
Self-Management in Chaotic Wireless Deployments

Aditya Akella Glenn Judd Srinivasan Seshan Peter Steenkiste

Carnegie Mellon University

{aditya, glennj, srini+, prs}@cs.cmu.edu

ABSTRACT
Over the past few years, wireless networking technologies
have made vast forays into our daily lives. Today, one can
find 802.11 hardware and other personal wireless technology
employed at homes, shopping malls, coffee shops and air-
ports. Present-day wireless network deployments bear two
important properties: they are unplanned, with most access
points (APs) deployed by users in a spontaneous manner,
resulting in highly variable AP densities; and they are un-
managed, since manually configuring and managing a wire-
less network is very complicated. We refer to such wireless
deployments as being chaotic.

In this paper, we present a study of the impact of in-
terference in chaotic 802.11 deployments on end-client per-
formance. First, using large-scale measurement data from
several cities, we show that it is not uncommon to have tens
of APs deployed in close proximity of each other. More-
over, most APs are not configured to minimize interference
with their neighbors. We then perform trace-driven simula-
tions to show that the performance of end-clients could suf-
fer significantly in chaotic deployments. We argue that end-
client experience could be significantly improved by mak-
ing chaotic wireless networks self-managing. We design and
evaluate automated power control and rate adaptation al-
gorithms to minimize interference among neighboring APs,
while ensuring robust end-client performance.
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1. INTRODUCTION
Wireless data networking technology is ideal for many en-

vironments, including homes, airports, and shopping malls
because it is inexpensive, easy to install (no wires), and sup-
ports mobile users. As a result, we have seen a sharp increase
in the use of wireless over the past few years. However, us-
ing wireless technology effectively is surprisingly difficult.
First, wireless links are susceptible to degradation (e.g., at-
tenuation and fading) and interference, both of which can
result in poor and unpredictable performance. Second, since
wireless deployments must share the relatively scarce spec-
trum resources that are available for public use, they often
interfere with each other. These factors become especially
challenging in deployments where wireless devices such as
access points (APs) are placed in very close proximity.

In the past, most dense deployments of wireless networks
were in campus-like environments, where experts could care-
fully manage interference by planning cell layout, sometimes
using special tools [18]. However, the rapid deployment of
cheap 802.11 hardware and other personal wireless technol-
ogy (2.4GHz cordless phones, bluetooth devices, etc.) is
quickly changing the wireless landscape. Market estimates
indicate that approximately 4.5 million WiFi APs were sold
during the 3rd quarter of 2004 alone [21] and that the sales
of WiFi equipment will triple by 2009 [14]. The resulting
dense deployment of wireless networking equipment in ar-
eas such as neighborhoods, shopping malls, and apartment
buildings differs from past dense campus-like deployments
in two important ways:

• Unplanned. While campus deployments are carefully
planned to optimize coverage and minimize cell over-
lap, many recent deployments result from individuals
or independent organizations each setting up one or
a small number of APs. This type of spontaneous de-
ployment results in highly variable densities of wireless
nodes and APs and, in some cases, these densities can
become very high (e.g. urban environments, apart-
ment buildings). Moreover, 802.11 nodes have to share
the spectrum with other networking technologies (e.g.,
Bluetooth, UWB) and devices (e.g., cordless phones).

• Unmanaged. Configuring and managing wireless net-
works is difficult for most people. Management issues



include choosing relatively simple parameters such as
SSID and channel, and more complex questions such
as number and placement of APs, and power control.
Other aspects of management include troubleshoot-
ing, adapting to changes in the environment and traffic
load, and making the wireless network secure.

We use the term chaotic deployments or chaotic networks
to refer to a collection of wireless networks with the above
properties. Such deployments provide many unique oppor-
tunities. For example, they may enable new techniques
to determine location [22] or can provide near ubiquitous
wireless connectivity. However, they also create numerous
challenges. As wireless networks become more common and
more densely packed, more of these chaotic deployments will
suffer from serious contention, poor performance, and secu-
rity problems. This will hinder the deployment and use of
these infrastructures, negating many of the benefits offered
by wireless networks.

The main goal of this paper is to show that interference
in chaotic 802.11 deployments can significantly affect end-
user performance. To this end, we first use large-scale mea-
surements of 802.11 APs deployed in several US cities, to
quantify current density of deployment, as well as configu-
ration characteristics, of 802.11 hardware. Our analysis of
the data shows that regions with tens of APs deployed in
close proximity of each other already exist in most major
cities. Also, most 802.11 users employ default, factory-set
configurations for key parameters such as the transmission
channel. Interestingly, we find that relatively new wireless
technology (e.g., 802.11g) gets deployed very quickly.

We then simulate the measured deployment and config-
uration patterns to study the impact that unplanned AP
deployments have on end-user performance. While it is true
that the impact on end-user performance depends on the
workloads imposed by users on their network, we do find
that even when the APs in an unplanned deployment are
carefully configured to use the optimal static channel assign-
ment, users may experience significant performance degra-
dation, e.g. by as much of a factor of 3 in throughput. This
effect is especially pronounced when AP density (and asso-
ciated client density) is high and the traffic load is heavy.

To improve end-user performance in chaotic deployments,
we explore the use of algorithms that automatically man-
age the transmission power levels and transmissions rates
of APs and clients. In combination with careful channel
assignment, our power control algorithms attempt to min-
imize the interference between neighboring APs by reduc-
ing transmission power on individual APs when possible.
The strawman power control algorithm we develop, called
Power-controlled Estimated Rate Fallback (PERF), reduces
transmission power as long as the link between an AP and
client can maintain the maximum possible speed (11Mbps
for 802.11b). Experiments with an implementation of PERF
show that it can significantly improve the performance ob-
served by clients of APs that are close to each other. For
example, we show that a highly utilized AP-client pair near
another such pair can see its throughput increase from 0.15
Mbps to 3.5 Mbps. In general, we use the term self man-
agement to refer to unilateral automatic configuration of
key access point properties, such as transmission power and
channel. We believe that incorporating mechanisms for self-
management into future wireless devices could go a long way
toward improving end-user performance in chaotic networks.

The rest of the paper is structured as follows. We present
related work in Section 2. In Section 3 we characterize
the density and usage of 802.11 hardware across various
US cities. Section 4 presents a simulation study of the ef-
fect of dense unmanaged 802.11 deployments on end-user
performance. We present an analysis of power control in
two-dimensional grid-like deployment in Section 5. In Sec-
tion 6, we outline the challenges involved in making chaotic
deployments self-managing. We describe our implementa-
tion of rate adaptation and power management techniques
in Section 7. Section 8 presents an experimental evalua-
tion of these techniques. We discuss other possible power
control algorithms in Section 9 and conclude the paper in
Section 10.

2. RELATED WORK
In this section, we first discuss current efforts to map

802.11 deployments. Then, we present an overview of com-
mercial services and products for managing networks in gen-
eral, and wireless networks in particular. Finally, we con-
trast our proposal for wireless self management (i.e., trans-
mission power control and multi-rate adaptation) with re-
lated past approaches.

Several Internet Web sites provide street-level maps of
WiFi hot-spots in various cities. Popular examples include
WifiMaps [8], Wi-Fi-Zones.com [7] and JIWire.com [6]. Sev-
eral vendors also market products targeted at locating wire-
less networks while on the go (see for example, Intego WiFi
Locator [5]. Among research studies, the Intel Place Lab
project [22] [11] maintains a database of up to 30,000 802.11b
APs from several US cities. In this paper, we use hot-spot
data from WifiMaps.com, as well as the Intel Place Lab
database of APs, to infer deployment and usage characteris-
tics of 802.11 hardware. To the best of our knowledge, ours
is the first research study to quantify these characteristics.
We describe our data sets in greater detail in Section 3.

The general problem of automatically managing and con-
figuring devices has been well-studied in the wired network-
ing domain. While many solutions exist [36, 34] and have
been widely deployed [16], a number of interesting research
problems in simplifying network management still remain
(e.g., [13, 31]). Our work in this paper compliments these
results by extending them to the wireless domain.

In the wireless domain, several commercial vendors mar-
ket automated network management software for APs. Ex-
amples include Propagate Networks’ Autocell [3], Strix Sys-
tems’ Access/One Network [1] and Alcatel OmniAccess’ Air-
View Software [2]. At a high-level, these products aim to
detect interference and adapt to it by altering the transmit
power levels on the access points. Some of them (e.g., Ac-
cess/One) have additional support for load management and
effective coverage (or “coverage hole management”) across
multiple APs deployed throughout an enterprise network.
However, most of these products are tailor-made for specific
hardware (for example, AirView comes embedded in all Al-
catel OmniAcess hardware) and little is known about the
(proprietary) designs of these products. Also, these prod-
ucts are targeted primarily at large deployments with several
tens of clients accessing and sharing a wireless network.

Also, in the past, several rate adaptation mechanisms that
leverage the multiple rates supported by 802.11 have been
proposed. For example, Sadeghi et al. [32] study new multi-
rate adaptation algorithms to improve throughput perfor-



Data set Collected No. of APs Stats collected per AP
on

Place Lab Jun 2004 28475 MAC, ESSID, GPS coordinates
WifiMaps Aug 2004 302934 MAC, ESSID, Channel
Pittsburgh Wardrive Jul 2004 667 MAC, ESSID, Channel

supported rates, GPS coordinates

Table 1: Characteristics of the data sets

mance in ad hoc networks. Our rate control algorithms, in
contrast, are designed specifically to work well in conjunc-
tion with power control. However, it is possible to extend
past algorithms such as [32] to support power control.

Similarly, traffic scheduling algorithms have been proposed
to optimize battery power in sensor networks, as well as
802.11 networks (see, for example, [28, 25]). In contrast, our
focus in this paper is not on saving energy, per se. Instead
we develop power control algorithms that enable efficient use
of the wireless spectrum in dense wireless networks.

In general, ad hoc networks have recently received a great
deal of attention and the issues of power and rate control
have been also studied in the context of ad hoc routing pro-
tocols, e.g. [24, 15, 33, 20]. There are, however, significant
differences between ad hoc networks and chaotic networks.
First, ad hoc networks are multi-hop while our focus is on
AP-based infrastructure networks. Moreover, nodes in ad
hoc networks are often power limited and mobile. In con-
trast, the nodes in chaotic networks will typically have lim-
ited mobility and sufficient power. Finally, most ad hoc
networks consist of nodes that are willing to cooperate. In
contrast, chaotic networks involve nodes from many organi-
zations, which are competing for bandwidth and spectrum.
As we will see in Section 6, this has a significant impact on
the design of power and rate control algorithms.

3. CHARACTERIZING CURRENT 802.11
DEPLOYMENTS

To better understand the problems created by chaotic de-
ployments, we collect and analyze data about 802.11 AP
deployment in a set of metropolitan areas. In this section,
we present preliminary observations of the density of APs
in these metropolitan areas, as well as typical usage char-
acteristics, such as the channels used for transmission and
common vendor types.

3.1 Measurement Data Sets
We use three separate measurement data sets to quantify

the deployment density and usage of APs in various U.S.
cities. The characteristics of the data sets are outlined in
Table 1. A brief description of the data sets follows:

1. Place Lab: This data set contains a list of 802.11b
APs located in various US cities, along with their GPS
coordinates. The data was collected as part of Intel’s
Place Lab project [22] [11] in June 2004. The Place
Lab software allows commodity hardware clients like
notebooks, PDAs and cell phones to locate themselves
by listening for radio beacons such as 802.11 APs,
GSM cell phone towers, and fixed Bluetooth devices.

2. WifiMaps: The WifiMaps.com website [8] provides
a GIS visualization tool, to map wardriving results

uploaded by independent users onto street-level data
from the US Census. We obtained access to the com-
plete database of wardriving data maintained at this
website as of August 2004. For each AP, the database
provides the AP’s geographic coordinates, zip code, its
wireless network ID (ESSID), channel(s) employed and
the MAC address.

3. Pittsburgh Wardrive: This data set was collected
on July 29, 2004, as part of a small-scale wardriving ef-
fort which covered a few densely populated residential
areas of Pittsburgh. For each unique AP measured, we
again collected the GPS coordinates, the ESSID, the
MAC address and the channel employed.

3.2 Measurement Observations
In this section, we analyze our data sets to identify real-

world deployment properties that are relevant to the efficient
functioning of wireless networks. The reader should note
that data analyzed here provides a gross underestimate of
any real-world efficiency problem. First, none of above data
sets are complete—they may fail to identify many APs that
are present and they certainly do not identify non-802.11
devices that share the same spectrum. Second, the density of
wireless devices is increasing at a rapid rate, so contention in
chaotic deployments will certainly increase dramatically as
well. Because of these properties, we believe these data sets
will lead us to underestimate deployment density. However,
these data sets are not biased in any specific way and we
expect our other results (e.g. channel usage, AP vendor and
802.11g deployment) to be accurate.

3.2.1 802.11 Deployment Density
First, we use the location information in the Place Lab

data set to identify how many APs are within interference
range of each other. For this analysis, we conservatively set
the interference range to 50m, which is considered typical
of indoor deployments. We assume two nodes to be “neigh-
bors” if they are within each other’s interference range. We
then use this neighborhood relationship to construct “inter-
ference graphs” in various cities.

The results for the analysis of the interference graphs in
six US cities are shown in Table 2. On average we note 2400
APs in each city from the Place Lab dataset. The third
column of Table 2 identifies the maximum degree of any AP
in the six cities (where the degree of an AP is the number of
other APs in interfering range). In Boston and San Diego,
for example, a particular wireless AP suffers interference
from about 80 other APs deployed in close proximity.

In Figure 1, we plot a distribution of the degrees of APs
measured in the Place Lab data set. In most cities, we find
several hundreds of APs with a degree of at least 3. In
Portland, for example, we found that more than half of the



City Number of APs Max AP degree Max. connected No. of connected
(i.e., # neighbors) component size components

Chicago 2370 42 54 369
Washington D.C. 2177 20 226 162
Boston 2551 85 168 320
Portland 8683 54 1405 971
San Diego 7934 76 93 1345
San Francisco 3037 39 409 186

Table 2: Statistics for APs measured in 6 US cities (Place Lab data set)
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Figure 1: Distribution of AP degrees (Place Lab
data set)

8683 nodes measured had 3 or more neighbors. Since only
three of the 802.11b channels are non-overlapping (channel
1, 6 and 11), these nodes will interfere with at least one
other node in their vicinity.

The fourth column in Table 2 shows the size of the max-
imum connected component in the interference graph of a
city. The final column shows the number of connected com-
ponents in the interference graph. From these statistics, we
find several large groups of APs deployed in close proxim-
ity. Together, these statistics show that dense deployments
of 802.11 hardware have already begun to appear in urban
settings. As mentioned earlier, we expect the density to
continue to increase rapidly.

3.2.2 802.11 Usage: Channels
Table 3 presents the distribution of channels used by APs

in the WiFiMaps data set. This provides an indication of
whether users of APs manage their networks at all. Notice
that many APs transmit on channel 6, the default on many
APs, and only 14% use the remaining two non-overlapping
channels in 802.11b (i.e., channels 1 and 11). While this does
not identify particular conflicts, this distribution suggests
that many of the APs that overlap in coverage are probably
not configured to minimize interference.

3.2.3 802.11b vs. 802.11g
The Pittsburgh wardrive data set contains information

about rates supported for about 71% of the measured APs,
or 472 out of the 667. We use this information to classify
these APs as 802.11b or 802.11g. We find that 20% of the

Channel Percentage of APs

1 3.04
2 12.29
3 3.61
4 1.03
5 1.13
6 41.15
7 1.75
8 1.12
9 1.31
10 3.42
11 11.04

Table 3: Channels employed by APs in the Wifimaps
data set.

classified APs, or about 93, are 802.11g. Given the rela-
tively recent standardization of 802.11g (June 2003), these
measurements suggest that new wireless technology gets de-
ployed relatively quickly.

3.2.4 Vendors and AP Management Support

Vendor Percentage of APs

Total classified 98
Linksys (Cisco) 33.5
Aironet (Cisco) 12.2
Agere Systems 9.6
D-Link 4.9
Apple Computer 4.6
Netgear 4.4
ANI Communications 4.3
Delta Networks 3.0
Lucent 2.5
Acer 2.3
Others 16.7

Table 4: Popular AP vendors (Wifimaps data set)

To determine popular AP brands, we look up the MAC ad-
dresses available in the Wifimaps data set against the IEEE
Company id assignments [4] to classify each AP according to
the vendor. For the APs that could be classified in this man-
ner (2% of the APs in the Wifimaps data set did not have
a matching vendor name), the distribution of the vendors is
shown in Table 4. Notice that Cisco products (Linksys and
Aironet) make up nearly half of the market. This observa-



tion suggests that if future products from this vendor incor-
porated built-in mechanisms for self-management of wireless
networks this could significantly limit the impact of inter-
ference in chaotic deployments.

To understand if specific models incorporate software for
configuration and management of wireless networks, we sur-
vey the popular APs marketed by the top three vendors in
Table 4. All products (irrespective of the vendors) come
with software to allow users to configure basic parameters
for their wireless networks, such as ESSID, channel and se-
curity settings. Most “low-end” APs (e.g., those targeted
for deployment by individual home users) do not include any
software for automatic configuration and management of the
wireless network. Some of the products targeted at enter-
prise and campus-style deployments, such as Cisco Aironet
350 series, allow more sophisticated, centralized manage-
ment of parameters such as transmit power levels, select-
ing non-overlapping channels, etc. across several deployed
APs. Since these products are targeted at campuses, they
are too expensive for use in smaller-scale deployments such
as apartment-buildings.

4. IMPACT ON END-USER PERFORMANCE
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Figure 2: Simulation topologies derived from the
Metropolis wardrive data set; the units on the x and
y axis are in meters. Figure (a) shows the 20-node
topology derived from the Metropolis Wardrive data
set. Figure (b) shows a sub-topology of 8 nodes
that were all assigned the same channel by a static
optimal channel assignment algorithm when applied
to the 20-node topology in (a).

In order to quantify the impact of the deployment and
usage characteristics of 802.11b APs on the Internet per-
formance observed by end-users, we conducted trace-driven
simulations using the publicly available GloMoSim simula-
tor [17]. We simulated the deployment topology shown in
Figure 2(a), obtained during a portion of the Pittsburgh
wardrive. There are 20 APs in this topology. We use the
following settings and assumptions in our simulations:

1. Each node in the map corresponds to an AP.

2. Each AP has D clients (e.g., laptops) associated with
it. We vary D between 1 and 3.

3. Clients are located less than 1m away from their re-
spective APs and do not move.

4. Unless otherwise specified, we assume that all APs
transmit on channel 6.

5. All APs employ a fixed transmit power level of 15dBm,
unless otherwise specified (This is the default setting
in most commercial APs).

6. All APs transmit at a single rate, 2Mbps (there is no
multi rate support in GloMoSim). At these settings,
the transmission and interference ranges are 31m and
65m, respectively.

7. RTS/CTS is turned off. This is the default setting in
most commercial APs.

8. We use a modified two-ray path loss model for large-
scale path loss, and a Ricean fading model with a K-
factor of 0 for small scale fading [30].

Intuition suggests that the impact of interference in chaotic
wireless deployments depends, to a large extent, on the
workloads imposed by users. If most APs are involved in
just occasional transmission of data to their users, then it
is very likely that users will experience no degradation in
performance due to interference from nearby APs. A key
goal of our simulations, then, is to systematically quantify
the precise impact of user workloads on eventual user per-
formance. To achieve this, we simulate two types of user
workloads over the above simulation set-up. These work-
loads differ mainly in their relative proportions of HTTP
(representing Web-browsing activity) and FTP (represent-
ing large file downloads) traffic.

In the first set of workloads, called http, we assume that
the clients are running HTTP sessions across their APs. The
HTTP file size distribution is based on a well-known model
for HTTP traffic [26]. On a client, each HTTP transfer is
separated from the previous one by a think time drawn from
a Poisson distribution with a mean of s seconds. We vary s
between the values of 5s and 20s (We also simulated HTTP
workloads with 10s, 30s and 60s sleep times. The results
are qualitatively similar and are omitted for brevity). The
average load offered by the HTTP client is 83.3Kbps for a
5s sleep time, and 24.5Kbps for a 20s sleep time. There is
no other interfering traffic in the http workload.

The second set of workloads, called comb-ftpi , is similar
to the http workload with the exception of i clients in the
entire set-up running long-lived FTP flows for the duration
of the simulation. We vary i between 1 and 3. The av-
erage load offered by the FTP clients in our simulation is
0.89Mbps. We simulate either set of workloads for 300s.



4.1 Interference at Low Client-Densities and
Traffic Volumes
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Figure 3: Average performance of HTTP and FTP
flows at low client densities (D = 1) and low levels
of competing FTP traffic (http and comb−ftp1 work-
loads).

First, we conduct simulations with the http and comb-ftp1

workloads, and low client densities (D = 1). The results are
shown in Figure 3. The performance measurements are the
average of 5 different simulation runs; the variance between
runs is not shown since it was low. The x-axis in these pic-
tures is the “stretch” parameter which allows us to tune the
density of APs per square meter in a given simulation. A
simulation with a stretch of l indicates that the distance be-
tween a pair of APs in the simulation topology is a factor of l
larger than the actual distance in the original topology. The
distance between an AP and its clients does not change. The
higher the value of stretch, the lower the likelihood of inter-
ference between nodes in the simulation topology. For the
topology in Figure 2(a), we note that at stretch ≈ 20, the
nodes are completely out of each others’ interference range.
Also, in our simulations, beyond stretch = 10, we see little
impact of interference between nodes on user performance.
In either figure, the y-axis shows the average normalized per-
formance of HTTP (Figure (a)) or FTP flows (Figure (b))
in our simulations. Normalized HTTP (FTP) performance
is simply the ratio of the average throughput of an HTTP
(FTP) flow to the throughput achieved by an FTP bulk
transfer when operating in isolation, i.e., 0.89Mbps. This

can be viewed as the amount of work a user completed dur-
ing a fixed time interval, relative to the maximum achievable
work.

Notice that, for workloads with an “aggressive” HTTP
component (i.e., think time of 5s), the performance of the
HTTP flows improves until stretch = 10; beyond this point
performance stays relatively flat. For less aggressive HTTP
workloads (i.e., think interval of 20s), the impact on the
performance of the HTTP flows is less severe. The perfor-
mance of the FTP flow in comb-ftp1 workload is shown in
Figure 3(b). When the HTTP component of this workload
is aggressive (s = 5s), the performance of the lone FTP flow
suffers by about 17%. With a not-so-aggressive HTTP com-
ponent, as expected, the impact on the FTP flow is minimal.

So far, we studied the impact of interference under rela-
tively “light-weight” user traffic at each access points. In
the next two sections, we vary two important factors deter-
mining the client load—the density of clients per AP and
the traffic volume of the clients—to create more aggressive
interference settings.

4.2 Impact of Client Densities and Traffic Load
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Figure 4: Average performance of HTTP and FTP
flows at greater client densities (D = 3).

Impact of client density. Figures 4(a) and (b) show the
average performance of the individual HTTP and FTP ses-
sions, respectively, in the comb-ftp1 and http workloads, for
a high number of clients associated per AP (D = 3). The
performance of both HTTP and FTP flows suffers signifi-
cantly under high client densities: From Figure 4(a), HTTP



performance is lowered by about 65% (compare stretch = 1
with stretch = 10) due to interference between aggressive
HTTP flows (s = 5s). The same is true for the performance
of the FTP flow in Figure 4(b). For a less aggressive HTTP
component (s = 20s) the performance of the HTTP flows is
20% inferior, while the FTP flow suffers by about 36%.
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Figure 5: Average performance of HTTP and FTP
flows at higher competing FTP traffic levels (i.e.,
the comb-ftp

�
2, 3 � workloads) and for D = 3.

Impact of traffic volume. Figures 5(a) and (b) show
the average performance of the HTTP and FTP flows, re-
spectively, in simulations with a few more competing FTP
flows—i.e., the comb-ftp2 and comb-ftp3 workloads—for
D = 3. The performance impact on HTTP and FTP flows
is slightly more pronounced, even for the cases where the
HTTP component of these workloads is not very aggressive
(see the curves corresponding to s = 20s in Figure 5(b)).

Using realistic channel assignments. We also performed
simulations on the 20-node topology, where the APs were
statically assigned channels based on the distribution in Ta-
ble 3. However, we note similar levels of interference and
impact on performance as observed above. This is because
more than half the APs in this simulation were assigned
channel 6, which was the most predominant channel em-
ployed by most APs according to our measurements.

4.3 Limiting the Impact of Interference
In this section, we explore the effect of two simple mecha-

nisms on mitigating interference in chaotic networks: First,

we study if an optimal static allocation of non-overlapping
channels across APs could eliminate interference altogether.
Second, we present a preliminary investigation of the effect
of reducing the transmit power levels at APs on the interfer-
ence experienced. We also investigate how transmit power
control improves the total capacity of a chaotic, network, as
well as the fairness in the allocation of the capacity among
individual APs.

4.3.1 Effect of Optimal Static Channel Allocation
We performed simulations on the 20-node topology of Fig-

ure 2(a), where the APs are statically assigned one of the
three non-overlapping channels (1, 6 and 11) such that no
two neighboring APs share a channel, whenever possible. As
an illustration, Figure 2(b) shows the lay-out of APs that
were all assigned channel 1 by this scheme.
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Figure 6: Performance of HTTP and FTP flows with
optimal static assignment of APs to the three non-
overlapping channels. The transmit power level is
set at 15dBm, corresponding to a reception range of
31m.

The performance of HTTP and FTP flows in these simu-
lations are shown in Figure 6(a) and (b), respectively. The
average performance of both HTTP and FTP flows improves
significantly. Comparing with Figures 5(a) and (b) respec-
tively, we note that the performance curves “flatten out”
earlier on account on the sparse nature of the interference
graph. Nevertheless, the impact of interference can still be
seen: the average HTTP performance is about 25% inferior
at stretch = 1 compared to the case when no nodes inter-



feres with another (stretch = 10). FTP performance, sim-
ilarly, is far from optimal. These observations suggest that
while optimal static channel allocation reduces the impact
of interference, it cannot eliminate it altogether.

4.3.2 Impact of Transmit Power Control
We augment above simulations of optimal static channel

allocation with more conservative (lower) power settings on
the APs: we forced the 8 APs in Figure 2(b) to use a power
level of 3dBm. This yields a transmission range of 15m,
which is half the range from using the default power level of
15dBm. Next, we show how this improves HTTP and FTP
performance, as well as the total network capacity.
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Figure 7: Performance of HTTP and FTP flows
with optimal static channel assignment of APs. The
transmit power level is set at 3dBm, corresponding
to a reception range of 15m.

Improvement in application performance. The perfor-
mance results for HTTP and FTP flows in these simulations
are shown in Figures 7(a) and (b) respectively. Compared
with Figures 6(a) and (b), the performance of individual
flows improves significantly. The interference among nodes
is lowered, as can be seen by both the performance curves
flattening out at stretch = 2. These results show that trans-
mit power control, in conjunction with a good channel allo-
cation mechanism, could help reduce the impact of interfer-
ence in chaotic networks substantially.

Improvement in network capacity. In Figure 8 we show
how transmit power control improves user performance for
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Figure 8: Performance FTP flows with and without
optimal channel assignment and AP transmit power
control. The workload is composed of FTP flows
between each client and its AP, with D = 1 . Fig-
ure (a) shows the performance of FTP flows in the
simulations. Figure (b) shows the fairness index for
the throughput achieved by the FTP flows.

a workload composed fully of bulk FTP transfers (i.e., each
AP has one user associated with it, and the AP runs an
FTP bulk transfer to the user). This simulation sheds light
on how careful management of APs can improve the total
capacity of the network. When APs are completely unman-
aged, the capacity of a densely packed network of APs is
only 15% of the maximum capacity (see Figure 8(a)). Static
channel allocation of APs improves the capacity two-fold.
Lowering the transmit power on APs improves capacity by
nearly an additional factor of 2.

Fairness. In Figure 8(b), we show the fairness in the through-
puts achieved by individual FTP flows to understand if the
performance of certain APs in a chaotic deployment suffers
significantly compared to others. Our fairness metric is de-

rived from [12] and is defined as ( � xi)
2

n � x2

i

, where xi’s are the

throughputs of individual flows.
For the highest densities of access points, we see that poor

management results in unfair allocation of capacity across
access points. Channel allocation coupled with transmit
power control immediately ensures a highly equitable alloca-
tion: except for the highest density, the fairness of allocation
is above 0.9.



In this section, we used simulations to study the impact
of transmit power reduction on network performance. The
key observation from our simulations is that end-user perfor-
mance can suffer significantly in chaotic deployments, espe-
cially when the interference is from aggressive sources (such
as bulk FTP transfers). We showed that careful manage-
ment of APs, via transmit power control (and static channel
allocation), could mitigate the negative impact on perfor-
mance. Moreover, transmit power control can also enable
an equitable allocation of capacity among interfering APs.
A key drawback of our simulations, however, is the lack of
support for multi-rate adaptation. We further explore the
benefits of transmit power control in conjunction with multi-
rate adaptation in the next section.

5. BENEFITS OF TRANSMIT POWER RE-
DUCTION

AP

dclient

mediumUtilization = � (utilization of all in-range APs)

Interference range of AP transmission
to client at given power level.

dmin

Figure 9: Computing minimum AP spacing for a
grid topology

In this section we use a simple model of wireless com-
munication applied to a two-dimensional grid topology as
shown in Figure 9 to quantify the advantages of transmit
power control. We also model the impact of rate adapta-
tion. For our analysis, we assume that each AP sends traffic
to a single client at a fixed distance (dclient) from the AP.
In practice, if this transfer used TCP, we would expect a
small amount of traffic from the client to AP due to the
TCP acknowledgements.

As the amount of uplink traffic is small, we only consider
the downlink traffic to simplify our analysis. We also ignore
many real-world effects such as multipath fading and chan-
nel capture. We do not use these simplifying assumptions
in subsequent sections. In particular, we stress that our al-
gorithms are designed to operate in a symmetric fashion on
both uplink and downlink traffic.

We examine a range of transmit power levels and traffic
loads. For each transmit power level and traffic load pair, we

determine the minimum physical spacing required between
APs (dmin) to support the specified load.

To compute this, we first calculate the medium utilization
required by each AP: utilizationAP = load/throughputmax.
The maximum throughput is determined by first calculating
path loss from the AP to the client (in dB) as: pathloss =
40+3.5∗10∗ log(dclient); this is based on the pathloss model
from [30] with constants that correspond to measurements
collected in our local environment.

Received signal strength can then be computed as RSS =
txPower−pathloss, and the signal-to-noise ratio is SNR =
RSS − noiseF loor. We choose the noise floor to be -100
dBm, which is typical for our hardware. Using SNR and the
data in Tables 5 and 6 (based on measurements presented
in [9]) we then determine the maximum transmission rate
that can be used for the AP-client link and the correspond-
ing maximum throughput for that rate.

Rate (Mbps) Minimum SNR (dB)

1 3
2 4
5.5 8
11 12

Table 5: Minimum required SNR for Prism 2.5

Rate (Mbps) Throughput (Mbps)

1 0.85
2 1.7
5.5 3.5
11 4.9

Table 6: Maximum 802.11b throughput

After we have computed the utilization for a single link,
we determine the medium utilization at each AP by sum-
ming the utilization of all in-range APs. We determine
that two APs are in range by computing the RSS between
them using the same formula used above. We consider the
candidate AP to be in range of the local AP if RSS >
interferenceThreshold. We set interferenceThreshold to
-100 dBm for our calculations.

Figure 10 shows the results of our calculations for a client
distance of 10 meters and loads ranging from 0.1 Mbps to
1.1 mbps. Other client distances and loss parameters would
shift or scale the graph, but the trends would remain the
same. The 2, 5.5, and 11 Mbps regions shown near the
bottom of the chart specify the maximum transmission rate
that can be used for each power level. Consider a specific
point on this graph, such as the point at -15dBm power on
the x-axis; using the 1.1 Mbps load line, this translates into
a 20m AP distance on the y-axis. This implies that if you
want to transmit at 1.1Mbps from each AP at -15dBm, the
APs must be at least 20m apart in order to avoid overloading
the wireless link. In addition, the solid-black line parallel to
the x-axis indicates that each AP uses a transmission rate of
5.5Mbps to communicate with its client. For the simulations
in the previous section we typically fixed the transmit power
and then increased the stretch; this corresponds to picking
a point on the x-axis and moving up vertically.
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Figure 10: Minimum AP distance vs. Tx power
(dclient = 10m)

We draw a few key conclusions from Figure 10. Clearly
the minimum distance between APs that can be supported
decreases (i.e. maximum supported density increases) dra-
matically as the transmission power (in dBm) is decreased.
We also find that high AP density and higher loads require
transmit power levels below 0 dBm. This is the lowest trans-
mit power available from commercial hardware that we are
aware of. Adding support for lower transmit power levels to
wireless hardware would be a simple way of improving the
density of APs that can be supported. Secondly, the graph
can also be used to determine the upper bound on the power
level that should be employed (x-axis) in order to achieve
a certain throughput, given a certain inter-AP distance (y-
axis). Using a higher power level will typically not affect (i.e.
not decrease or increase) the performance for that node, but
will reduce performance for other, nearby nodes. This is the
basis for one of the power control algorithms discussed in
the next section. Finally we note that the highest densi-
ties require the use of very low transmission power, forcing
nodes to use a transmission rate under 11 Mbps. This sug-
gests that, when their traffic requirements are low, it may
be advantageous if nodes voluntarily reduce not only their
transmission power but also their transmission rate since it
could increase the overall network capacity in very dense
networks. We will revisit this issue in Section 9.

6. DEPLOYMENT CHALLENGES
Power control offers a simple but powerful technique for

reducing interference. The tradeoffs are obvious: reduc-
ing the power on a channel can improve performance for
other channels by reducing interference, but it can reduce
the throughput of the channel by forcing the transmitter to
use a lower rate to deal with the reduced signal-to-noise ra-
tio. As a result, we must carefully consider the incentives
that users may have for using such techniques. In practice,
the incentives for using power control are complex and we
have to distinguish between the techniques that are applica-
ble to campus deployments and chaotic wireless networks.

In campus environments, there are a number of APs un-
der the control of a single organization. This organization is
in a position to do power control in each cell in a way that
optimizes some global network metric, e.g. total network

throughput or fairness. An additional important consider-
ation is that in campus networks a user can obtain service
from any of the APs in transmission range. Therefore, any
design may need to carefully consider issues such as load-
balancing of users across APs along with power control.

In chaotic networks, the infrastructure is controlled by
multiple organizations, and, unfortunately, their priorities
often conflict. For example, for a home network consisting
of a single AP, the best strategy is to always transmit at
maximum power, and there is no incentive to reduce power
and, thus, interference. The results in the previous section
show that such a “Max Power” strategy, when employed
by multiple APs, will result in suboptimal network perfor-
mance. This implies that while a single node can improve its
performance by increasing power, it can actually obtain bet-
ter performance if it, and all of its neighbors, act socially and
reduce their transmission power appropriately. This is anal-
ogous to the tradeoffs between selfish and social congestion
control in the Internet [10]. While a node can improve per-
formance by transmitting more quickly in the Internet, this
can result in congestion collapse and degraded performance
for all. We believe that similar factors that drove the wide
deployment of congestion control algorithms will drive the
deployment of power control algorithms. We should note
that an added side incentive for the deployment of auto-
matic power control is that it limits the propagation of an
AP’s transmission which, in turn, limits the opportunity of
malicious users eavesdropping on any transmission.

Our work focuses on socially responsible power control al-
gorithms that would work well in chaotic environments. We
call such power control algorithms “socially responsible” to
differentiate them from approaches that require global coor-
dination across multiple access points (e.g., for campus-wide
wireless networks). Our algorithms are targeted at individ-
ual access points and clients, which behave in an altruistic
manner, agnostic to the actions of other APs and clients.
Our algorithms could also work in campus scenarios. How-
ever, we do not consider issues such a AP load-balancing
which arise in such environments. We leave the extension of
our design to campus deployments for future work.

Note that while our algorithms are targeted at nodes be-
having in an altruistic manner, there are also practical con-
siderations that make them more feasible than simply re-
lying on the altruism of end users would. In particular,
these algorithms are implemented not by end users, but by
equipment vendors. From an equipment vendor’s point-of-
view, reducing interference is beneficial. Moreover, regula-
tory mandates already limit transmit power, and could be
extended to require dynamic adjustment of transmit power
in order to increase spatial reuse and potentially allow for
higher transmit power limits which would clearly benefit
both end users and equipment vendors. Finally, as dis-
cussed in Section 3.2, we find that new technology is quickly
adopted in chaotic networks, and that many users in chaotic
networks do not change factory default settings. Hence, ven-
dor implemented intelligent transmit power control could be
deployed relatively quickly and would be widely adopted.

7. TRANSMISSION POWER AND
RATE SELECTION

In order to characterize how power adaptation affects both
network-wide and individual user throughput, we ran exper-



iments with several rate selection algorithms implemented
on both APs and clients. In this section, we describe the
fixed-power rate selection algorithms and adaptive-power
algorithms that we evaluate. Before we introduce the algo-
rithms, we briefly describe our implementation environment
for the rate selection algorithms.

7.1 Rate Selection Implementation
Our experiments use a NIC based on the Prism chipset

running the 2.5 version of the firmware. The driver is a
modified version of the HostAP [27] Prism driver for Linux,
which was extensively modified to give fine-grained control
of rate selection and transmission power to the driver.

The driver achieves per-packet control over transmission
rate by tagging each packet with the transmission rate at
which it should be sent. The Prism 2.5 firmware will then
ignore its internal rate selection algorithm and send the
packet at the specified rate; all firmware retransmissions will
use this same rate. The Prism 2.5 firmware also allows us
to take control over the retransmission of packets (in the
driver) by tagging each packet with a specified number of
retries. For instance, setting the packet retry count to zero
tells the firmware to attempt no retries in firmware, and to
merely inform the driver if a packet is not acknowledged.
This allows us to completely replace the firmware rate selec-
tion and retransmission algorithms. While this gives us the
ability to control the rate at which retransmissions are sent,
one disadvantage of this approach is that retransmissions
occur much more slowly than they would if implemented in
firmware. As a compromise, we set the retransmit count
to 2 so that most retransmissions are still handled by the
firmware, but the driver is still informed fairly quickly when
channel conditions are too poor to allow the packet to be
sent.

Unfortunately, the Prism 2.5 chipset does not support per-
packet transmission power control the way it does for the
transmission rate. This is not a fundamental limitation of
wireless NICs, but rather a characteristic of the Prism 2.5
firmware. We overcome this limitation as follows. When-
ever we want to change the transmission power, we first
wait for the NIC’s transmission buffers to empty. We then
change the power level and queue one or more packets that
should be sent at the new power level. While this tech-
nique supports per-packet power control for packets which
pass through the driver (user data), it does not allow us to
set the transmit power for 802.11 control and management
packets (e.g. ACKs, RTS/CTS, beacons) which are han-
dled completely in firmware; these packets will simply be
sent at the power level that the card happens to be using
at the time. Our approach also introduces overhead (extra
idle time) for each power level set operation. Nevertheless,
it enables us to examine the basic tradeoffs resulting from
changing transmission power levels.

7.2 Fixed-power Rate Selection Algorithms
Most 802.11b implementations select transmission rate

using a variation of the Auto Rate Fallback (ARF) algo-
rithm [35]. ARF attempts to select the best transmission
rate via in-band probing using 802.11’s ACK mechanism.
ARF assumes that a failed transmission indicates a trans-
mission rate that is too high. A successful transmission is
assumed to indicate that the current transmission rate is
good, and that a higher rate might be possible.

Our ARF implementation works as follows. If a thresh-
old number of consecutive packets are sent successfully, the
node selects the next highest transmission rate. If a thresh-
old number of consecutive packets are dropped, the node
decrements the transmission rate. If no traffic has been
sent for a given amount of time, the node uses the high-
est possible transmission rate for the next transmission. In
our implementation, the increment threshold is set to 6 suc-
cessful packet transmissions, the decrement threshold to 4
dropped packets (that is, 2 notifications of transmission fail-
ure from the firmware as discussed in Section 7.1), and the
idle timeout value to 10 seconds. Within the constraints
of our driver-based approach, these settings are designed
to approximate the Prism 2.5 firmware’s implementation of
ARF algorithm which uses an increment threshold of 6, a
decrement threshold of 3, and an idle timeout of 10 seconds.

An alternative to probing the channel for the best trans-
mission rate is to use the channel’s signal-to-noise ratio (SNR)
to select the optimal transmission rate for a given SNR.
While SNR-based rate selection algorithms eliminate the
overhead of probing for the correct transmission rate, they
face a number of practical challenges. First, card measure-
ments of SNR can be inaccurate and may vary between dif-
ferent cards of the same make and model. Second, SNR mea-
surements do not completely characterize channel degrada-
tion due to multipath interference. Finally, the information
that SNR-based rate selection algorithms need is measured
at the receiver, since it is the SNR at the receiver that deter-
mines whether or not a packet is received successfully. While
proposals have been made for overcoming this problem by
leveraging 802.11’s RTS/CTS mechanism (see, for example,
[19]), these solutions do not work on current hardware.

In our implementation, we overcome the last challenge by
tagging each packet with channel information. Specifically,
each packet contains the transmit power level used to send
it, as well as the path loss and noise estimate of the last
packet sent from the destination towards the sender. This
allows the receiver to estimate both uplink and downlink
path loss information (both are required as asymmetry may
arise due to antenna diversity).

The SNR-based algorithm that we use, Estimated Rate
Fallback [23] (ERF), is actually a hybrid between pure SNR-
based and ARF-based algorithms. It uses the path loss in-
formation to estimate the SNR with which each transmission
will be received. ERF then determines the highest transmis-
sion rate that can be supported for this SNR. In addition,
since SNR measurements have some uncertainty, if the es-
timated SNR is just below a rate selection decision bound-
ary, ERF will try the rate immediately above the estimate
best transmission rate after a given number of successful
sends. Similarly, if the estimated SNR is just above a de-
cision threshold, ERF will use the rate immediately below
the estimated best transmission rate after a given number of
failures. Finally, if no packets have been received from the
destination for a given interval, ERF will begin to fall back
towards the lowest rate until new channel information has
been received. This keeps ERF from getting stuck in a state
where stale channel information prevents communication,
which in turn prevents obtaining new channel information.

7.3 Power and Rate Selection Algorithms.
Both the ARF and ERF algorithms use a fixed transmis-

sion power. The power level is typically set fairly high to



maximize the chance that a node can communicate with the
intended destination. However, as we discussed earlier, high
power levels create significant interference which may reduce
performance for other channels. In this section, we discuss
two algorithms that combine power and rate control to try
to minimize interference. In both strategies, each transmit-
ter attempts to reduce its power to the minimum level that
allows it to reach the intended receiver at the maximum
transmission rate. In essence, each sender acts socially (by
reducing interference) as long as it does not cost anything
(no rate reduction).

ARF can be extended naturally to support conservative
power control by adding low power states above the highest
rate state. That is, at the highest rate, after a given num-
ber of successful sends, transmit power is reduced by a fixed
amount. This process repeats until either the lowest trans-
mit power is reached or the transmission failed threshold
is reached. In the latter case, the transmit power is raised
a fixed amount. If failures continue, the transmit power is
raised until the maximum transmit power is reached after
which rate fallback begins. We call this algorithm Power-
controlled Auto Rate Fallback (PARF).

ERF can also be easily extended to implement conser-
vative power control as follows. First, an estimated SNR
at the receiver is computed as described earlier. Now, if
the estimated SNR is a certain amount (the “power mar-
gin”) above the decision threshold for the highest transmit
rate, the transmit power is lowered until estimatedSNR =
decisionThreshold+powerMargin. The powerMargin vari-
able allows the aggressiveness of the power control algorithm
to be tuned. We call this algorithm Power-controlled Esti-
mated Rate Fallback (PERF).

8. PERFORMANCE EVALUATION
We now discuss the results of some basic experiments we

conducted to verify that current commodity hardware is able
to achieve performance improvements when using transmit
power control. These experiments use the modified HostAP
driver and Prism 2.5 802.11b cards described previously.

8.1 Interference Test
We first measured the interference to an aggressive TCP

flow from a bandwidth-limited TCP flow for the ARF, ERF,
and PERF algorithms discussed previously. Note that we
did not use the PARF algorithm. In our initial experimen-
tation with PARF, we found that its behavior was quite un-
stable. This may be because power decrease decisions by the
“receiver” could result in the ACK-half of a data transmis-
sion/ACK exchange failing due to insufficient power. This
could, in turn, result in the sender increasing its power
even if it was the fault of the receiver’s power level setting.
While this could also happen to PERF (since it also consid-
ers packet losses), PERF largely avoids this overreaction to
packet losses by basing most of it’s power and rate selection
on the SNR of the interactions. This makes PERF react
more slowly to transmission failures. As a result, PERF al-
ways behaved more stably and performed significantly better
than PARF and we did not consider PARF any further in
our evaluation.

The topology of our experiment is shown in Figure 11.
Two AP, client pairs communicate in a laboratory setting
where all nodes communicate via coaxial cables. Attenu-
ators are placed on the cables to control the attenuation

110 dB pathloss

95 dB pathloss79 dB pathloss

Victim Pair Aggressor Pair

TCP 
benchmark

Rate limited file 
transfer

Figure 11: Laboratory Interference Test Topology

between each node. The “victim” pair repeatedly executes
a TCP throughput benchmark from the AP to the client and
always runs the ERF algorithm, but with power manually
set to 0 dBm instead of the default power of 23 dBm. The
“aggressor” pair executes a rate-limited transfer of 1.2 Mbps
from the AP to the client. The power and rate selection al-
gorithm used by the aggressor pair was varied to measure
the ability of the algorithms to reduce the interference ex-
perienced by the victim pair.
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Figure 12: Lab Interference Test

As shown in Figure 12, the power reduction used by PERF
nearly completely eliminated the interference experienced
by the victim pair. (The error bars show 95% confidence
intervals.)
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Figure 13: Lab Interference Test - Unlimited Rate

Figure 13 shows the same test but with the aggressor
transfer running at unlimited speed and with 106 dB of loss



between the pairs. This represents an extreme situation that
may occur to some degree even in current fixed power net-
works due to heterogeneous transmit power levels. Clearly,
in this case, the victim’s communication under ARF and
ERF is practically zero. The poor performance for ARF
and ERF is a result of asymmetric carrier sense [29]. In this
experiment, the victim pair is able to sense transmissions of
the aggressor pair and defer transmissions to prevent colli-
sions. However, the aggressor pair is not able hear the lower
powered transmissions of the victim. Therefore, it trans-
mits packets as quickly as possible, essentially interfering
with any transmission between the victim pair. Note that
the aggressor transmissions are nearly always received suc-
cessfully – the aggressor pair always obtains a throughput
of approximately 3.5 Mbps in each setting. PERF alleviates
this situation by reducing the power of the aggressor since
the aggressor AP-client link is overprovisioned in terms of
power. In this experiment, PERF is able to nearly com-
pletely isolate the pairs from each other.

Note that when using power control, care must be taken so
that this asymmetric carrier sense situation is not actually
introduced inadvertently. That is, an AP-client link should
not reduce power so much that it becomes overwhelmed by
neighboring uncooperative high power nodes. This is unde-
sirable since we assume that APs and clients do not desire to
sacrifice (much) performance when lowering transmit power.
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Figure 14: Home Interference Test Topology
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Figure 15: Home Interference Test

To demonstrate that a similar situation can occur outside
of the laboratory, we then repeated the rate-limited inter-
ference test in a residential setting where the nodes commu-
nicated over the air as shown in Figure 14 instead of over
coaxial cables as they did in the laboratory tests. Figure 15
shows the results of this test. ARF and ERF experienced

similar performance degradation due to interference. PERF
was able to reduce this degradation by about 50%.

9. DISCUSSION
In our evaluation, we considered protocols that reduce

power as long as transmission rate was unaffected. One
possibility to reduce interference even further is to consider
algorithms that allow the transmission rate to be reduced.

In one such strategy that we also considered in our im-
plementation, called Load-sensitive, Power-controlled Esti-
mated Rate Fallback (LPERF), transmitters reduce their
power even if it reduces their transmission rate. Specifically,
they reduce their power as long as the resulting transmission
rate is sufficient to support their actual traffic demands.

While potentially increasing total network throughput,
LPERF involves a fairly subtle tradeoff between the scope
of the interference (controlled by power level) and the dura-
tion of interference (determined by the transmission rate).
Our analysis in Section 5 indicates that, at least for sim-
ple topologies like the one analyzed, achieving the highest
possible access point density requires using an LPERF-like
approach where lower transmit rates are used to enable lower
transmit power settings. In practice, we found that achiev-
ing good performance and interference reduction using the
LPERF technique can be challenging.

First, we must be sure that actual demand does not re-
quire a higher transmission rate than the one we select. This
can be difficult since demand may be a function of the trans-
mission rate used. In addition, since the wireless medium
is shared, the ability to satisfy traffic demand at a particu-
lar transmission rate depends on the particular fraction of
the shared medium that a node receives. Assuming a fair
distributed MAC protocol, the size of this fair share de-
pends on the demands of the other nearby nodes. An addi-
tional complication is that the set of nearby nodes changes
with the transmission power used since the power deter-
mines the range of any transmission. In order to address
this need, LPERF incorporates techniques to continuously
monitor link traffic demand and medium utilization. Tun-
ing such techniques to adapt quickly to changes in demand
is an open research question.

Second, we must have accurate measurements of received
signal strength, noise, and transmit power from all nodes in
the area. For the hardware we used in our implementation,
4 dB of variance in RSS and noise estimates is typical. As
the entire range of SNR thresholds for 802.11b transmission
rates is only 9 dB, this can be a significant issue.

In summary, the design of algorithms that consider low-
ering transmission rates is a challenging task. In the future,
we expect that the range of transmit rates supported by
wireless cards will greatly increase. This greatly helps such
algorithms by both creating more situations where the max-
imum link bandwidth is not used and by providing a much
wider range of power levels that such algorithms can employ.
In addition, we also have anecdotal evidence that vendors
are providing more accurate RSS and noise estimators in
newer cards. As a result, we believe that LPERF-like algo-
rithms are a promising direction.

10. SUMMARY
A chaotic network consists of a set of co-located wire-

less nodes owned and controlled by different people or or-



ganizations. Its main characteristic is that the deployment
is largely unplanned and unmanaged. In this paper, we
studied important characteristics of chaotic wireless net-
works. We used measurements from several cities to show
that chaotic networks can be quite dense and we used trace-
driven simulations to show that the performance of end-
clients can suffer significantly in these dense chaotic wireless
deployments. We also presented and evaluated automated
power control and rate adaptation algorithms that reduce
interference among neighboring nodes while ensuring robust
end-client performance. Specifically, we showed how the
PERF algorithm, that reduces transmission power as much
as possible without reducing transmission rate, can improve
aggregate throughput significantly in our small testbed. We
also discussed how further improvements may be possible in
denser deployments.
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