are allowed to vary their increase parame-
ters alone.

When varying α we use the following procedure. We run our
simulations in iterations. In the jth iteration, we fix the param-
eters for flows F1 . . . Fn−1 to the single tuple (αj , β). Let the

parameters for the flow Fn be denoted by the tuple (α
′
, β). We

run simulations for values of α′ in the interval max{0, αj −∆} ≤
α

′ ≤ αj + ∆, where ∆ is a fixed large positive constant. Hence-
forth, we will use the notation αj,low = max{0, αj − ∆} and

αj,high = αj + ∆. For each value of α
′

we record the value of
Gn(α

′
) and define αj,best as the value of α′ that maximized Gn.

The next iteration, j + 1 starts with the parameters for all the
n flows set to (αj,best, β). The simulation stops when at the end
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D

D

D

1

2

n

R R1 2

50 ms

C Mbps

100 Mbps, ~5ms 100 Mbps, ~5ms

Figure 1: A single-bottleneck topology.

of some iteration k, αk,best = αk; this value, denoted by αE , is
the Nash equilibrium value of α. We then say that for the given
situation, the parameters at Nash equilibrium are (αE , β) for all
flows. Notice that the simulation methodology we use assumes
that the Nash equilibrium is symmetric.

When varying α, we set β = 0.5 and all simulations start with

α1 = 1. In every iteration, for each value of α
′
, we run the

simulation 20 times (the total simulation time is 100s and we
discard the first 50s of simulation data to allow the flows reach
steady state). In each of the 20 runs, the start times of the n
flows are randomized. We use the average value of the goodput
seen by Fn in these runs for the value of Gn. In obtaining the
value of αj,best we use the following criterion: when comparing
α1 and α2 (α1 �= α2), we say that Gn(α1) < Gn(α2) if and only
if the 85% confidence around the values of Gn(α1) and Gn(α2) do
not overlap. The value 85% was chosen based on our experience
with these simulations, but is not supported by any principled
argument.

The simulations for β variation are similar. In this set of simu-
lations, we set α = 1 for all flows. In addition, we set βj,low = 0.5
and βj,high = 0.99. We do not test for values of β < 0.5 since
they are clearly sub-optimal. The methodology we use in our sim-
ulations with flows varying α and β simultaneously is also similar
and is a combination of the above two simulation set-ups.

We consider three forms of loss recovery (and three associ-
ated penalty functions in our analytical model): SACK (Gentle),
Tahoe (Severe penalty), and Reno (Hybrid penalty).3 We also
consider two forms of buffer management: simple drop-tail and
RED. We discuss the six possible combinations in the following
subsections, starting with the analytical results with the penalty
model and then comparing it to the simulation results on the
actual TCP algorithm. We start by presenting the results for
drop-tail routers, and then discuss RED routers.

4.2 FIFO Drop-Tail Gateways
When FIFO drop-tail buffers are used, all flows experience

losses at about the same instant of time, which we call the over-
flow point. The overflow point, in fact, spans an entire round. The
number of losses assigned by the FIFO drop-tail buffer to flow Fi

at an overflow point is exactly equal to its increase number αi.
Thus, Li = αi upon overflow. We justify this loss assignment
policy of FIFO drop-tail buffers below.

Let us consider a round, at the start of which the buffer is
exactly full (i.e., at the overflow point). TCP ensures all trans-
missions are ACK-clocked. ACK-clocking, in turn, ensures that
no losses occur, even if the buffer is full, as long as each flow
continues to send at the same rate as at the start of the round.
However, assuming that αi is an integer, flow Fi increases its
value of Ni for the subsequent round by αi causing an increase
in the sending rate. In fact, from the way congestion window
increase is defined in TCP, Ni increases gradually with each in-
coming ACK. At each instant when there is an increment of 1

3In this paper, we do not model/analyze TCP-Newreno. How-
ever, our NS-2 simulations have shown that the Nash equilibria of
the TCP Game for Newreno flows are similar to those for SACK
flows.



Notation Description
C The capacity of the bottleneck link (the bandwidth-delay product)
R The propagation round trip delay of the bottleneck link

R The mean round trip time (R + RQ), where RQ is the mean queueing delay on the link

Nt
i The number of packets transmitted by flow Fi in round t

Ni The value of Ni immediately after an overflow point, in steady-state.

Lt
i The number of losses experienced by flow Fi in round t

Gi The mean goodput of flow Fi

αi The increase parameter for flow Fi

βi The decrease parameter for flow Fi

A
Pn−1

i=1 αi

τS The number of rounds spent incurring severe penalty
αE The common value of α for all flows at Nash equilibrium (when flows are allowed to vary their increase parameters)
βE The common value of β for all flows at Nash equilibrium (when flows are allowed to vary their decrease parameters)
τO The number of rounds between successive buffer overflow points (drop-tail buffers) or

The expected number of rounds between successive multiplicative decreases of a flow (RED buffers)
Si The number of packets transmitted by flow Fi between a pair of consecutive overflow points
T The total length of the period between two consecutive overflow points in seconds.

Table 2: Notation used in our analysis.

in Ni, Fi bursts out two packets back-to-back because of the in-
crease in the number of packets it is allowed to keep outstanding.
This causes a temporary disturbance to the ACK-clocked trans-
mission of Fi. The result is a buffer overflow and Fi experiencing
a loss each time Ni is increased by 1. It follows from this that the
number of losses seen by flow Fi at the overflow point is exactly
αi.

4

We summarize the notation we use in the subsequent sections in
Table 2 for easy reference. We now look at each of the three forms
of loss-recovery – SACK/Gentle, Tahoe/Severe and Reno/Hybrid
– in turn.

4.2.1 TCP-SACK/Gentle Penalty
Analysis of Gentle Penalty Let C denote the capacity of the

bottleneck link in packets (i.e., C is the bandwidth-delay prod-
uct). From Assumption (V) (Section 3.1), the size of the FIFO
drop-tail buffer is C. Let τO denote the number of rounds be-
tween consecutive overflow points in steady state. For each flow
Fi, we can write

Gi =
Si

T
(1)

where Si is the number of packets transmitted by flow Fi between
a pair of consecutive overflow points and T is the total length of
the period between two consecutive overflow points in seconds, as
defined in Table 2.

Let Ni(k) be the value of the Ni after the kth overflow point
and let Ni be the limiting value of Ni(k) as k → ∞. From the
definition of AIMD, we can write,

Ni = β(Ni + (τOαi − γαi))

since Li = αi. This gives us

Ni =
β

1 − β
(τOαi − γαi) ≈ β

1 − β
τOαi (2)

Also, from the definition of an overflow point, we have, in
steady-state,

nX
i=1

(Ni + τOαi) = 2C (3)

since both the buffer and the link are full at an overflow point.
The number of packets, Si, transmitted by flow Fi in the period

of τO + 1 rounds between the end of an overflow point and the

4We have noticed that even with (on-off) cross traffic, the average
number of losses observed by a flow is roughly equal to its increase
parameter. It was also observed by the designers of RED that
drop-tail routers penalize bursty behavior [13].

end of the subsequent overflow point5, in steady-state is given by

Si =

τOX
t=0

Ni + tαi (4)

These equations apply to both the α and β variation analyses,
which we present next. In both cases, we assume that all the
flows have reached their steady-state.

Varying α Setting β = 0.5 in Equation 2, we obtain

Ni ≈ τOαi (5)

Substituting Equation 5 in Equation 4, we get, Si = αi
PτO

t=0(τO+
t). The length of each of the rounds between overflow points, in
seconds, is different, due to the queueing at the bottleneck router.
In particular, if we let R denote the base propagation RTT, then
the length of the tth round since the last overflow point would be

R
�

1 + t−1
τO

�
for 1 ≤ t ≤ τO + 1 (Assuming that queueing delay

varies linearly from 0 to R over the τO rounds). Thus, the total
length in seconds of the period of between overflow points, T , is

given by T =
Pt=τO

t=0 R
�

1 + t
τO

�
= R

τO

PτO
t=0(τO + t).

Using the expressions for Sn and T derived above in Equa-

tion 1, we obtain, Gn = Sn
T

= αnτO
R

. From Equations 3 and 5,

τO = CPn
i=1 αi

. This gives

Gn =
αnC

R(A + αn)
(6)

where A =
Pn−1

i=1 αi. From the above expression for gooodput, it
is easy to see that given the values of αi for flows F1, . . . , Fn−1,
the value of Gn(αn) is strictly increasing in αn. Hence at Nash
equilibrium, αE could be arbitrarily large.
Varying β For analyzing the Nash equilibrium resulting from
allowing the flows to vary β, we compare the goodputs of flow Fn

resulting from the following two settings of the parameters of the
n flows:

(i) Flows Fi, i = 1, . . . , n− 1 all have a decrease parameter of
βi = β (fixed). The decrease parameter of flow Fn, βn is
larger than β. Let Gn(βn) be the goodput of Fn in this
setting.

(ii) All the n flows have the same decrease parameter β. Let
Gn(β) denote the goodput of flow Fn in this setting.

We will use the superscripts (i) and (ii) to differentiate quantities

in either setting. For example, we will Let N (i)
i and N (ii)

i denote
the values of Ni in settings (i) and (ii) respectively. In either
setting, αi = 1 for i = 1, . . . , n.

5Henceforth, we will also refer to these τO + 1 rounds as the
rounds “between” overflow points



0

2

4

6

8

10

0 20 40 60 80 100

G
oo

dp
ut

 (
in

 M
bp

s)

Increase Parameter (αn)

α1 = 1 (α1,best = 40)
α2 = 40 (α2,best = 40)

0

2

4

6

8

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
oo

dp
ut

 (
in

 M
bp

s)

Decrease Parameter (βn)

β1 = 1 (β1,best = 0.98)
β2 = 0.98 (β2,best = 0.98)

αE Goodput Loss Rate
40 0.95Mbps 20.32

βE Goodput Loss Rate
0.98 1.00Mbps 1.80

(a) (b)

Figure 2: Simulation results for Gentle flows with FIFO drop-tail buffers. In (a) we show the results for the Nash
equilibrium when flows vary their increase parameters. The results for the Nash equilibrium when flows vary their
decrease parameters are shown in (b).

Now, setting αn = 1 in equation 2, we get

N (i)
n ≈ βn

1 − βn
τ
(i)
O (7)

N (ii)
n ≈ β

1 − β
τ
(ii)
O (8)

Assuming that the difference between βn and β is negligible, the
average length of any round in either setting would be approxi-
mately the same. Let R denote this value. It is not hard to see
that R ≈ 2βR. We can immediately write the following equations
for the total time in seconds between consecutive overflow points
in either setting:

T (i) = R(1 + β)(τ
(i)
O + 1)

T (ii) = R(1 + β)(τ
(ii)
O + 1)

Now, in Setting (i) flow Fn transmits S
(i)
n =

Pt=τ
(i)
O

t=0 ( βn
1−βn

τ
(i)
O + t)

packets (using Equation 7 in Equation 4). Hence, from Equa-
tion 1, after simplification, we get the following expression for
Setting (i):

Gn(βn) =
τ
(i)
O (1 + βn)

2R(1 − βn)(1 + β)
(9)

Similarly, for Setting (ii), we get,

Gn(β) =
τ
(ii)
O

2R(1 − β)
(10)

Using Equations 7 and 8 in Equation 3, we get:

(n− 1)τ
(i)
O

1

1 − β
+ τ

(i)
O

1

1 − βn
= 2C (11)

nτ
(ii)
O

1

1 − β
= 2C (12)

From Equation 11, τ
(i)
O > 2C 1−βn

n
. Using this inequality in

Equation 9 and using Equation 12 in Equation 10, we get,

Gn(βn) >
C(1 + βn)

2nR(1 + β)
>

C

nR
= Gn(β) (13)

In effect, greedy flows always stand to gain by setting their de-
crease parameters slightly more aggressively than the competing
flows. This implies that at Nash equilibrium βE → 1.
Simulation of SACK Simulation results for the Nash equilib-
rium of the TCP Game when TCP-SACK flows are allowed to
change their only their increase parameters or only their decrease
parameters are shown in Figures 2(a) and (b), respectively. Each
curve in either figure represents one iteration in the simulation.

For each curve (iteration j), we identify the common conges-
tion control parameter (αj or βj , as the case may be) for flows
F1 . . . Fn−1. The goodput obtained by flow Fn as its congestion
control parameter (αn or βn, as the case may be) is varied be-
tween two extreme values (αn ∈ [max0, αj − 50, αj + 50] and
βn ∈ [0.5, 0.99]) is plotted on the y-axis as a function of the pa-
rameter of flow Fn shown on the x-axis. For each iteration, we
also identify the value of the parameter for flow Fn resulting in
the best goodput given the parameters of flows F1 . . . Fn−1. We
also show the average per-flow goodput and loss rate at Nash
equilibrium in the table below each figure.

When flows are allowed to vary their increase parameters, we
obtain αE = 40 (Figure 2(a)), which is very aggressive, as pre-
dicted by our analysis. At this Nash equilibrium, although the
average goodput is reasonable and the per-flow loss rate is ex-
tremely high. Thus, the Nash equilibrium is undesirable.

From Figure 2(b), as shown by our analysis, βE = 0.98, at
Nash equilibrium when flows are allowed to vary their decrease
parameters. Though the parameters are set aggressively at Nash
equilibrium, the average per-flow good-put and loss rates are very
reasonable. Besides, at values of βE close to 1, the decrease un-
dergone by the flows upon incurring losses is equivalent to an
additive decrease (by one packet). As such, the loss rate would
not be any worse even if βE > 0.98. Hence, we do not consider
this Nash equilibrium to be undesirable, in terms of efficiency.
However, the additive decrease makes this Nash equilibrium un-
fair [6]. This is in agreement with the conclusions drawn in [2].

We also perform simulations in which TCP-SACK flows are
allowed to vary their increase and decrease parameters simulta-
neously. For lack of space, we omit the corresponding graphs from
the presentation and summarize the results in words instead (This
is also true of the simulation results for simultaneous variation of
α and β in upcoming sections). From simulations for TCP-SACK
flows, (αE , βE) = (15, 0.98) at the symmetric Nash equilibrium.
The average goodput (0.95Mbps) is reasonable, but the loss rate
(26%) is extremely high making this Nash equilibrium undesir-
able. Notice that these results are in agreement with those of α
variation and β variation.

In summary, we make the following observation:

Observation 1. Given SACK/Gentle flows and FIFO drop-
tail buffers, the Nash equilibrium resulting from α variation is
highly undesirable. When flows vary their β alone, the network
continues to operate efficiently at the resulting Nash equilibrium
in spite of the aggressive parameter setting. When flows are al-
lowed to simultaneously vary both α and β the resulting Nash
equilibrium is, again, undesirable.

4.2.2 TCP-Tahoe/Severe Penalty
Analysis of Severe Penalty We now analyze the situation in
which all the n flows implement Severe penalty. Suppose that
an overflow occurs in round t0 and that all the n flows are in
steady-state. Then, by definition of Severe penalty, the n flows
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Figure 3: Simulation results for Severe flows with FIFO drop-tail buffers.

do not transmit any new packets into the network for the next τS
rounds (The length of each of these rounds is exactly R, as there
is no queueing at the router). Suppose that it takes an additional
τ rounds before the next overflow point. Then, τO = τS + τ .

Let Ni denote the steady-state value of the number of out-
standing packets of flow Fi after it recovers from a severe penalty
following a buffer overflow. Then, we have the following parallel
to Equation 2:

Ni =
β

1 − β
ταi (14)

We also have the following parallels to Equations 3 and 4, respec-
tively:

nX
i=1

(Ni + ταi) = 2C (15)

Si =
τX

t=0

Ni + tαi (16)

We now discuss α and β variation in turn.
Varying α Setting β = 0.5 in Equation 14, we get

Ni = ταi (17)

Applying Equation 17 to Equation 16 we get, Sn =
3αnτ(τ+1)

2
.

The total length of the τO rounds in seconds is T = RτS +Pt=τ
t=0 R

�
1 + t

τ

�
= R

�
τS + 3(τ+1)

2

�
. Using these expressions for

Sn and T in Equation 1 we get,

Gn =
3αnτ(τ + 1)

R(2τS + 3(τ + 1))

From Equations 15 and 17, we obtain τ = CP
i=1 αi

. It is not

hard to see that Gn increases with αn for fixed values of αi,
i = 1 . . . n− 1.6 Thus, when flows implement Severe penalty, αE

could grow arbitrarily large, at Nash equilibrium.
Varying β As before, we compare the throughput resulting from

the settings (i) and (ii) presented in Section 4.2.1. Let τ i and τ ii

denote the number of rounds between successive overflow points
excluding the rounds in which flows incur severe penalty, as de-
fined above for α variation. The rest of the variables are as defined
in Section 4.2.1.

The following equations hold immediately:

T (i) = RτS + R(1 + β)(τ (i) + 1)

T (ii) = RτS + R(1 + β)(τ (ii) + 1)

6Here we use the fact that if f(x) > 0 and g(x) > 0 are contin-

uous, differentiable functions of x and f
g

is increasing in x, then
f

g+c
is increasing in x for any constant c > 0.

It is not hard to see (similar to Equations 9 and 10) that

Gn(βn) =
τ (i)(1 + βn)(τ (i) + 1)

2RτS(1 − βn) + 2R(1 − βn)(1 + β)(τ (i) + 1)

Gn(β) =
τ (ii)(1 + β)(τ (ii) + 1)

2RτS(1 − β) + 2R(1 − β)(1 + β)(τ (ii) + 1)

It can be shown that there always exists βn > β such that
Gn(βn) < Gn(β) as long as n > 2 (We omit the proof of this
fact). Hence, at Nash equilibrium βE → 1, when flows imple-
ment Severe penalty.
Simulation of Tahoe We show the results from our simula-
tions for 10 flows in Figures 3(a) and (b). From Figure 3(a), when
flows are allowed to vary their increase parameters, αE = 49.
The average goodput and loss rate are poor rendering this Nash
equilibrium undesirable. Also, from Figure 3(b), βE = 0.98.
Though the loss rate at this Nash equilibrium is low, the per-
flow goodput is poor. As a result, this Nash equilibrium is un-
desirable too. When both α and β are varied simultaneously,
(αE , βE) = (1, 0.98) at Nash equilibrium. (TCP Tahoe flows
gain much lesser from varying α than they do from varying β.
This results in a conservative setting of α at Nash equilibrium.)
Again this Nash equilibrium is undesirable just as that resulting
from β variation.

In effect, we could state the following:

Observation 2. The Nash equilibrium of the TCP Game in
which the TCP flows implement Tahoe/Severe penalty and FIFO
drop-tail routers are employed results in inefficient network op-
eration.

4.2.3 TCP-Reno/Hybrid Penalty
We use a slightly different method for analyzing Hybrid penalty.

Varying α Here, we compare the goodput of flow Fn resulting
from the following two settings of parameters of the n flows:

(i) Flow Fn has an increase parameter of αn > 1 while all the
remaining flows have increase parameters of 1. Let Gn(αn)
denote the goodput of flow Fn in this setting.

(ii) All flows have an increase parameter of 1. Let Gn(1) denote
the goodput of flow Fn in this setting.

From the definition of Hybrid penalty and from Equation 6, we
obtain Gn(1) = C

nR
.

Let us now consider Setting (i) where αn > 1. Assume that
C
n
> τS . Since Li = αi, from the definition of Hybrid penalty,

flow Fn would incur a severe penalty for τS rounds at the end
of any overflow point, while all the others would still be in the
gentle regime of the Hybrid penalty. From Equation 5, we have,
Ni ≈ τO for i = 1 . . . n − 1 . However, using N0 = C

n
in the

definition Hybrid penalty, for flow Fn, we have Nn = C
n

. Using
these expressions in Equation 3, we obtain

τO =
C
�
2 − 1

n

�
+ τSαn

2(n − 1) + α
(18)
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Figure 4: Simulation results for Hybrid flows with FIFO drop-tail buffers.

Notice that τO > τS since C
n
> τS . Now, from Equation 16,

the total number of packets transmitted by Fn in between two

consecutive overflow points is given by Sn =
PτO−τS

t=0 ( C
n

+ tαn)
or

Sn =
C

n
(τO − τS + 1) +

αn

2
(τO − τS)(τO − τS + 1)

For the sake of simplicity, we can approximate the total length of

the τO rounds to be T = R
τO

PτO
t=0(τO + t) =

3R(τO+1)
2

. Thus,

from Equation 1, we obtain

Gn(αn) =
Sn

T

=
2

3R

�
C

n
+
αn

2
(τO − τS)

��
1 − τS

τO + 1

�

A numerical evaluation of the inequality Gn(αn) < Gn(1), with
the settings τS = 20 rounds and R = 0.12 yields the following
results:

1. When the number of flows n is small (≈ 50), the inequality

holds for all values of αn as long as C
n
< 2.5Mbps.

2. When the number of flows is large (> 100), the inequality

holds as long as C
n
< 1.5Mbps, for all values of αn.

3. In either of the above cases, when C
n

exceeds the given val-
ues, the flow requires αn > 75, roughly, to obtain goodput
significantly better than Gn(1).

These observations are intuitive because if C
n

was very large, then
the greedy flow would have enough time to catch up with the
other flows after incurring a severe penalty. A greedy flow does
not have this advantage for a low value of C

n
. The above result is

significant because the average per-flow goodput in the Internet
is usually much lower than 2Mbps.

We assumed that C
n
> τS in the above analysis. If however,

C
n

≤ τS , then the n − 1 flows F1, . . . , Fn−1 would cause one or
more overflows during the τS rounds that flow Fn spends incur-
ring a time out. In fact, in this situation, flow Fn would require
a much higher value of αn than in the previous situation to ob-
serve the same gain in goodput, if any, over the αn = 1 case. For
simplicity, we skip the analysis of this situation.

Notice that in the above derivation for Gn(αn), we assume that
the increase parameters if flows F1, . . . , Fn−1 are all one. A minor
variation in the derivation for Gn(αn) is enough to show that the
above conclusion (Gn(αn) < Gn(1) for all αn) holds for a similar

setting of R , τS and C
n
no matter what the increase parameters

of the other flows are. This suggests that the social parameter
setting of αi = 1, ∀i, is a dominant strategy equilibrium for the
TCP Game: each flow has a fixed strategy (choice of parameters)
that serves it best irrespective of the behavior of its competitors.
Varying β Since αi = 1 for i = 1 . . . n, all flows see exactly one
loss upon overflow. Therefore, all flows incur a gentle penalty

irrespective of their decrease parameters. The analysis is the same
as that for Gentle Penalty. Thus, at Nash equilibrium, βE → 1.
Simulation of Reno The results from our simulations are shown
in Figure 4(a) and (b). When flows vary their increase param-
eters, αE = 1 (Figure 4(a) matching the default setting of the
increase parameter. Also, from Figure 4(b), βE = 0.99. At this
latter Nash equilibrium, the per-flow goodput is high and the loss
rate is low, much like SACK flows. Thus, in neither case would
there be a congestion collapse at Nash equilibrium. However, the
Nash equilibrium due to flows varying their decrease parameters
is somewhat unfair (though to a lesser extent than with SACK
flows). Again, this is in conformity with the conclusions in [2].

In addition, when both α and β are allowed to vary simultane-
ously in simulation, (αE , βE) = (1, 0.98) at the symmetric Nash
equilibrium. In summary, we have the following observation:

Observation 3. When TCP flows implement Reno/Hybrid
penalty and FIFO drop-tail routers are employed, the parameter
setting at the Nash equilibrium due to α variation coincides with
the default parameter setting (α = 1). When flows vary their
β, the parameter setting at Nash equilibrium is aggressive. How-
ever, the network continues to operate efficiently. When flows
vary both their parameters simultaneously, the Nash equilibrium
is efficient.

4.3 RED Gateways
While most routers in the wide-area today are FIFO drop-

tail, RED deployment is increasing rapidly. Thus, we think it
important to analyze the TCP Game in the presence of RED
routers. In what follows, we first describe the loss assignment
policy of RED and then outline the methodology we use to arrive
at the Nash equilibrium analytically.

At any given instant of time, a RED router marks or drops
incoming packets with almost the same instantaneous probability,
irrespective of which flow the packet belongs to. This drop-policy
of RED allows it to impose a fairly uniform long-term packet
loss rate across all the flows traversing a RED router. Based on
these facts, we model RED’s loss assignment as follows: all flows
traversing a RED router experience a common packet loss rate p.
Moreover, p is a function of the congestion control parameters of
the flows traversing the RED router.

Suppose that we are given n TCP flows traversing a RED router
and that these flows are only allowed to change their increase
parameters. Suppose further that flows F1, . . . , Fn−1 each have
the same increase parameter of α. Let pa = pα,α be the steady

state loss rate common to all flows imposed by RED when the nth

flow also chooses the same increase parameter, that is, when αn =
α. Let p′a = pα,α′ be the new common loss rate experienced by

the flows when flow Fn chooses an increase parameter αn = α′ �=
α. Let Gn(α′, p′a) be the goodput of flow Fn when αn = α′.

Now, in order to arrive at the Nash equilibrium of the resulting
TCP Game, we need to have a notion of how p′a depends on α′
and α. However, as we show below, we could do with deriving a
weaker set of dependences. Indeed, letting Gn = Gn(α′, p′a), if
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Figure 5: Graphs showing pa = pα,α′ and Pa = dp′
dα′ |α′=α as functions of α (Figures (a) and (b)) and pb = pβ,β′ and

Pb = dp′
dβ′ |β′=β as functions of β (Figures (c) and (d)). In either case, the results for RED gateways are plotted along

the y-axis on the left. The results for CHOKe+, discussed in Section 5, are plotted along the y-axis on the right.

αE = α at Nash equilibrium, then we must have,

dGn

dα′ |α′=α = 0 (19)

since the choice of α′ for flow Fn coincides with the increase pa-
rameter α chosen by flows F1, . . . , Fn−1 at a symmetric Nash
equilibrium (The converse is not necessarily true). However,
dGn
dα′ |α′=α is a function of α, pa and

dp′
a

dα′ |α′=α only. Hence,

it is sufficient to obtain estimates of pa and
dp′

a
dα′ |α′=α as func-

tions of α to compute the common increase parameter at Nash
equilibrium, αE .

Similarly, when flows are allowed to vary their decrease param-

eter, it is suffices to obtain estimates of pb,
dp′

b
dβ′ |β′=β as functions

of β to compute the Nash equilibrium. Here, pb = pβ,β is the loss
rate common to the n TCP flows when βi = β for i = 1, . . . , n
and p′b = pβ′,β is the common loss rate experienced by the n

flows when βn = β′ �= β and βi = β, for i = 1, . . . , n− 1.
Since our aim is only to model the drop policy of AQM schemes

at a very high level, we do not delve into analytically deriving
the above functions. Rather, we employ simulations to obtain
measurements that help us estimate the above functions for RED
gateways. In addition, it is important to note that the above
functions may be different for TCP-Tahoe, Reno and SACK.

In Figures 5(a) and (b), we show how pa and
dp′

a
dα′ |α′=α vary

as functions of α for the three TCP variants. Figures 5(c) and
(d) show the corresponding results for β. We will use these esti-
mates in the analyses presented in the following sections to obtain
the congestion control parameters at Nash equilibrium. We now
deal with each of Tahoe/Severe, SACK/Gentle and Reno/Hybrid
cases in turn. We summarize our observations for RED gateways
towards the end of this section.

4.3.1 TCP-Tahoe/Severe Penalty
Analysis of Severe Penalty We first derive an expression for
the goodput of a Severe flow with congestion control parameters
(α, β) experiencing a steady state packet loss rate p. We assume
that the packet losses are distributed uniformly over the entire

transmission interval of the flow and that the flow never experi-
ences more than one loss, on an average, in a single round (that
is, losses do not occur in bursts).

Let τO be the expected number of rounds between successive
multiplicative decreases in the congestion window of this flow. Let

τ = τO − τS . In expectation, we can write, N = (τ − τS)α β
β−1

(using Equation 14). Then, from Equation 16, the expected to-
tal number of packets transmitted by the flow in these rounds
between consecutive window decreases is given by

S =
τX

t=1

N + tα

= N (τ + 1) +
ατ(τ + 1)

2

≈ ατ2(1 + β)

2(1 − β)

Since we assume that the losses are uniformly distributed and
never occur in bursts, we can write p = 1

S
. Eliminating S from

these previous two equations we obtain, τ ≈
q

2(1−β)
pα(1+β)

. The

expected length (in seconds) of the τO rounds taken to transmit

the S packets is T = RτS +R(τ+1), where R is the average round
trip delay (including the queueing delay). Hence, the expected

goodput of the flow is, approximately, G = S
T

= S
RτS+R(τ+1)

.

Now, from the fact p = 1
S

, we get,

G ≈ 1

pRτS + pR
q

2(1−β)
pα(1+β)

(20)

Varying α We fix β = 0.5. Then, from Equation 20, we get

Gn(α′, p′a) =
1

p′aRτS +R
q

2p′
a

3α′

(21)
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Figure 7: Simulation results for Severe flows with RED gateways.

If at Nash equilibrium αE = α, then from Equations 19 and 21
we obtain,

Fa = G2
n(α, pa)

r
α

pa
×

��
pa

α
−
�
dp′a
dα′

�
α′=α

�
− τS

p
6paα

�
dp′a
dα′

�
α′=α

�
= 0

Using the estimates for pa and
dp′

a
dα′ |α′=α from Figures 5(a) and

(b) respectively, we plot the Fa as a function of α in Figure 6(a).
Notice that when α < 22, Fa > 0. This implies that αE ≥ 22.
Varying β Here, we fix α = 1. Using this in Equation 20, we
get

Gn(β′, p′b) =
1

pRτS + pR
q

2(1−β′)
p(1+β′)

(22)

If βE = β at Nash equilibrium, then we can write the following
condition analogous to Equation 19:

dGn(β′, p′b)

dβ′ |β′=β = 0 (23)

Thus from Equations 22 and 23 we must have

Fb = G2
n(β, pb)

s
1 − β

pb(1 + β)
×

 �
2pb

1 − β2
− Pb

�
− τS

s
2pb(1 + β)

(1 − β)
Pb

!
= 0

where Pb =
dp′

b
dβ′ |β′=β . As before, we use the estimates in Fig-

ure 5(b) to numerically evaluate Fb as a function of β. The result
is shown in Figure 6(b). Notice that Fb > 0 throughout suggest-
ing that at Nash equilibrium, βE → 1.

Simulation of Tahoe The results for the Nash equilibria from
the simulation of the TCP Game for TCP Tahoe flows with RED
gateways are shown in Figure 7. From Figure 7(a), when Tahoe
flows are allowed to vary their increase parameters, αE = 34,
closely matching the analytical results. The Nash equilibrium
is undesirable since the per-flow goodput at Nash equilibrium is
rather low. When flows are allowed to vary their decrease param-
eters, βE = 0.98 at Nash equilibrium, as predicted by analysis.
Again, this Nash equilibrium is undesirable too due to the low
per-flow goodput.

When α and β are varied simultaneously, (αE , βE) = (27, 0.98)
at Nash equilibrium. The average goodput at this Nash equil-
brium is 0.73Mbps and the per-flow loss rate is 2.5% making this
an undesirable Nash equilibrium.

4.3.2 TCP-SACK/Gentle Penalty
Analysis of Gentle Penalty Setting τS = 0 in Equation 20
we get, for a Gentle flow,

G ≈ 1

R

s
α(1 + β)

2p(1 − β)
(24)

Substituting Equation 24 in Equations 19 and 23, we get the

following equations, respectively for the symmetric Nash equilib-
ria of the TCP Game when allowing flows to vary their α and β
individually:

Fa = G2
n(α, pa)

r
α

pa
×
�
pa

α
−
�
dp′a
dα′

�
α′=α

�
= 0

Fb = G2
n(β, pb)

s
1 − β

pb(1 + β)
×
 

2pb

1 − β2
−
�
dp′b
dβ′

�
β′=β

!
= 0

The estimates for p and dp′
dα′ |α′=α as functions of α for Gentle

(TCP-SACK) flows are shown in Figures 5(a) and (b). We use
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Figure 8: Simulation results for Gentle flows with RED buffers.
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Figure 9: Simulation results for Hybrid flows with RED buffers.

these estimates to obtain Fa as a function of α as shown in Fig-
ure 6(a). Notice that for TCP-SACK, Fa > 0 implying that at
a symmetric Nash equilibrium, αE could be arbitrarily large for
the combination of TCP-SACK and RED buffers.

From Figure 6(b), similarly, Fb > 0 throughout. Again, this
implies that at Nash equilibrium, βE → 1.
Simulation of SACK Simulation results for the Nash equilib-
rium of the TCP Game with TCP-SACK flows and RED buffers
are shown in Figure 8. When flows are allowed to vary their
increase parameters, αE = 49. At the Nash equilibrium, the per-
flow goodput (0.96Mbps) is reasonable but the loss rate (4.95%)
is somewhat high. Moreover, the parameter setting at the Nash
equilibrium, as predicted by analysis, is highly aggressive. As
such, we conclude that the Nash equilibrium of the TCP Game
with SACK flows varying their increase parameters and buffers
employing RED is undesirable.

From Figure 8(b), when flows are allowed to vary their de-
crease parameter, βE = 0.98. At this equilibrium both the per-
flow goodput and loss rate are reasonable and as such this Nash
equilibrium in not undesirable (The Nash equilibrium is unfair,
however).

From our simulations in which we allow TCP-SACK flows to
vary their increase and decrease parameters simultaneously, we
obtain (αE , βE) = (23, 0.98). The average per-flow goodput at
this Nash equilibrium is about 0.97Mbps and the per-flow loss rate
is 5.70%. As argued above, this Nash equilibrium is undesirable.

4.3.3 TCP-Reno/Hybrid Penalty
Analysis of Hybrid Penalty Instead of deriving the expres-
sion of the goodput of Hybrid flows, we use the standard equation
for the goodput of TCP Reno [19, 23] flows:

G =
1

R
q

2p(1−β)
α(1+β)

+ 3T0p(1 + 32p2)

q
p(1−β2)

2α

(25)

Again, using Equation 25 in Equations 19 and 23, we get the

following equations for the Nash equilibria with varying α and
varying β respectively:

Fa = Ca

� pa

α
− Pa

�

−Ca
9T0

2R

�
(1.5pa + 112p3a)Pa − p2a

2α
(1 + 32p2a)

�
= 0

Fb = Cb

�
2p

1 − β2
− Pb

�

−Cb
3T0Pb

R
(1 + β)(1.5p + 112p3) +

3T0(p2 + 32p4)β

R(1 − β)
= 0

where Ca = G2
n(α, pa)

q
α
pa

, Cb = G2
n(β, pb)

q
1−β

pb(1+β)
, Pa =

dp′
a

dα′ |α′=α and Pb =
dp′

b
dβ′ |β′=β .

We plot Fa and Fb as functions of α and β in Figures 6(a) and
(b) respectively, using the estimates from Figure 5 as before. In
either case F > 0 throughout. This implies that at the respective
Nash equilibria, αE can be arbitrarily large and βE → 1.
Simulation of Reno Results from the simulation of the TCP
Game with Reno flows and RED gateways are shown in Figure 6.
When flows vary their increase parameter, αE = 9. At this Nash
equilibrium, both the average goodput (0.90Mbps) and the per-
flow the loss rate (1.68%) are reasonable. While this Nash equi-
librium is not as undesirable as the cases of Severe and Gentle
penalties, it is nevertheless worse than the default parameter set-
ting in terms of the per-flow goodput.

As in the previous situations, when flows vary their decrease
parameter, the resulting Nash equilibrium is not undesirable both
in terms of the per-flow goodput and loss rate. Again, this is in
agreement with the observations in [2] (In fact, as shown in [2],
fairness is also reasonable at this equilibrium).

When flows are allowed to vary both their parameters simulta-
neously, at Nash equilibrium (αE , βE) = (3, 0.98). At this Nash



equilibrium, the average per-flow loss rate is 2.75% and the per-
flow goodput is about 0.94Mbps. Again, this Nash equilibrium is
somewhat less desirable when compared to the default parame-
ter setting in terms of per-flow goodput, though it is better than
those resulting from using the other forms of penalty.

Finally, we summarize the results for RED buffers as follows:

Observation 4. When RED gateways are employed, all the
Nash equilibria resulting from allowing flows to vary their in-
crease parameters are undesirable (irrespective of the loss recov-
ery scheme employed) in comparison with the default parameter
setting since they either result in a low per-flow goodput or a high
per-flow loss rate. However, allowing the flows to vary their de-
crease parameters does not result in undesirable Nash equilibria
(Except when flows implement Severe penalty).

4.4 Discussion
Our goal in this paper was to see if selfish behavior of network

end-points would have an undesirable effect on the efficiency of
the network. Intuition suggests that aggressive congestion control
behavior would always increase a flow’s bandwidth share so greed
would always result in overly aggressive flows and inefficient net-
work operation. However, as our analysis in the previous sections
has shown, this intuition is not always right.

Until recently, the most common deployed scenario in the In-
ternet was end-hosts implementing TCP-Reno loss recovery and
FIFO drop-tail buffer management. In this situation, selfish be-
havior does not result in inefficient network behavior.7 In fact,
the efficiency of the Nash equilibrium in this case is close to the so-
cially optimal (but the bandwidth allocation can be unfair). How-
ever, in our attempts to improve TCP’s loss recovery schemes,
we have increased our vulnerability to aggressive TCP behavior.
TCP-SACK loss recovery, which is being increasingly employed
by the end-hosts of today [12], allows flows to more gracefully re-
cover from losses. This greatly reduces the penalties for aggressive
congestion control and makes the Nash equilibrium of the TCP
Game quite inefficient. In addition, RED active queue manage-
ment is seen as important improvement over drop-tail. However,
by removing drop-tail’s penchant for dropping bursts of packets,
RED is more friendly to aggressive flows. This results in ineffi-
cient equilibria of the TCP Game (regardless of what form of loss
recovery the end-points use).

Since we no longer remain in the world consisting mainly of
drop-tail routers and end-hosts employing TCP-Reno loss recov-
ery, we must confront the problem of the aggressive behavior of
greedy TCP flows. One approach is to use different queueing and
buffer management schemes to prevent greedy users from achiev-
ing more than their share of bandwidth. Approaches such as Fair
Queueing [7] are quite effective in this regard, but require compli-
cated per-flow management. Several recent efforts have resulted
in more scalable and implementable schemes, such as FRED [17],
RED-PD [18] and AFD [20], that preferentially drop packets from
aggressive flows. However, these works focus on fair allocation of
bandwidth for an arbitrary set of sources. In the next section we
explore the issue of how much preferential dropping is required to
ensure that the Nash equilibrium of the TCP Game is desirable.

5. MECHANISMS FOR NASH EQUILIBRIUM
In order to design an preferential dropping mechanism that

encourages an efficient Nash equilibrium, we need a scheme that
assigns a greater loss rate to the more aggressive flows. This
greater loss rate, combined with the particular loss-recovery algo-
rithm, must offset any gain associated with the increased trans-
mission rates. We know that heavyweight mechanisms such as
Fair Queueing can accomplish this goal, but here we are looking
for very simple and easily deployable preferential dropping mech-
anisms that give just enough incentive to produce a desirable
Nash equilibria of the TCP Game, but need not achieve perfectly
fair bandwidth allocations for arbitrary sets of flows (which Fair

7Though other forms of antisocial behavior, such as using no
congestion control at all, could lead to severe congestion collapse.

Queueing and other such mechanisms have as their goal). We
discuss one such scheme in the next section.

Notice that the technique employed in the previous section, of
using experimentally obtained values of F to evaluate RED is ap-
plicable to any combination of the AQM scheme and the penalty
function implemented by the TCP flows as long as we can obtain
a closed form expression for the goodput of the flow as a function
of the penalty implemented and the AQM’s loss assignment pol-
icy.8 We will reuse this method to evaluate a modification to the
CHOKe AQM scheme in the next section.

5.1 CHOKe+: A Simple Stateless Mechanism
CHOKe [21] is an example of a simple preferential dropping

policy. In this section, we explore whether CHOKe or CHOKe
with modifications could meet our requirements. CHOKe main-
tains a simple FIFO buffer. The average occupancy of the buffer
is calculated in manner similar to RED. Like RED, a CHOKe
buffer is also configured with two thresholds Minth and Maxth.
If the average queue occupancy exceeds Minth, with each arriving
packet P , CHOKe picks k candidate packets, P1, . . . , Pk, at ran-
dom from the buffer. For each i = 1, . . . , k, CHOKe then checks
to see if Pi belongs to the same flow as P , and drops both upon
a match. Upon a mismatch with some packet Pj , CHOKe leaves
Pj untouched and drops P with a probability similar to that cal-
culated by a RED buffer with equivalent average and exact queue
sizes. However, in this form, CHOKe creates a minimum loss rate
of 1/N , where N is the number of active flows, as soon as the aver-
age queue length exceeds Minth. When there are relatively small
number of flows (< 50), this starting loss rate is excessively high
and results in the severe under-utilization of the available capac-
ity. In this form, CHOKe does ensure that the parameter settings
at Nash equilibrium are very conservative. However, the average
flow loss rate is very high and goodput is very low, making this
Nash equilibrium undesirable.

A few minor changes in the above algorithm are enough to
ensure that the loss rates of a CHOKe queue are not too high. For
each incoming packet P , let m denote the number of packets from
the k chosen candidate packets that belong to the same flow as
the incoming packet. Let 0 ≤ γ2 < γ1 ≤ 1 be positive constants.
If m ≥ γ1k, we drop P along with the m matching candidate
packets. Otherwise, we first calculate the drop probability for P
in an equivalent RED queue. Suppose that P is to be dropped
according to RED. Now, if γ2k ≤ m < γ1k, we also drop the
m matching packets along with P . Otherwise, we just drop P .
Henceforth, we will use CHOKe+ to refer to this modified CHOKe
algorithm.

Figures 10 compares the loss assignment of RED and CHOKe+.
For CHOKe+, we fixed the constants as follows: γ1 = 0.95,
γ2 = 0.80 and k = 5. In this simulation, there are 10 flows
F1, . . . , F10. Flows F1, . . . , F9 each have congestion control pa-
rameters of (1, 0.5). Figure (a) plots the loss rates of flows F1, . . . , F9

and that of flow F10 as the increase parameter of F10 is varied
in the range [1, 50] keeping the decrease parameter fixed at 0.5.
Similarly, in Figure (b) the decrease parameter of F10 is varied in
the range [0.5, 1) keeping the increase parameter fixed at 1. No-
tice that in either case the loss rates of all the 10 flows increase
gradually under RED. However, under CHOKe+, the loss rate
of flow F10 increases at a rate much higher than that compared
to the increase with RED. The loss rates of flows F1, . . . , F9 are
unaffected by the behavior of F10.

A RED buffer shares the additional losses resulting from the
increased rate of a single flow among the entire population of
flows. As a result, the loss penalty that an aggressive flow receives
is minimal. CHOKe+, on the other hand, assigns most losses due
to a flow’s rate increase to the flow itself and keeps the rest of the
flows mostly isolated from the aggressive flow. Note that perfect
isolation, as in Fair Queueing and other similar schemes, is not
necessary. CHOKe+ must only ensure that the increase in loss
rate is sufficient to discourage aggressive behavior.

In a manner similar to the analysis of RED (Sections 4.3) we

8In fact, the transmission protocol employed by the flows need
not be reliable.
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Figure 10: Figure comparing the loss assignment of RED and CHOKe+. The loss rates for the greedy flow and the
competing non-greedy flows are plotted in each case. For RED buffers, the two curves coincide.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

G
oo

dp
ut

 (
in

 M
bp

s)

Increase Parameter (αn)

α1 = 1 (α1,best = 3)
α2 = 3 (α2,best = 3)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
G

oo
dp

ut
 (

in
 M

bp
s)

Decrease Parameter (βn)

β1 = 1 (β1,best = 0.74)
β2 = 0.74 (β2,best = 0.74)

αE Goodput Loss Rate
3 0.97Mbps 2.74

βE Goodput Loss Rate
0.74 1.00Mbps 2.42

(a) (b)

Figure 11: Simulation results for Gentle flows with CHOKe+ buffers

plot the variations in pa = pα,α and Pa = dp′
dα′ |α′=α for Gentle

flows when CHOKE+ buffers are employed in Figures 5(a) and
(b) along with the corresponding values for RED buffers. When
flows get bursty, CHOKe+ drops packets much more aggressively
than RED buffers as can be seen from Figure 5(a) where the
common loss rate assigned by CHOKe+ is much higher than that
assigned by RED for the same setting of the common increase
parameter of the n flows. In addition, CHOKe+ heavily penalizes
flows for being even slightly more aggressive than the competing
flows as is clear from Figure (b) where Pa is an order of magnitude
higher for CHOKe+ buffers compared to the corresponding values
for RED buffers. Due to these properties CHOKe+ significantly
diminishes the goodput advantage of aggressive flows. Similarly,
we plot the values of pb and Pb as functions of β in Figures 5(c)
and (d). Again, CHOKe+ does a much better job of penalizing
aggressive flows then RED.

We plot the values of Fa and Fb for Gentle flows as func-
tions of α and β respectively in Figures 6(a) and (b). Notice
that from these plots Fa and Fb are positive throughout imply-
ing that at the respective Nash equilibria αE grows arbitrarily
large and βE → 1. However, since CHOKe+ assigns a much
higher loss rate to flows than RED for the same setting of the in-
crease or the decrease parameters of the n flows (Figures 5(a) and
(c)) and since CHOKe+ induces many more bursty packet drops
than RED (this is intuitively clear from the CHOKe+ algorithm),
TCP SACK flows tend to time-out occasionally when CHOKe+
buffers are used. In fact aggressive TCP SACK flows will time-
out quite frequently under CHOKe+. The goodput equation for
Gentle flows (Equation 24) does not capture this time out behav-
ior. Hence, Figures 6(a) and (b) do not correctly represent the
behavior of CHOKe+. Indeed CHOKe+ results in a much less
aggressive parameter setting at Nash equilibrium than RED, as
our simulations for the TCP Game (described below) show.

Our results for the Nash equilibrium of the TCP Game with
CHOKe+ buffers and TCP-SACK flows are shown in Figure 11(a)
and (b). At Nash equilibrium, αE = 3 when flows vary their
increase parameters and at βE = 0.74 when flows vary their

decrease parameter. When both α and β are allowed to vary,
(α, β) = (3, 0.90). At this Nash equilibrium, the average per-
flow goodput is 0.98Mbps and the per-flow loss rate is 4%. All
the Nash equilibria have good per-flow goodput and per-flow loss
rate. CHOKe+ is so effective that aggressive flows see only a very
marginal improvement in goodput.

However, it is worth noticing that CHOKe+ cannot completely
nullify the advantage seen by aggressive flows when decrease pa-
rameters are allowed to be varied. In fact, as we show in the next
section, it is impossible to effectively punish greedy flows varying
their decrease parameters without employing queue management
schemes that maintain explicit per-flow state. In light of this re-
sult, the best we can hope for from a purely stateless mechanism
is to diminish the advantage to such a low value that it is almost
imperceptible to the aggressive flow. CHOKe+ is effective in do-
ing so. As can be seen from Figure 11(b), when CHOKe+ is used
there is hardly any perceptible advantage of setting β aggressively.
This also explains why βE at Nash equilibrium is significantly
less than 1 (assuming that greedy flows do not choose a more ag-
gressive parameter setting unless it yields a substantially higher
goodput with high confidence). This property of CHOKe+ also
has implications on fairness. Since CHOKe+ discourages an ag-
gressive setting of β at Nash equilibrium, the window decrease is
still multiplicative. This results in a reasonable fair allocation [6].

5.2 On Multiplicative Decrease
Suppose that both the increase parameter α and the decrease

parameter β of all the flows are allowed to vary. We argue below
that there can be no mechanism that does not maintain per flow
state (e.g., fair queuing), that ensures a moderate value of β <
1 as a Nash equilibrium. This is important since a moderate
value of β is needed to achieve fair resource allocation among
end-points.

Consider a single link shared by n flows employing AIMD with
parameters αi and βi of their strategic choice, and a symmetric
Nash equilibrium (α, β). It is quite easy to see that, without the
losses due to the queue management mechanism (buffer overflows,



early drops, etc.) on this link, and assuming that all αi’s are
the same at equilibrium, each of the n users would end up with

goodput g0i = C 1+βi
2n

.
Assume now in the simplified model of this subsection that the

queue management mechanism on this link works by penalizing
the flows, that is, subtracting an amount from their goodput.
Suppose that the penalty imposed on flow i depends on the mea-
surement of g0i above by the queue management, and is P (g0i ) in
expectation; thus we write the final goodput as

gi = g0i − P (g0i ). (27)

Since we are assuming that we are at a Nash equilibrium,
βi = β < 1 for all i, and no flow has an incentive to increase its
β to β + ε for some small ε > 0. By Equation 27 this means that
the queue management mechanism is capable of detecting relative
fluctuations smaller than ε

2
in g0i , that is, arbitrarily small fluc-

tuations, and imposing penalties whenever such fluctuations oc-
cur. It can be shown by a reduction from element disjointness [4,
5] that any randomized algorithm that detects such fluctuations
with high probability must use space proportional to n – that is
to say, must essentially maintain per-flow state.

Our simplified model of queue management by penalties de-
pending on goodput rules out other schemes, such as the one
in which flows are sampled for detailed analysis, and if a flow is
found to have βi > β it is subject to penalties outside the realm of
queue management (such as exclusion from the network or legal
punishment). However, such schemes are even more far-fetched,
and run contrary to the end-to-end philosophy of the Internet.

6. SUMMARY
In this paper, we explore the impact of greedy TCP end-points

on the efficiency of the network. Our finding can be briefly sum-
marized as follows:

• In certain situations, greedy end-point behavior can result
in efficient network operation. In particular, the Nash equi-
libria are reasonably efficient in the historically significant
setting of TCP-Reno loss recovery in a network of drop-tail
routers.

• Unfortunately, in settings where either TCP-SACK loss re-
covery has been adopted by end-points or RED has been
deployed in routers, the Nash equilibria of the TCP game
are undesirable, having either low network goodput or high
drop rates, or both.

• However, the addition of very simple preferential dropping
algorithms, such as CHOKe+, can help restore the effi-
ciency of the Nash equilibria.

The conclusions about the Nash equilibria of the TCP Game
under various scenarios imply that, while in the past, network
operators could rely on the behavior of end-users to ensure the
stable, efficient operation of the network, the same cannot be
said of today’s Internet. They also suggest that there are two
possible reasons for the continued stable operation of the present-
day Internet: (1) it is too difficult to modify end-hosts to behave
greedily or (2) end-users consciously choose to behave in a socially
optimal manner. However, all is not yet lost. It is possible to
design simple, stateless queue management algorithms to ensure
that the advantage gained by aggressive flows is more than offset
by a high packet loss rate. These mechanisms can also ensure
reasonable, but not perfect, fairness at Nash equilibrium. This
would help make the Nash equilibrium more desirable while still
allowing the implementation of modern loss recovery mechanisms
(such as TCP-SACK) and queue management techniques (such
as RED) which have otherwise played a stellar role in keeping the
Internet of today in good stead.
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