
EndRE: An End-System Redundancy Elimination Service for Enterprises

Bhavish Aggarwal⋆, Aditya Akella†, Ashok Anand1†, Athula Balachandran1‡,

Pushkar Chitnis⋆, Chitra Muthukrishnan1†, Ramachandran Ramjee⋆ and George Varghese2§

⋆ Microsoft Research India; † University of Wisconsin-Madison; ‡ CMU; §UCSD

Abstract

In many enterprises today, WAN optimizers are be-

ing deployed in order to eliminate redundancy in net-

work traffic and reduce WAN access costs. In this pa-

per, we present the design and implementation of En-

dRE, an alternate approach where redundancy elimina-

tion (RE) is provided as an end system service. Unlike

middleboxes, such an approach benefits both end-to-end

encrypted traffic as well as traffic on last-hop wireless

links to mobile devices.

EndRE needs to be fast, adaptive and parsimonious in

memory usage in order to opportunistically leverage re-

sources on end hosts. Thus, we design a new fingerprint-

ing scheme called SampleByte that is much faster than

Rabin fingerprinting while delivering similar compres-

sion gains. Unlike Rabin fingerprinting, SampleByte can

also adapt its CPU usage depending on server load. Fur-

ther, we introduce optimizations to reduce server mem-

ory footprint by 33-75% compared to prior approaches.

Using several terabytes of network traffic traces from

11 enterprise sites, testbed experiments and a pilot de-

ployment, we show that EndRE delivers 26% bandwidth

savings on average, processes payloads at speeds of 1.5-

4Gbps, reduces end-to-end latencies by up to 30%, and

translates bandwidth savings into equivalent energy sav-

ings on mobile smartphones.

1 Introduction

With the advent of globalization, networked services

have a global audience, both in the consumer and en-

terprise spaces. For example, a large corporation today

may have branch offices at dozens of cities around the

globe. In such a setting, the corporation’s IT admins

and network planners face a dilemma. On the one hand,

they could concentrate IT servers at a small number of

locations. This might lower administration costs, but in-

crease network costs and latency due to the resultant in-

crease in WAN traffic. On the other hand, servers could

be located closer to clients; however, this would increase

operational costs.

1A part of this work was done while the authors were interns at

Microsoft Research India.
2The author was a visiting researcher at Microsoft Research India

during the course of this work.

This paper arises from the quest to have the best of

both worlds, specifically, having the operational benefits

of centralization along with the performance benefits of

distribution. In recent years, protocol-independent re-

dundancy elimination, or simply RE [20], has helped

bridge the gap by making WAN communication more

efficient through elimination of redundancy in traffic.

Such compression is typically applied at the IP or TCP

layers, for instance, using a pair of middleboxes placed

at either end of a WAN link connecting a corporation’s

data center and a branch office. Each box caches pay-

loads from flows that traverse the link, irrespective of the

application or protocol. When one box detects chunks of

data that match entries in its cache (by computing “fin-

gerprints” of incoming data and matching them against

cached data), it encodes matches using tokens. The box

at the far end reconstructs original data using its own

cache and the tokens. This approach has seen increasing

deployment in “WAN optimizers”.

Unfortunately, such middlebox-based solutions face

two key drawbacks that impact their long-term use-

fulness: (1) Middleboxes do not cope well with end-

to-end encrypted traffic and many leave such data un-

compressed (e.g., [1]). Some middleboxes accommo-

date SSL/SSH traffic with techniques such as connection

termination and sharing of encryption keys (e.g., [5]),

but these weaken end-to-end semantics. (2) In-network

middleboxes cannot improve performance over last-hop

links in mobile devices.

As end-to-end encryption and mobile devices become

increasingly prevalent, we believe that RE will be forced

out of middleboxes and directly into end-host stacks.

Motivated by this, we explore a new point in the design

space of RE proposals — an end-system redundancy

elimination service called EndRE. EndRE could supple-

ment or supplant middlebox-based techniques while ad-

dressing their drawbacks. Our paper examines the costs

and benefits that EndRE implies for clients and servers.

Effective end-host RE requires looking for small re-

dundant chunks of the order of 32-64 bytes (because

most enterprise transfers involve just a few packets

each [16]). The standard Rabin fingerprinting algo-

rithms (e.g., [20]) for identifying such fine scale redun-

dancy are very expensive in terms of memory and pro-

cessing especially on resource constrained clients such



as smartphones. Hence, we adopt a novel asymmetric

design that systematically offloads as much of process-

ing and memory to servers as possible, requiring clients

to do no more than perform basic FIFO queue man-

agement of a small amount of memory and do simple

pointer lookups to decode compressed data.

While client processing and memory are paramount,

servers in EndRE need to do other things as well. This

means that server CPU and memory are also crucial

bottlenecks in our asymmetric design. For server pro-

cessing, we propose a new fingerprinting scheme called

SampleByte that is much faster than Rabin fingerprint-

ing used in traditional RE approaches while delivering

similar compression. In fact, SampleByte can be up to

10X faster, delivering compression speeds of 1.5-4Gbps.

SampleByte is also tunable in that it has a payload sam-

pling parameter that can be adjusted to reduce server

processing if the server is busy, at the cost of reduced

compression gains.

For server storage, we devise a suite of highly-

optimized data structures for managing meta-data and

cached payloads. For example, our Max-Match vari-

ant of EndRE (§5.2.2) requires 33% lower memory

compared to [20]. Our Chunk-Match variant (§5.2.1)

cuts down the aggregate memory requirements at the

server by 4X compared to [20], while sacrificing a small

amount of redundancy.

We conduct a thorough evaluation of EndRE. We an-

alyze several terabytes of traffic traces from 11 different

enterprise sites and show that EndRE can deliver signifi-

cant bandwidth savings (26% average savings) on enter-

prise WAN links. We also show significant latency and

energy savings from using EndRE. Using a testbed over

which we replay enterprise HTTP traffic, we show that

latency savings of up to 30% are possible from using

EndRE, since it operates above TCP, thereby reducing

the number of roundtrips needed for data transfer. Simi-

larly, on mobile smartphones, we show that the low de-

coding overhead on clients can help translate bandwidth

savings into significant energy savings compared to no

compression. We also report results from a small-scale

deployment of EndRE in our lab.

The benefits of EndRE come at the cost of memory

and CPU resources on end systems. We show that a

median EndRE client needs only 60MB of memory and

negligible amount of CPU. At the server, since EndRE is

adaptive, it can opportunistically trade-off CPU/memory

for compression savings.

In summary, we make the following contributions:

(1) We present the design of EndRE, an end host

based redundancy elimination service (§4).

(2) We present new asymmetric RE algorithms and

optimized data structures that limit client processing and

memory requirements, and reduce server memory us-

age by 33-75% and processing by 10X compared to [20]

while delivering slightly lower bandwidth savings (§5).

(3)We present an implementation of EndRE as part of

Windows Server/7/Vista as well as on Windows Mobile

6 operating systems (§6).

(4) Based on extensive analysis using several ter-

abytes of network traffic traces from 11 enterprise sites,

testbed experiments and a small-scale deployment, we

quantify the benefits and costs of EndRE (§7 - §9)

2 Related Work

Over the years, enterprise networks have used a variety

of mechanisms to suppress duplicate data from their net-

work transfers. We review these mechanisms below.

Classical approaches: The simplest RE approach is

to compress objects end-to-end. It is also the least ef-

fective because it does not exploit redundancy due to

repeated accesses of similar content. Object caches

can help in this regard, but they are unable to extract

cross-object redundancies [8]. Also object caches are

application-specific in nature; e.g., Web caches cannot

identify duplication in other protocols. Furthermore, an

increasing amount of data is dynamically generated and

hence not cacheable. For example, our analysis of enter-

prise traces shows that a majority of Web objects are not

cacheable, and deploying an HTTP proxy would only

yield 5% net bandwidth savings. Delta encoding can

eliminate redundancy of one Web object with respect

to another [14, 12]. However, like Web caches, delta

encoding is application-specific and ineffective for dy-

namic content.

Content-based naming: The basic idea underlying

EndRE is that of content-based naming [15, 20], where

an object is divided into chunks and indexed by com-

puting hashes over chunks. Rabin Fingerprinting [18] is

typically used to identify chunk boundaries. In file sys-

tems such as LBFS [15] and Shark [9], content-based

naming is used to identify similarities across different

files and across versions of the same file. Only unique

chunks are transmitted between file servers and clients,

resulting in lower bandwidth consumption. A similar

idea is used in value-based Web caching [19], albeit be-

tween a Web server and its client. Our chunk-based En-

dRE design is patterned after this approach, with key

modifications for efficiency (§5).

Generalizing these systems, DOT [21] proposes a

“transfer service” as an interface between applications

and the network. Applications pass the object they want

to send to DOT. Objects are split into chunks and the

sender sends chunk hashes to the receiver. The receiver

maintains a cache of earlier received chunks and re-

quests only the chunks that were not found in its cache

or its neighbors’ caches. Thus, DOT can leverage TBs

of cache in the disks of an end host and its peers to elim-



inate redundancy. Similarly, SET [17] exploits chunk-

level similarity in downloading related large files. DOT

and SET use an average chunk size of 2KB or more.

These approaches mainly benefit large transfers; the ex-

tra round trips that can only be amortized over the trans-

fer lengths. In contrast, EndRE identifies redundancy

across chunk sizes of 32 bytes and does not impose ad-

ditional latency. It is also limited to main-memory based

caches of size 1-10MB per pair of hosts (§5). Thus, En-

dRE and DOT complement each other.

Protocol-independent WAN optimizers. To over-

come the limitations of the “classical” approaches, en-

terprises have moved increasingly toward protocol inde-

pendent RE techniques, used in WAN optimizers. These

WAN optimizers can be of two types, depending on

which network layer they operate at, namely, IP layer

devices [20, 3] or higher-layer devices [1, 5].

In either case, special middleboxes are deployed at ei-

ther end of a WAN link to index all content exchanged

across the link, and identify and remove partial redun-

dancies on the fly. Rabin fingerprinting [18] is used to

index content and compute overlap (similar to [20, 15]).

Both sets of techniques are highly effective at reduc-

ing the utilization of WAN links. However, as men-

tioned earlier, they suffer from two key limitations,

namely, lack of support for end-to-end encryption and

for resource-constrained mobile devices.

3 Motivation

In exploring an end-point based RE service, one of the

main issues we hope to address is whether such a ser-

vice can offer bandwidth savings approaching that of

WAN optimizers. To motivate the likely benefits of an

end-point based RE service, we briefly review two key

findings from our earlier study [8] of an IP-layer WAN

optimizer [7].

First, we seek to identify the origins of redundancy.

Specifically, we classify the contribution of redundant

byte matches to bandwidth savings as either intra-host

(current and matched packet in cache have identical

source-destination IP addresses) or inter-host (current

and matched packets differ in at least one of source or

destination IP addresses). We were limited to a 250MB

cache size given the large amount of meta-data neces-

sary for this analysis, though we saw similar compres-

sion savings for cache sizes up to 2GB. Surprisingly,

our study revealed that over 75% of savings were from

intra-host matches. This implies that a pure end-to-end

solution could potentially deliver a significant share of

the savings obtained by an IP WAN optimizer, since the

contribution due to inter-host matches is small. How-

ever, this finding holds good only if end systems operate

with similar (large) cache sizes as middleboxes, which

is impractical. This brings us to the second key finding.

Examining the temporal characteristics of redundancy,

we found that the redundant matches in the WAN opti-

mizer displayed a high degree of temporal locality with

60-80% of middlebox savings arising from matches with

packets in the most recent 10% of the cache. This im-

plies that small caches could capture a bulk of the sav-

ings of a large cache.

Taken together, these two findings suggest that an end

point-based RE system with a small cache size can in-

deed deliver a significant portion of the savings of a

WAN optimizer, thus motivating the design of EndRE.

Finally, note that, the focus of comparison in this sec-

tion is between an IP-layer WAN optimizer with an in-

memory cache (size is O(GB)) and an end-system solu-
tion. The first finding is not as surprising once we realize

that the in-memory cache gets recycled frequently (on

the order of tens of minutes) during peak hours on our

enterprise traces, limiting the possibility for inter-host

matches. A WAN optimizer typically also has a much

larger on-disk cache (size is O(TB)) which may see a
large fraction of inter-host matches; an end-system disk

cache-based solution such as DOT [21] could capture

analogous savings.

4 Design Goals

EndRE is designed to optimize data transfers in the di-

rection from servers in a remote data center to clients

in the enterprise, since this captures a majority of enter-

prise traffic. We now list five design goals for EndRE—

the first two design goals are shared to some extent by

prior RE approaches, but the latter three are unique to

EndRE.

1. Transparent operation: For ease of deploy-ability,

the EndRE service should require no changes to existing

applications run within the data center or on clients.

2. Fine-grained operation: Prior work has shown that

many enterprise network transfers involve just a few

packets [16]. To improve end-to-end latencies and pro-

vide bandwidth savings for such short flows, EndRE

must work at fine granularities, suppressing duplicate

byte strings as small as 32-64B. This is similar to [20],

but different from earlier proposals for file-systems [15]

and Web caches [19] where the sizes of redundancies

identified are 2-4KB.

3. Simple decoding at clients: EndRE’s target client set

includes battery- and CPU-constrained devices such as

smart-phones. While working on fine granularities can

help identify greater amounts of redundancy, it can also

impose significant computation and decoding overhead,

making the system impractical for these devices. Thus,

a unique goal is to design algorithms that limit client

overhead by offloading all compute-intensive actions to

servers.

4. Fast and adaptive encoding at servers: EndRE is



designed to opportunistically leverage CPU resources on

end hosts when they are not being used by other appli-

cations. Thus, unlike commercial WAN optimizers and

prior RE approaches [20], EndRE must adapt its use of

CPU based on server load.

5. Limited memory footprint at servers and clients:

EndRE relies on data caches to perform RE. However,

memory on servers and clients could be limited and may

be actively used by other applications. Thus, EndRE

must use as minimal memory on end-hosts as possible

through the use of optimized data structures.

5 EndRE Design

In this section, we describe how EndRE’s design meets

the above goals.

EndRE introduces RE modules into the network

stacks of clients and remote servers. Since we wish to

be transparent to applications, EndRE could be imple-

mented either at the IP-layer or at the socket layer (above

TCP). As we argue in §6, we believe that socket layer

is the right place to implement EndRE. Doing so offers

key performance benefits over an IP-layer approach, and

more importantly, shields EndRE from network-level

events (e.g., packet losses and reordering), making it

simpler to implement.

There are two sets of modules in EndRE, those be-

longing on servers and those on clients. The server-side

module is responsible for identifying redundancy in net-

work data by comparing against a cache of prior data,

and encoding the redundant data with shorter meta-data.

The meta-data is essentially a set of <offset, length>
tuples that are computed with respect to the client-side

cache. The client-side module is trivially simple: it con-

sists of a fixed-size circular FIFO log of packets and sim-

ple logic to decode the meta-data by “de-referencing”

the offsets sent by the server. Thus, most of the com-

plexity in EndRE is mainly on the server side and we

focus on that here.

Identifying and removing redundancy is typically ac-

complished [20, 7] by the following two steps:

• Fingerprinting: Selecting a few “representative re-

gions” for the current block of data handed down by ap-

plication(s). We describe four fingerprinting algorithms

in §5.1 that differ in the trade-off they impose between

computational overhead on the server and the effective-

ness of RE.

• Matching and Encoding: Once the representative re-

gions are identified, we examine two approaches for

identification of redundant content in §5.2: (1) Identi-

fying chunks of representative regions that repeat in full

across data blocks, called Chunk-Match and (2) Iden-

tifying maximal matches around the representative re-

gions that are repeated across data blocks, called Max-

Match. These two approaches differ in the trade-off be-

tween the memory overhead imposed on the server and

the effectiveness of RE.

Next, we describe EndRE’s design in detail, starting

with selection of representative regions, and moving on

to matching and encoding.

5.1 Fingerprinting: Balancing Server

Computation with Effectiveness

In this section, we outline four approaches for identify-

ing the representative payload regions at the server that

vary in the way they trade-off between computational

overhead and the effectiveness of RE. In some of the

approaches, computational overhead can be adaptively

tuned based on server CPU load, and the effectiveness

of RE varies accordingly. Although three of the four ap-

proaches were proposed earlier, the issue of their com-

putational overhead has not received enough attention.

Since this issue is paramount for EndRE, we consider it

in great depth here. We also propose a new approach,

SAMPLEBYTE, that combines the salient aspects of

prior approaches.

We first introduce some notation and terminology to

help explain the approaches. Restating from above, a

“data block” or simply a “block” is a certain amount of

data handed down by an application to the EndRE mod-

ule at the socket layer. Each data block can range from

a few bytes to tens of kilobytes in size.

Let w represent the size of the minimum redundant
string (contiguous bytes) that we would like to iden-

tify. For a data block of size S bytes, S ≥ w, a total
of S − w + 1 strings of size w are potential candidates
for finding a match. Typical values for w range from 12
to 64 bytes. Based on our findings of redundant match

length distribution in [8], we choose a default value of

w = 32 bytes to maximize the effectiveness of RE. Since
S >> w, the number of such candidate strings is on the
order of the number of bytes in the data block/cache.

Since it is impractical to match/store all possible can-

didates, a fraction 1/p “representative” candidates are
chosen.

Let us define markers as the first byte of these chosen

candidate strings and chunks as the string of bytes be-

tween two markers. Let fingerprints be a pseudo-random

hash of fixed w-byte strings beginning at each marker
and chunk-hashesbe hashes of the variable sized chunks.

Note that two fingerprints may have overlapping bytes;

however, by definition, chunks are disjoint. The differ-

ent algorithms, depicted in Figure 1 and discussed be-

low, primarily vary in the manner in which they choose

the markers, from which one can derive chunks, finger-

prints, and chunk-hashes. As we discuss later in §5.2, the

Chunk-Match approach uses chunk-hashes while Max-

Match uses fingerprints.



chunk marker data block

1. RabinHash (w) 1. Markers: local 

max over p bytes

1. Markers: chosen 

by position 

1. Markers: chosen by

payload byte values

2. Markers: 0 mod p 2. SimpleHash (w)

max over p bytes by position payload byte values

2. SimpleHash(w) 2. SimpleHash(w)2. Markers: 0 mod p

Fingerprints

2. SimpleHash (w) 2. SimpleHash(w) 2. SimpleHash(w)

MODP

Fingerprints

MAXP FIXED SAMPLEBYTE

Figure 1: Fingerprinting algorithms with chunks, mark-

ers and fingerprints; chunk-hashes, not shown, can be

derived from chunks

1 //Let w = 32; p = 32; Assume len ≥ w;
2 //RabinHash() computes RABIN hash over a w byte window
3 MODP(data, len)
4 for(i = 0; i < w − 1; i + +)
5 fingerprint = RabinHash(data[i]);
6 for(i = w − 1; i < len; i + +)
7 fingerprint = RabinHash(data[i]);
8 if (fingerprint % p == 0) //MOD
9 marker = i − w + 1;
10 storemarker, fingerprint in table;

Figure 2: MODP Fingerprinting Algorithm

5.1.1 MODP

In the “classical” RE approaches [20, 7, 15], the set of

fingerprints are chosen by first computing Rabin-Karp

hash [18] over sliding windows of w contiguous bytes
of the data block. A fraction 1/p are chosen whose
fingerprint value is 0 mod p. Choosing fingerprints in

this manner has the advantage that the set of represen-

tative fingerprints for a block remains mostly the same

despite small amount of insertions/deletions/reorderings

since the markers/fingerprints are chosen based on con-

tent rather than position.

Note that two distinct operations—marker identifica-

tion and fingerprinting — are both handled by the same

hash function here. While this appears elegant, it has

a cost. Specifically, the per block computational cost is

independent of the sampling period, p (lines 4–7 in Fig-
ure 2). Thus, this approach cannot adapt to server CPU

load conditions (e.g., by varying p). Note that, while the
authors of [20] report some impact of p on processing
speed, this impact is attributed to the overhead of man-

aging meta-data (line 10). We devise techniques in §5.2

to significantly reduce the overhead of managing meta-

data, thus, making fingerprint computation the main bot-

tleneck.

1 //Let w = 32; p = 32; Assume len ≥ w;
2 //SAMPLETABLE[i] maps byte i to either 0 or 1
3 //Jenkinshash() computes hash over a w byte window
4 SAMPLEBYTE(data, len)
5 for(i = 0; i < len − w; i + +)
6 if (SAMPLETABLE[data[i]]== 1)
7 marker = i;
8 fingerprint = JenkinsHash(data + i);
9 storemarker, fingerprint in table;
10 i = i + p/2;

Figure 3: SAMPLEBYTE Fingerprinting Algorithm

5.1.2 MAXP

Apart from the conflation of marker identification and

fingerprinting, another shortcoming of the MODP ap-

proach is that the fingerprints/markers are chosen based

on a global property, i.e., fingerprints have to take cer-

tain pre-determined values to be chosen. The markers

for a given block may be clustered and there may be

large intervals without any markers, thus, limiting re-

dundancy identification opportunities. To guarantee that

an adequate number of fingerprints/markers are chosen

uniformly from each block, markers can be chosen as

bytes that are local-maxima over each region of p bytes

of the data block [8]. Once the marker byte is chosen, an

efficient hash function such as Jenkins Hash [2] can be

used to compute the fingerprint. By increasing p, fewer
maxima-based markers need to be identified, thereby re-

ducing CPU overhead.

5.1.3 FIXED

While markers in both MODP and MAXP are chosen

based on content of the data block, the computation of

Rabin hashes and local maxima can be expensive. A

simpler approach is to be content-agnostic and simply

select every pth byte as a marker. Sincemarkers are sim-

ply chosen by position, marker identification incurs no

computational cost. Once markers are chosen, S/p fin-
gerprints are computed using Jenkins Hash as in MAXP.

While this technique is very efficient, its effectiveness

in RE is not clear as it is not robust to small changes in

content. While prior works in file systems (e.g., [15]),

where cache sizes are large (O(TB)), argue against this
approach, it is not clear how ineffective FIXED will be

in EndRE where cache sizes are small (O(MB)).

5.1.4 SAMPLEBYTE

MAXP and MODP are content-based and thus robust

to small changes in content, while FIXED is content-

agnostic but computationally efficient. We designed

SAMPLEBYTE (Figure 3) to combine the robustness of

a content-based approach with the computational effi-

ciency of FIXED. It uses a 256-entry lookup table with



a few predefined positions set. As the data block is

scanned byte-by-byte (line 5), a byte is chosen as a

marker if the corresponding entry in the lookup table is

set (line 6–7). Once a marker is chosen, a fingerprint is

computed using Jenkins Hash (line 8), and p/2 bytes of
content are skipped (line 10) before the process repeats.

Thus, SAMPLEBYTE is content-based, albeit based on

a single byte, while retaining the content-skipping and

the computational characteristics of FIXED.

One clear concern is whether such a naive marker

identification approach will do badly and cause the al-

gorithm to either over-sample or under-sample. First,

note that MODP with 32-64 byte rolling hashes was

originally used in file systems [15] where chunk sizes

were large (2-4KB). Given that we are interested in sam-

pling as frequent as every 32-64 bytes, sampling chunk

boundaries based on 1-byte content values is not as rad-

ical as it might first seem. Also, note that if x entries
of the 256-entry lookup table are randomly set (where

256/x = p), then the expected sampling frequency is in-
deed 1/p. In addition, SAMPLEBYTE skips p/2 bytes
after each marker selection to avoid oversampling when

the content bytes of data block are not uniformly dis-

tributed (e.g., when the same content byte is repeated

contiguously). Finally, while a purely random selection

of 256/x entries does indeed perform well in our traces,
we use a lookup table derived based on the heuristic de-

scribed below. This heuristic outperforms the random

approach and we have found it to be effective after ex-

tensive testing on traces (see §8).

Since the number of unique lookup tables is large

(2256), we use an offline, greedy approach to generate

the lookup table. Using network traces from one of the

enterprise sites we study as training data (site 11 in Ta-

ble 2), we first run MAXP to identify redundant con-

tent and then sort the characters in descending order of

their presence in the identified redundant content. We

then add these characters one at a time, setting the cor-

responding entries in the lookup table to 1, and stop this

process when we see diminishing gains in compression.

The intuition behind this approach is that characters that

are more likely to be part of redundant content should

have a higher probability of being selected as markers.

The characters selected from our training data were 0,

32, 48, 101, 105, 115, 116, 255. While our current ap-

proach results in a static lookup table, we are looking at

online dynamic adaptation of the table as part of future

work.

Since SAMPLEBYTE skips p/2 bytes after every
marker selection, the fraction of markers chosen is ≤

2/p, irrespective of the number of entries set in the table.
By increasing p, fewer markers/fingerprints are chosen,
resulting in reduced CPU overhead.

Figure 4: Chunk-Match: only chunk-hashes stored

5.2 Matching and Encoding: Optimizing

Storage and Client Computation

Once markers and fingerprints are identified, identifica-

tion of redundant content can be accomplished in two

ways: (1) Identifying chunks of data that repeat in full

across data blocks, called Chunk-Match, or (2) Identi-

fying maximal matches around fingerprints that are re-

peated across data blocks, called Max-Match. Both tech-

niques were proposed in prior work: the former in the

context of file systems [15] and Web object compres-

sion [19], and the latter in the context of IP WAN opti-

mizer [20]. However, prior proposals impose significant

storage and CPU overhead.

In what follows we describe how the overhead im-

pacts both servers and clients, and the two techniques we

employ to address these overheads. The first technique is

to leverage asymmetry between servers and clients. We

propose that clients offload most of the computationally

intensive operations (e.g., hash computations) and mem-

ory management tasks to the server. The second tech-

nique is to exploit the inherent structure within the data

maintained at servers and clients to optimize memory

usage.

5.2.1 Chunk-Match

This approach (Figure 4) stores hashes of the chunks in

a data block in a “Chunk-hash store”. Chunk-hashes

from payloads of future data blocks are looked up in

the Chunk-hash store to identify if one or more chunks

have been encountered earlier. Once matching chunks

are identified, they are replaced by meta-data.

Although similar approaches were used in prior sys-

tems, they impose significantly higher overhead if em-

ployed directly in EndRE. For example, in LBFS [15],

clients have to update their local caches with map-

pings between new content-chunks and corresponding

content-hashes. This requires expensive SHA-1 hash

computation at the client. Value-based web caching [19]

avoids the cost of hash computation at the client by hav-

ing the server send the hash with each chunk. However,

the client still needs to store the hashes, which is a sig-

nificant overhead for small chunk sizes. Also, sending



hashes over the network adds significant overhead given

that the hash sizes (20 bytes) are comparable to average

chunk sizes in EndRE (32-64 bytes).

EndRE optimizations: We employ two ideas to im-

prove overhead on clients and servers.

(1) Our design carefully offloads all storage manage-

ment and computation to servers. A client simply main-

tains a fixed-size circular FIFO log of data blocks. The

server emulates client cache behavior on a per-client ba-

sis, and maintains within its Chunk-hash store a mapping

of each chunk hash to the start memory addresses of the

chunk in a client’s log alongwith the length of the chunk.

For each matching chunk, the server simply encodes and

sends a four-byte <offset, length> tuple of the chunk
in the client’s cache. The client simply “de-references”

the offsets sent by the server and reconstructs the com-

pressed regions from local cache. This approach avoids

the cost of storing and computing hashes at the client, as

well as the overhead of sending hashes over the network,

at the cost of slightly higher processing and storage at the

server end.

(2) In traditional Chunk-Match approaches, the server

maintains a log of the chunks locally. We observe that

the server only needs to maintain an up-to-date chunk-

hash store, but it does not need to store the chunks them-

selves as long as the chunk hash function is collision re-

sistant. Thus, when a server computes chunks for a new

data block and finds that some of the chunks are not at

the client by looking up the chunk-hash store, it inserts

mappings between the new chunk hashes and their ex-

pected locations in the client cache.

In our implementation, we use SHA-1 to compute 160

bit hashes, which has good collision-resistant properties.

Let us now compute the storage requirements for Chunk-

Match assuming a sampling period p of 64 bytes and a
cache size of 16MB. The offset to the 16MB cache can

be encoded in 24 bits and the length encoded in 8 bits

assuming the maximum length of a chunk is limited to

256 bytes (recall that chunks are variable sized). Thus,

server meta-data storage is 24 bytes per 64-byte chunk,

comprising 4-bytes for the <offset, length> tuple and
20-bytes for SHA-1 hash. This implies that server mem-

ory requirement is about 38% of the client cache size.

5.2.2 Max-Match

A drawback of Chunk-Match is that it can only detect

exact matches in the chunks computed for a data block.

It could miss redundancies that, for instance, span con-

tiguous portions of neighboring chunks or redundancies

that only span portions of chunks. An alternate ap-

proach, called Max-Match, proposed for IP WAN op-

timizer [20, 7] and depicted in Figure 5, can identify

such redundancies, albeit at a higher memory cost at the

server.

Figure 5: Max-Match: matched region is expanded

index (implicit fingerprint offset

fingerprint, 18 bits) remainder (8 bits) (24 bits)

0 ... ...

... ... ...

2
18

− 1 ... ...

Table 1: 1MB Fingerprint store for 16MB cache

In Max-Match, fingerprints computed for a data block

serve as random “hooks” into the payload around which

more redundancies can be identified. The computed fin-

gerprints for a data block are compared with a “finger-

print store” that holds fingerprints of all past data blocks.

For each matching fingerprint, the correspondingmatch-

ing data block is retrieved from the cache and the match

region is expanded byte-by-byte in both directions to ob-

tain the maximal region of redundant bytes (Figure 5).

Matched regions are then encodedwith<offset, length>
tuples.

EndRE optimizations: We employ two simple ideas

to improve the server computation and storage overhead.

First, since Max-Match relies on byte-by-byte com-

parison to identify matches, fingerprint collisions are

not costly; any collisions will be recovered via an ex-

tra memory lookup. This allows us to significantly limit

fingerprint store maintenance overhead for all four al-

gorithms since fingerprint values are simply overwritten

without separate bookkeeping for deletion. Further, a

simple hash function that generates a few bytes of hash

value as a fingerprint (e.g., Jenkins hash [2]) is sufficient.

Second, we optimize the representation of the finger-

print hash table to limit storage needs. Since the map-

ping is from a fingerprint to an offset value, the finger-

print itself need not be stored in the table, at least in its

entirety. The index into the fingerprint table can implic-

itly represent part of the fingerprint and only the remain-

ing bits, if any, of the fingerprint that are not covered by

the index can be stored in the table. In the extreme case,

the fingerprint table is simply a contiguous set of offsets,

indexed by the fingerprint hash value.

Table 1 illustrates the fingerprint store for a cache size

of 16MB and p = 64. In this case, the number of finger-
prints to index the entire cache is simply 224/64 or 218.

Using a table size of 218 implies that 18 bits of a finger-

print are implicitly stored as the index of the table. The



offset size necessary to represent the entire cache is 24

bits. Assuming we store an additional 8 bits of the fin-

gerprint as part of the table, the entire fingerprint table

can be compactly stored in a table of size 218 ∗ 4 bytes,
or 6% of the cache size. A sampling period of 32 would

double this to 12% of the cache size. This leads to a

significant reduction in fingerprint meta-data size com-

pared to the 67% indexing overhead in [20] or the 50%

indexing overhead in [7].

These two optimizations are not possible in the case of

Chunk-Match due to the more stringent requirements on

collision-resistance of chunk hashes. However, server

memory requirement for Chunk-Match is only 38%

of client cache size, which is still significantly lower

than 106% of the cache size (cache + fingerprint store)

needed for Max-Match.

6 Implementation

In this section, we discuss our implementation of En-

dRE. We start by discussing the benefits of implement-

ing EndRE at the socket layer above TCP.

6.1 Performance benefits

Bandwidth: In the socket-layer approach, RE can oper-

ate at the size of socket writes which are typically larger

than IP layer MTUs. While Max-Match and Chunk-

Match do not benefit from these larger sized writes since

they operate at a granularity of 32 bytes, the large size

helps produce higher savings if a compression algorithm

like GZIP is additionally applied, as evaluated in §9.1.

Latency: The socket-layer approach will result in fewer

packets transiting between server and clients, as opposed

to the IP layer approach which merely compresses pack-

ets without reducing their number. This is particularly

useful in lowering completion times for short flows, as

evaluated in §9.2.

6.2 End-to-end benefits

Encryption: When using socket-layer RE, payload en-

crypted in SSL can be compressed before encryption,

providing RE benefits to protocols such as HTTPS. IP-

layer RE will leave SSL traffic uncompressed.

Cache Synchronization: Recall that both Max-Match

and Chunk-Match require caches to be synchronized be-

tween clients and servers. One of the advantages of im-

plementing EndRE above TCP is that TCP ensures reli-

able in-order delivery, which can help with maintaining

cache synchronization. However, there are still two is-

sues that must be addressed.

First, multiple simultaneous TCP connections may be

operating between a client and a server, resulting in or-

dering of data across connections not being preserved.

To account for this, we implement a simple sequence

number-based reordering mechanism.

Second, TCP connections may get reset in the mid-

dle of a transfer. Thus, packets written to the cache at

the server end may not even reach the client, leading

to cache inconsistency. One could take a pessimistic or

optimistic approach to maintaining consistency in this

situation. In the pessimistic approach, writes to the

server cache are performed only after TCP ACKs for

corresponding segments are received at the server. The

server needs to monitor TCP state, detect ACKs, per-

form writes to its cache and notify the client to do the

same. In the optimistic approach, the server writes to the

cache but monitors TCP only for reset events. In case of

connection reset (receipt of a TCP RST from client or a

local TCP timeout), the server simply notifies the client

of the last sequence number that was written to the cache

for the corresponding TCP connection. It is then the

client’s responsibility to detect any missing packets and

recover these from the server. We adopt the optimistic

approach of cache writing for two reasons: (1) Our re-

dundancy analysis [8] indicated that there is high tem-

poral locality of matches; a pessimistic approach over

a high bandwidth-delay product link can negatively im-

pact compression savings; (2) The optimistic approach

is easier to implement since only for reset events need to

be monitored rather than every TCP ACK.

6.3 Implementation

We have implemented EndRE above TCP in Windows

Server/Vista/7. Our default fingerprinting algorithm is

SAMPLEBYTE with a sampling period, p = 32. Our
packet cache is a circular buffer 1-16MB in size per pairs

of IP addresses. Our fingerprint store is also allocated

a bounded memory based on the values presented ear-

lier. We use a simple resequencing buffer with a prior-

ity queue to handle re-ordering across multiple parallel

TCP streams. At the client side, we maintain a fixed size

circular cache and the decoding process simply involves

lookups of specified data segments in the cache.

In order to enable protocol independent RE, we trans-

parently capture application payloads on the server side

and TCP payloads at the client side at the TCP stream

layer, that lies between the application layer and the TCP

transport layer. We achieve this by implementing a ker-

nel level filter driver based on Windows Filtering Plat-

form (WFP) [6]. This implementation allows seamless

integration of EndRE with all application protocols that

use TCP, with no modification to application binaries or

protocols. We also have a management interface that

can be used to restrict EndRE only to specific applica-

tions. This is achieved by predicate-based filtering in

WFP, where predicates can be application IDs, source

and/or destination IP addresses/ports.

Finally, we have also implemented the client-side of

EndRE on mobile smartphones running the Windows



Trace Name Unique Dates (Total Days) Size

(Site #) Client IPs (TB)

Small Enterprise 29-39 07/28/08 - 08/08/08 (11) 0.5

(Sites 1-2) 11/07/08 - 12/10/08 (33)

Medium Enterprise 62-91 07/28/08 - 08/08/08 (11) 1.5

(Sites 3-6) 11/07/08 - 12/10/08 (33)

Large Enterprise 101-210 07/28/08 - 08/08/08 (11) 3

(Sites 7-10) 11/07/08 - 12/10/08 (33)

Large Research Lab 125 06/23/08 - 07/03/08 (11) 1

(Site 11, training trace)

Table 2: Data trace characteristics (11 sites)

Mobile 6 OS. However, since Windows Mobile 6 does

not support Windows Filtering Platform, we have im-

plemented the functionality as a user-level proxy.

7 Evaluation approach

We use a combination of trace-based and testbed evalu-

ation to study EndRE. In particular, we quantify band-

width savings and evaluate scalability aspects of EndRE

using enterprise network traffic traces; we use a testbed

to quantify processing speed and evaluate latency and

energy savings. We also report results from a small pilot

deployment (15 laptops) in our lab spanning 1 week.

Traces: Our trace-based evaluation is based on full

packet traces collected at the WAN access link of 11 cor-

porate enterprise locations. The key characteristics of

our traces are shown in Table 2. We classify the enter-

prises as small, medium or large based on the number of

internal host IP addresses seen (less than 50, 50-100, and

100-250, respectively) in the entire trace at each of these

sites. While this classification is somewhat arbitrary, we

use this division to study if the benefits depend on the

size of an enterprise. Note that the total amount of traffic

in each trace is approximately correlated to the number

of host IP addresses, though there is a large amount of

variation from day to day. Typical incoming traffic num-

bers for small enterprises varied from 0.3-10GB/day, for

medium enterprises from 2-12GB/day and for large en-

terprises from 7-50GB/day. The access link capacities

at these sites varied from a few Mbps to several tens of

Mbps. The total size of traffic we study (including in-

bound/outbound traffic and headers) is about 6TB.

Testbed: Our testbed consists of a desktop server con-

nected to a client through a router. In wireline experi-

ments, the router is a dual-homed PC capable of emu-

lating links of pre-specified bandwidth and latency. In

wireless experiments, the router is a WiFi access point.

The server is a desktop PC running Windows Server

2008. The client is a desktop PC runningWindows Vista

or Windows 7 in the wireline experiments, and a Sam-

sung mobile smartphone running Windows Mobile 6 in

the wireless experiments.

8 Costs

In this section, we quantify the CPU and memory costs

of our implementation of EndRE. Though our evalua-

Max-Match Fingerprint InlineMatch Admin

p → 32 512 32 512 32 512

MODP 526.7 496.7 9.6 6.8 4.8 0.6

MAXP 306.3 118.8 10.1 7.7 5.2 0.5

FIXED 69.4 14.2 7.1 4.7 4.7 0.4

SAMPLEBYTE(SB) 76.8 20.2 9.5 6.1 3.0 0.7

Table 3: CPU Time(s) for different algorithms

6

8

S
p

e
e

d
 (

G
b

p
s
)

SAMPLEBYTE MODP MAXP FIXED

2

4

6

8

S
p

e
e

d
 (

G
b

p
s
)

SAMPLEBYTE MODP MAXP FIXED

0

2

4

6

8

32 64 128 256 512

S
p

e
e

d
 (

G
b

p
s
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

0

2

4

6

8

32 64 128 256 512

S
p

e
e

d
 (

G
b

p
s
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

0

2

4

6

8

32 64 128 256 512

S
p

e
e

d
 (

G
b

p
s
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

0

2

4

6

8

32 64 128 256 512

S
p

e
e

d
 (

G
b

p
s
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

Figure 6: Max-Match processing speed

tion focus largely onMax-Match, we also provide a brief

analysis of Chunk-Match.

8.1 CPU Costs

Micro-benchmarks: We first focus on micro-

benchmarks for different fingerprinting algorithms using

Max-Match for a cache size of 10MB between a given

client-server pair (we examine cache size issues in de-

tail in §8.2). Table 3 presents a profiler-based analysis

of the costs of the three key processing steps on a sin-

gle large packet trace as measured on a 2GHz 64-bit In-

tel Xeon processor. The fingerprinting step is responsi-

ble for identifying the markers/fingerprints; the Inline-

Match function is called as fingerprints are generated;

and the Admin function is used for updating the finger-

print store. Of these steps, only the fingerprinting step is

distinct for the algorithms, and is also the most expen-

sive.

One can clearly see that fingerprinting is expensive for

MODP and is largely independent of p. Fingerprinting
for MAXP is also expensive but we see that as p is in-
creased, the cost of fingerprinting comes down. In the

case of FIXED and SAMPLEBYTE, as expected, fin-

gerprinting cost is low, with significant reductions as p
is increased.

Finally, note that the optimizations detailed earlier for

updating the fingerprint store in Max-Match result in

low cost for the Admin function in all the algorithms.

Since matching and fingerprinting are interleaved [20],

the cost of fingerprinting and matching functions, and

hence total processing speed, depend on the redundancy

of a particular trace. We next compute the average pro-

cessing speed for the different algorithms over a large

set of traces.

Trace analysis: Figure 6 plots the average processing

speed in Gbps at the server for Max-Match for different



25

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

SAMPLEBYTE MODP MAXP FIXED

15

20

25

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

SAMPLEBYTE MODP MAXP FIXED

10

15

20

25

32 64 128 256 512

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

10

15

20

25

32 64 128 256 512

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

10

15

20

25

32 64 128 256 512

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

10

15

20

25

32 64 128 256 512

B
a

n
d

w
id

th
 s

a
v

in
g

s
 (

%
)

Sampling period (p)

SAMPLEBYTE MODP MAXP FIXED

Figure 7: Max-Match bandwidth savings

fingerprinting algorithms, while Figure 7 plots the aver-

age bandwidth savings. We assume a packet cache size

of 10MB. We use the 11-day traces for sites 1-10 in Ta-

ble 2.

We make a number of observations from these figures.

First, the processing speed of MODP is about 0.4Gbps
and, as discussed in §5, is largely unaffected by p. Pro-
cessing speed for MAXP ranges from 0.6 − 1.7Gbps,
indicating that the CPU overhead can be decreased by

increasing p. As expected, FIXED delivers the highest
processing speed, ranging from 2.3 − 7.1Gbps since it
incurs no cost for marker identification. Finally, SAM-

PLEBYTE delivers performance close to FIXED, rang-

ing from 2.2−5.8Gbps, indicating that the cost of identi-
fication based on a single byte is low. Second, examining

the compression savings, the curves for MODP, MAXP,

and SAMPLEBYTE in Figure 7 closely overlap for the

most part with SAMPLEBYTE under-performing the

other two only when the sampling period is high (at

p = 512, it appears that the choice of markers based
on a single-byte may start to lose effectiveness). On

the other hand, FIXED significantly under-performs the

other three algorithms in terms of compression savings,

though in absolute terms, the saving from FIXED are

surprisingly high.

While the above results were based on a cache size of

10MB, typical for EndRE, a server is likely to have mul-

tiple simultaneous such connections in operation. Thus,

in practice, it is unlikely to benefit from having benefi-

cial CPU cache effects that the numbers above portray.

We thus conducted experiments with large cache sizes

(1-2GB) and found that processing speed indeed falls

by about 30% for the algorithms. Taking this overhead

into account, SAMPLEBYTE provides server process-

ing speeds of 1.5 − 4Gbps. To summarize, SAMPLE-
BYTE provides just enough randomization for identifica-

tion of chunk markers that allows it to deliver the com-

pression savings of MODP/MAXP while being inexpen-

sive enough to deliver processing performance, similar

to FIXED, of 1.5 − 4Gbps.

In the case of Chunk-Match, the processing speed (not

20

25

30

35

40

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

0

5

10

15

20

25

30

35

40

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

0

5

10

15

20

25

30

35

40

1
0
K
B

5
0
K
B

1
0
0
K
B

2
5
0
K
B

5
0
0
K
B

7
5
0
K
B

1
M
B

2
M
B

4
M
B

8
M
B

1
0
M
B

1
2
M
B

1
4
M
B

1
6
M
B

2
0
M
B

3
2
M
B

6
4
M
B

9
6
M
BB
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

EndRE Cache Size

0

5

10

15

20

25

30

35

40

1
0
K
B

5
0
K
B

1
0
0
K
B

2
5
0
K
B

5
0
0
K
B

7
5
0
K
B

1
M
B

2
M
B

4
M
B

8
M
B

1
0
M
B

1
2
M
B

1
4
M
B

1
6
M
B

2
0
M
B

3
2
M
B

6
4
M
B

9
6
M
BB
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

EndRE Cache Size

0

5

10

15

20

25

30

35

40

1
0
K
B

5
0
K
B

1
0
0
K
B

2
5
0
K
B

5
0
0
K
B

7
5
0
K
B

1
M
B

2
M
B

4
M
B

8
M
B

1
0
M
B

1
2
M
B

1
4
M
B

1
6
M
B

2
0
M
B

3
2
M
B

6
4
M
B

9
6
M
BB
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

EndRE Cache Size

0

5

10

15

20

25

30

35

40

1
0
K
B

5
0
K
B

1
0
0
K
B

2
5
0
K
B

5
0
0
K
B

7
5
0
K
B

1
M
B

2
M
B

4
M
B

8
M
B

1
0
M
B

1
2
M
B

1
4
M
B

1
6
M
B

2
0
M
B

3
2
M
B

6
4
M
B

9
6
M
BB
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

EndRE Cache Size

Figure 8: Cache size vs overall bandwidth savings

shown) is only 0.1-0.2Gbps. This is mainly due to SHA1

hash computation (§5.2.1) and the inability to use the

fingerprint store optimizations of Max-Match (§5.2.2).

We are examining if a cheaper hash function coupled

with an additional mechanism to detect collision and re-

cover payload through retransmissions will improve per-

formance without impacting latency.

Client Decompression: The processing cost for decom-

pression at the end host client is negligible since EndRE

decoding is primarily a memory lookup in the client’s

cache; our decompression speed is 10Gbps. We exam-

ine the impact of this in greater detail when we evaluate

end-system energy savings from EndRE in §9.3.

8.2 Memory Costs

Since EndRE requires a cache per communicating

client-server pair, quantifying the memory costs at both

clients and servers is critical to estimating the scalability

of the EndRE system. In the next two sections, we an-

swer the following two key questions: 1) what cache size

limit do we provision for the EndRE service between a

single client-server pair? 2) Given the cache size limit

for one pair, what is the cumulativememory requirement

at clients and servers?

8.2.1 Cache Size versus Savings

To estimate the cache size requirements of EndRE, we

first need to understand the trade-off between cache sizes

and bandwidth savings. For the following discussion,

unless otherwise stated, by cache size, we refer to the

client cache size limit for EndRE service with a given

server. The server cache size can be estimated from

this value depending on whether Max-Match or Chunk-

Match is used (§5). Further, while one could provision

different cache size limits for each client-server pair, for

administrative simplicity, we assume that cache size lim-

its are identical for all EndRE nodes.

Figure 8 presents the overall bandwidth savings ver-

sus cache size for the EndRE service using the Max-

Match approach (averaged across all enterprise links).

Although not shown, the trends are similar for the



50

60

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

SMB NetBiosFS HTTP LDAP OTHERS

10

20

30

40

50

60

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

SMB NetBiosFS HTTP LDAP OTHERS

0

10

20

30

40

50

60

10 100 1000 10000 100000

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

Cache Size (KB), log-scale

SMB NetBiosFS HTTP LDAP OTHERS

0

10

20

30

40

50

60

10 100 1000 10000 100000

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

Cache Size (KB), log-scale

SMB NetBiosFS HTTP LDAP OTHERS

0

10

20

30

40

50

60

10 100 1000 10000 100000

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

Cache Size (KB), log-scale

SMB NetBiosFS HTTP LDAP OTHERS

0

10

20

30

40

50

60

10 100 1000 10000 100000

B
a

n
d

w
id

th
 S

a
v

in
g

s
 (

%
)

Cache Size (KB), log-scale

SMB NetBiosFS HTTP LDAP OTHERS

Figure 9: Cache size vs protocol bandwidth savings

Chunk-Match approach. Based on the figure, a good op-

erating point for EndRE is at the knee of the curve corre-

sponding to 810MB of cache, allowing for a good trade-

off between memory resource constraints and bandwidth

savings.

Figure 9 plots the bandwidth savings versus cache size

(in log-scale for clarity) for different protocols. For this

trace set, HTTP (port 80,8080) comprised 45% of all

traffic, SMB (port 445) and NetBios File sharing (port

139) together comprised 26%, LDAP (port 389) was

about 2.5% and a large set of protocols, labeled as OTH-

ERS, comprised 26.5%. While different protocols see

different bandwidth savings, all protocols, except OTH-

ERS, see savings of 20+%with LDAP seeing the highest

savings of 56%. Note that OTHERS include several pro-

tocols that were encrypted (HTTPS:443, Remote Desk-

top:3389, SIP over SSL:5061, etc.). For this analysis,

since we are estimating EndRE savings from IP-level

packet traces whose payload is already encrypted, En-

dRE sees 0% savings. An implementation of EndRE in

the socket layer would likely provide higher savings for

protocols in the OTHERS category than estimated here.

Finally, by examining the figure, one can see the “knee-

of-the-curve” at different values of cache size for differ-

ent protocols (10MB for HTTP, 4MB for SMB, 500KB

for LDAP, etc.). This also confirms that the 10MB knee

of Figure 8 is largely due to the 10MB knee for HTTP in

Figure 9.

This analysis suggests that the cache limit could be

tuned depending on the protocol(s) used between a

client-server pair without significantly impacting over-

all bandwidth savings. Thus, we use 10MB cache size

only if HTTP traffic exists between a client-server pair,

4MB if SMB traffic exists, and a default 1MB cache size

otherwise. Finally, while this cache size limit is derived

based on static analysis of the traces, we are looking at

designing dynamic cache size adaptation algorithms for

each client-server pair as part of future work.

70

80

90

100

%
 o

f
 C

li
e

n
t
s

30

40

50

60

70

80

90

100

%
 o

f
 C

li
e

n
t
s

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

%
 o

f
 C

li
e

n
t
s

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

%
 o

f
 C

li
e

n
t
s

Maximum Cache Size at Client (MB)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

%
 o

f
 C

li
e

n
t
s

Maximum Cache Size at Client (MB)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

%
 o

f
 C

li
e

n
t
s

Maximum Cache Size at Client (MB)

70

80

90

100

%
 o

f
 S

e
r
v

e
r
s

20

30

40

50

60

70

80

90

100

%
 o

f
 S

e
r
v

e
r
s

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

%
 o

f
 S

e
r
v

e
r
s

Maximum Cache Size at Server (MB)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

%
 o

f
 S

e
r
v

e
r
s

Maximum Cache Size at Server (MB)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

%
 o

f
 S

e
r
v

e
r
s

Maximum Cache Size at Server (MB)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

%
 o

f
 S

e
r
v

e
r
s

Maximum Cache Size at Server (MB)

(a) Client (b) Server

Figure 10: Cache scalability

8.2.2 Client and Server Memory Costs

Given the cache size limits derived in the previous sec-

tion, we now address the critical question of EndRE scal-

ability based on the cumulative cache needs at the client

and server for all their connections. Using the entire set

of network traces of ten enterprise sites (44 days, 5TB)

in Table 2, we emulate the memory needs of EndREwith

the above cache size limits for all clients and servers. We

use a conservative memory page-out policy in the emu-

lation: if there has been no traffic for over ten hours be-

tween a client-server pair, we assume that the respective

EndRE caches at the nodes are paged to disk. For each

node, we then compute the maximum in-memory cache

needed for EndRE over the entire 44 days.

Figure 10(a) plots the CDF of the client’s maximum

EndRE memory needs for all (≈ 1000) clients. We find
that the median (99 percentile) EndRE client allocates a

maximum cache size of 60MB (275MB) during its oper-

ation over the entire 44-day period. We also performed

an independent study of desktop memory availability by

monitoring memory availability at 1 minute intervals for

110 desktops over 1 month at one of the enterprise sites.

Analyzing this data, we found that the 5, 50 and 90th

percentile values of unused memory, available for use,

at these enterprise desktops were 1994MB, 873MB, and

245MB, respectively. This validates our hypothesis that

desktop memory resources are typically adequately pro-

visioned in enterprises, allowing EndRE to operate on

clients without significant memory installation costs.

We now examine the size of the cache needed at the

server. First, we focus on Max-Match and study the net

size of the cache required across all active clients at the

server. Using the same enterprise trace as above, we plot

the CDF of server cache size for all the servers in the

trace in Figure 10(b). From the figure, we find that the

maximum cache requirement is about 2GB. If it is not

feasible to add extra memory to servers, say due to cost

or slot limitations, the Chunk-Match approach could be

adopted instead. This would reduce the maximum cache

requirement by 3X (§5).



Site Trace GZIP EndRE EndRE EndRE EndRE IPWAN-Opt IP WAN-Opt

Size 10ms Max-Match Max-Match+GZIP Chunk-Match Max-Match + DOT Max-Match Max-Match + DOT

GB 10MB 10MB 10MB 10MB 2GB 2GB

% savings

MODP MAXP FIXED SB SB MODP SB SB SB

1 173 9 47 47 16 47 48 46 56 71 72

2 8 14 24 25 19 24 28 19 33 33 33

3 71 17 25 26 23 26 29 22 32 34 35

4 58 17 23 24 20 24 31 21 30 45 47

5 69 15 26 27 22 27 31 21 37 39 42

6 80 12 21 21 18 22 26 17 28 34 36

7 80 14 25 25 22 26 30 21 33 31 33

8 142 14 22 23 18 22 28 19 30 34 40

9 198 9 16 16 14 16 19 15 26 44 46

10 117 13 20 21 17 21 25 17 30 27 30

Avg/site 100 13 25 26 19 26 30 22 34 39 41

Table 4: Percentage bandwidth savings on incoming links to 10 enterprise sites over 11 day trace

9 Benefits

We now characterize various benefits of EndRE. We first

investigate WAN bandwidth savings. We then quan-

tify latency savings of using EndRE, especially on short

transactions typical of HTTP. Finally, we quantify en-

ergy savings on mobile smartphones, contrasting EndRE

with prior work on energy-aware compression [11].

9.1 Bandwidth Savings

In this section, we focus on the bandwidth savings of

different RE algorithms for each of the enterprise sites,

and examine the gains of augmenting EndRE with GZIP

and DOT [21]. We also present bandwidth savings of an

IP WAN optimizer for reference.

Table 4 compares the bandwidth savings on incom-

ing links to ten enterprise sites for various approaches.

This analysis is based on packet-level traces and while

operating at packet sizes or larger buffers make little dif-

ference to the benefits of EndRE approaches, buffer size

can have a significant impact on GZIP-style compres-

sion. Thus, in order to emulate the benefits of perform-

ing GZIP at the socket layer, we aggregate consecutive

packet payloads for up to 10ms and use this aggregated

buffer while evaluating the benefits of GZIP. For EndRE,

we use cache sizes of up to 10MB. We also emulate an

IP-layer middlebox-based WAN optimizer with a 2GB

cache.

We observe the following: First, performing GZIP

in isolation on packets aggregated for up to 10ms pro-

vides per-site savings of 13% on average. Further, there

are site specific variations; in particular, GZIP performs

poorly for site 1 compared to other approaches. Second,

comparing the four fingerprinting algorithms (columns

3-6 in Table 4), we see that MODP, MAXP, and SAM-

PLEBYTE deliver similar average savings of 25-26%

while FIXED under-performs. In particular, in the case

of site 1, FIXED significantly under-performs the other

three approaches. This again illustrates how SAMPLE-

BYTE captures enough content-specific characteristics

to significantly outperform FIXED. Adding GZIP com-

pression to SAMPLEBYTE improves the average sav-

ings to 30% (column 7). While the above numbers were

based on Max-Match, using Chunk-Match instead re-

duces the savings to 22% (column 8), but this may be a

reasonable alternative if server memory is a bottleneck.

We then examine savings when EndRE is augmented

with DOT [21]. For this analysis, we employ a heuris-

tic to extract object chunks from the packet traces as

follows: we combine consecutive packets of the same

four-tuple flow and delineate object boundaries if there

is no packet within a time window(1s). In order to ensure

that the DOT analysis adds redundancy not seen by En-

dRE, we conservatively add only inter-host redundancy

obtained by DOT to the EndRE savings. We see that

(third column from right) DOT improves EndRE savings

by a further 6-10%, and the per-site average bandwidth

savings improves to 34%. For reference, a WAN opti-

mizer with 2GB cache provides per-site savings of 39%

and if DOT is additionally applied (where redundancy of

matches farther away than 2GB are only counted), the

average savings goes up by only 2%. Thus, it appears

that half the gap between EndRE and WAN optimizer

savings comes from inter-host redundancy and the other

half from the larger cache used by the WAN optimizer.

Summarizing, EndRE using the Max-Match approach

with the SAMPLEBYTE algorithm provides average

per-site savings of 26% and delivers two-thirds of the

savings of a IP-layer WAN optimizer. When DOT is

applied in conjunction, the average savings of EndRE

increase to 34% and can be seen to be approaching the

41% savings of the WAN optimizer with DOT.

Pilot Deployment: We now report results from a small

scale deployment. EndRE was deployed on 15 desk-

top/laptop clients (11 users) and one server for a period

of about 1 week (09/25/09 to 10/02/09) in our lab. We

also hosted a HTTP proxy at the EndRE server and users

manually enabled/disabled the use of this proxy, at any

given time, using a client-based software. During this

period, a total of 1.7GB of HTTP traffic was delivered

through the EndRE service with an average compression



RTTs 1 2 3 4 5 > 5

Latency Gain 0 20% 23% 36% 20% 22%

Table 5: HTTP latency gain for different RTTs

of 31.2%. A total of 159K TCP connections were ser-

viced with 72 peak active simultaneous TCP connections

and peak throughput of 18.4Mbps (WAN link was the

bottleneck). The CPU utilization at the server remained

within 10% including proxy processing. The number of

packet re-orderings was less than 1% even in the pres-

ence of multiple simultaneous TCP connections between

client and server. We also saw a large number of TCP

RSTs but, as reported in [10], these were mostly in lieu

of TCP FINs and thus do not contribute to cache syn-

chronization issues. Summarizing, even though this is

a small deployment, the overall savings numbers match

well with our analysis results and the ease of deployment

validates the choice of implementing EndRE over TCP.

9.2 Latency Savings

In this section, we evaluate the latency gains from de-

ploying EndRE. In general, latency gains are possible

for a number of reasons. The obvious case is due to

reduction of load on the bottleneck WAN access link

of an enterprise. Latency gains may also arise from

the choice of implementing EndRE at the socket layer

above TCP. Performing RE above the TCP layer helps

reduce the amount of data transferred and thus the num-

ber of TCP round-trips necessary for connection com-

pletion. In the case of large file transfers, since TCP

would mostly be operating in the steady-state conges-

tion avoidance phase, the percentage reduction in data

transfer size translates into a commensurate reduction in

file download latency. Thus, for large file transfers, say,

using SMB or HTTP, one would expect latency gains

similar to the average bandwidth gains seen earlier.

Latency gains in the case of short data transfers, typ-

ical of HTTP, are harder to estimate. This is because

TCP would mostly be operating in slow-start phase and

a given reduction in data transfer size could translate into

a reduction of zero or more round trips depending on

many factors including original data size and whether or

not the reduction occurs uniformly over the data.

In order to quantify latency gains for short file trans-

fers, we perform the following experiment. From the

enterprise network traces, we extract HTTP traffic that

we then categorize into a series of session files. Each

session file consists of a set of timestamped operations

starting with a connect, followed by a series of sends and

receives (i.e., transactions), and finally a close.

The session files are then replayed on a testbed con-

sisting of a client and a server connected by a PC-based

router emulating a high bandwidth, long latency link, us-

ing the mechanism described in [13]. During the replay,

ZLIB (Tr A) EndRE (Tr A)

80

100

S
a

v
in

g
s
 (

%
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

20

40

60

80

100

S
a

v
in

g
s
 (

%
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

20

40

60

80

100

0 10000 20000 30000

S
a

v
in

g
s
 (

%
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

20

40

60

80

100

0 10000 20000 30000

S
a

v
in

g
s
 (

%
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

20

40

60

80

100

0 10000 20000 30000

S
a

v
in

g
s
 (

%
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

20

40

60

80

100

0 10000 20000 30000

S
a

v
in

g
s
 (

%
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

250

300

E
n

e
rg

y
 (

u
A

H
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

100

150

200

250

300

E
n

e
rg

y
 (

u
A

H
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

50

100

150

200

250

300

0 10000 20000 30000

E
n

e
rg

y
 (

u
A

H
)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

50

100

150

200

250

300

0 10000 20000 30000

E
n

e
rg

y
 (

u
A

H
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

50

100

150

200

250

300

0 10000 20000 30000

E
n

e
rg

y
 (

u
A

H
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

0

50

100

150

200

250

300

0 10000 20000 30000

E
n

e
rg

y
 (

u
A

H
)

Chunk Size (bytes)

ZLIB (Tr A) EndRE (Tr A)

ZLIB (Tr B) EndRE (Tr B)

(a) Compression Savings (b) Energy

Figure 11: ZLIB vs. EndRE

strict timing is enforced at the start of each session based

on the original trace; in the case of transactions, timing

between the start of one transaction and the start of the

next transaction is preserved as far as possible. The per-

formance metric of interest is latency gain which is de-

fined as the ratio of reduction in transaction time due to

EndRE to transaction time without EndRE.

Table 5 shows the latency gain for HTTP for various

transactions sorted by the number of round-trips in the

original trace. For this trace, only 40% of HTTP trans-

actions involved more than one round trip. For these

transactions, latency gains on average ranged from 20%

to 35%. These gains are comparable with the average

bandwidth savings due to EndRE for this trace (∼30%),

demonstrating that even short HTTP transactions see la-

tency benefits due to RE.

9.3 Energy Savings

We study the energy and bandwidth savings achieved us-

ing EndRE on Windows Mobile smartphones and com-

pare it against both no compression as well as prior work

on energy-aware compression [11]. In [11], the authors

evaluate different compression algorithms and show that

ZLIB performs best in terms of energy savings on re-

source constrained devices for decompression. We eval-

uate the energy and bandwidth gains using two trace

files. Traces A and B are 20MB and 15MB in size,

respectively, and are based on enterprise HTTP traffic,

with trace B being more compressible than trace A.

We first micro-benchmark the computational cost of

decompression for ZLIB and EndRE. To do this, we

load pre-compressed chunks of the traces in the mobile

smartphone’s memory and turn off WiFi. We then re-

peatedly decompress these chunks and quantify the en-

ergy cost. Figures 11(a) and (b) plot the average com-

pression savings and energy cost of in-memory decom-

pression for various chunk sizes, respectively. The en-

ergy measurements are obtained using a hardware-based

battery powermonitor [4] that is accurate to within 1mA.

From these figures, we make two observations. First,

as the chunk size is increased, ZLIB compression sav-



None ZLIB EndRE

Energy Energy Byte Energy Byte

uAh % savings % savings % savings % savings

pkt pkt 32KB pkt 32KB pkt pkt

A 2038 -11 42 26 44 25 29

B 1496 -11 68 41 75 70 76

Table 6: Energy savings on a mobile smartphone

ings increase and the energy cost of decompression de-

creases. This implies that ZLIB is energy efficient when

compressing large chunks/files. Second, the compres-

sion savings and energy costs of EndRE, as expected,

are independent of chunk size. More importantly, En-

dRE delivers comparable compression savings as ZLIB

while incurring an energy cost of 30-60% of ZLIB.

We now compare the performance of ZLIB and En-

dRE to the case of no compression by replaying the

traces overWiFi to the mobile smartphone and perform-

ing in-memory decompression on the phone. In the case

of ZLIB, we consider two cases: packet-by-packet com-

pression and bulk compression where 32KB blocks of

data are compressed at a time, the latter representing a

bulk download case. After decompression, each packet

is consumed in memory and not written to disk; this

allows us to isolate the energy cost of communication.

If the decompressed packet is written to disk or further

computation is performed on the packet, the total energy

consumed for all the scenarios will be correspondingly

higher.

Table 6 shows energy and compression gains of using

ZLIB and EndRE as compared to using no compression.

We see that when ZLIB is applied on a packet-by-packet

basis, even though it saves bandwidth, it results in in-

creased energy consumption (negative energy savings).

This is due to the computational overhead of ZLIB de-

compression. On the other hand, for larger chunk sizes,

the higher compression savings coupledwith lower com-

putational overhead (Figure 11) result in good energy

savings for ZLIB. In the case of EndRE, we find that

the bandwidth savings directly translate into comparable

energy savings for communication. This suggests that

EndRE is a more energy-efficient solution for packet-

by-packet compression while ZLIB, or EndRE coupled

with ZLIB, work well for bulk compression.

10 Conclusion

Using extensive traces of enterprise network traffic and

testbed experiments, we show that our end-host based

redundancy elimination service, EndRE, provides aver-

age bandwidth gains of 26% and, in conjunction with

DOT, the savings approach that provided by a WAN op-

timizer. Further, EndRE achieves speeds of 1.5-4Gbps,

provides latency savings of up to 30% and translates

bandwidth savings into comparable energy savings on

mobile smartphones. In order to achieve these benefits,

EndRE utilizes memory and CPU resources of end sys-

tems. For enterprise clients, we show that median mem-

ory requirements for EndRE is only 60MB. At the server

end, we design mechanisms for working with reduced

memory and adapting to CPU load.

Thus, we have shown that the cleaner semantics of

end-to-end redundancy removal can comewith consider-

able performance benefits and low additional costs. This

makes EndRE a compelling alternative to middlebox-

based approaches.

Acknowledgments. We thank our shepherd Sylvia

Ratnasamy and the anonymous reviewers for their com-

ments. Aditya Akella, Ashok Anand, and Chitra

Muthukrishnan were supported in part by NSF grants

CNS-0626889, CNS-0746531 and CNS-0905134, and

by grants from the UW-Madison Graduate School.

References
[1] Cisco Wide Area Application Acceleration Services. http:

//www.cisco.com/en/US/products/ps5680/Products

Sub Category Home.html.

[2] Jenkins Hash. http://burtleburtle.net/bob/c/lookup3.c.

[3] Peribit Networks (Acquired by Juniper in 2005): WAN Optimization So-

lution. http://www.juniper.net/.

[4] Power Monitor, Monsoon Solutions. http://www.msoon.com/

powermonitor/powermonitor.html.

[5] Riverbed Networks: WAN Optimization. http://www.riverbed.

com/solutions/optimize/.

[6] Windows Filtering Platform. http://msdn.microsoft.com/

en-us/library/aa366509(V.85).aspx.

[7] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet Caches

on Routers: The Implications of Universal Redundant Traffic Elimination.

In ACM SIGCOMM, Seattle, WA, Aug. 2008.

[8] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundant in

Network Traffic: Findings and Implications. In ACM SIGMETRICS, Seat-

tle, WA, June 2009.

[9] S. Annapureddy, M. J. Freedman, and D. Mazires. Shark: Scaling file

servers via cooperative caching. In NSDI, 2005.

[10] M. Arlitt and C. Williamson. An analysis of tcp reset behavior on the

internet. ACM CCR, 35(1), 2005.

[11] K. C. Barr and K. Asanovic. Energy-aware lossless data compression.

IEEE Transactions on Computer Systems, 24(3):250–291, Aug 2006.

[12] F. Douglis and A. Iyengar. Application-specific delta-encoding via resem-

blance detection. In USENIX, 2003.

[13] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye. Feasibility study of mesh

networks for all-wireless offices. In MobiSys, 2006.

[14] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential

benefits of delta encoding and data compression for http. In SIGCOMM,

pages 181–194, 1997.

[15] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network

file system. SIGOPS Oper. Syst. Rev., 35(5), 2001.

[16] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first

look at modern enterprise traffic. In IMC, 2005.

[17] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting similarity for

multi-source downloads using file handprints. In NSDI, 2007.

[18] M. Rabin. Fingerprinting by random polynomials. Technical report, Har-

vard University, 1981. Technical Report, TR-15-81.

[19] S. C. Rhea, K. Liang, and E. Brewer. Value-Based Web Caching. In 12th

World Wide Web Conference, 2003.

[20] N. T. Spring and D. Wetherall. A protocol-independent technique for elim-

inating redundant network traffic. In SIGCOMM, pages 87–95, 2000.

[21] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An architecture for

Internet data transfer. In NSDI, 2006.


