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Abstract

Distributed Denial-of-Service flooding attacks against public web servers are increasingly common.

Websites without the ability to over-provision or rely on a CDN are often overwhelmed by such attacks.

Existing proposals to combat flooding within the network either require substantial changes to the Inter-

net infrastructure (e.g., Capabilities [27, 26]), or the difficult task of identifying attack aggregates near

the core (e.g, Push-back [18]).

In this paper, we present an easy to deploy mechanism whereby a third party with high access to

bandwidth can protect a web server against bandwidth exhaustion from illegitimate traffic. With this

mechanism, all traffic to and from a web site is routed via a third party managed middlebox. The

middlebox provides two simple functions: (1) determine if a TCP packet sent to the web-server belongs

to a legitimate flow (i.e ., belongs to an already established connection, or originates from a non-spoofed

IP address), and, (2) filter traffic from IPs blacklisted by the protected server. We show that this dual

functionality can be realized in a completely stateless fashion using “Flow Cookies”, a simple extension

to SYN cookies[13], wherein the protection middlebox places a secure, limited lifetime cookie within

the TCP timestamp of every outgoing data packet from the protected server. Flow-cookies offers strong

protection against flooding, does not require modification to clients or to the network, and is resistant to

source spoofing.

We have implemented flow-cookies within an existing software router and verified its compatibility

with popular client operating systems, and widely used public web sites.

1 Introduction

Distributed denial of service (DDoS) attacks against web sites are an Internet reality. Not only are they a

disturbingly common occurrence [16, 6], but they have been successful in widespread disruption of online
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commerce servers and other sites critical to our daily lives [8, 3, 9]. As a result, defending against DDoS

has been an active research area in the networking community.

DDoS attacks against web sites can be partitioned into two broad categories: attacks on resources under

the web sites’ control, and those on resources not under the web sites’ control. The former include attacks

on web server computation resources, bug exploits of application software, exhaustion of TCP connections,

hogging the servers outgoing bandwidth via massive wgets, etc. Fundamentally, defending against these

attacks is a web site’s responsibility. Active research in this area has yielded a variety of techniques for

web sites to discern legitimate requests and protect them such as sophisticated bot-detection [23], graceful

degradation under heavy load [25] and resource scheduling schemes [22].

However, web sites are powerless against the latter category of attacks. In particular, if the incoming

network link to a website is filled with attack traffic, there is little that the web site can do. Indeed, a popular

method of DDoS is flooding. In the common case, such flooding attacks on websites only consume tens

of Mbps or, less frequently, hundreds [6]. However, if the attack target’s incoming link is unable to handle

such traffic, the network must take active steps to filter the attack. Unfortunately, in-network active filtering

and aggregate signature detection for low bandwidth floods are notoriously difficult and prone to source

spoofing. Also, in cases where the site relies on dynamic or otherwise deep content (e.g. online gaming

sites, or siets with large backend databases), offloading traffic to a CDN [1, 17] is not possible.

In general, network elements, such as routers, lack the semantic knowledge to determine what level of

activity is legitimate and what is not for a given website. For example, a web site may allow a high rate of

requests from some IP address (e.g. its business partners) but not others. Therefore, the capability to discern

normal from abnormal, or legitimate from illegitimate use, rests with the website. A website simply needs a

mechanism to push these decisions deep into the network, where traffic deemed malicious can be filtered at

high speeds. Our proposal, “Flow Cookies”, provides one such mechanism.

“Flow-cookies” is a lightweight, low-state mechanism that provides legitimate flow detection and reli-

able filtering at very high speeds. In this approach, a third party provider installs a “flow-cookies” enabled

middlebox, called the cookie box, with high bandwidth link(s) to a tier-1 ISP(s). All traffic, to or from the

protected webserver, must traverse the cookie box. The protected websites are guaranteed that all pack-

ets received from the box belong to a legitimate TCP flow. Further if a web-server deems a client to be

misbehaving, it can request the cookie box to filter the offending IP.

The cookie box can provide many collaborating web servers with the protection bandwidth of the at-
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tached link(s). “Flow-cookies” does not require per-flow state at the cookie box and is resistant to the

first-packet flooding problem [11]. Flow-cookies is designed to handle the common case of relatively low-

bandwidth attacks (e.g.several tens to a few hundred Mbps). Compared to standard IP-address based filter-

ing, flow-cookies enjoys non-spoofable attack recognition, and guarantees that only “authenticated flows”

can reach the web site. Compared to capability-based schemes, flow-cookies does not require a separate

capability setup step, operates from a point-deployment, is completely backward compatible and does not

require any change to clients’ operating systems or browser applications. Unlike CDNs or other aggres-

sive caching or content distribution strategies, flow-cookies fully supports dynamic content and does not

require sensitive data to be replicated within the network. Therefore, it is a practical solution that can be

immediately employed by public web sites today.

We have implemented flow-cookies in software and tested our implementation using live connections be-

tween various commodity client operating systems (WindowsXP, MacOSX, NetBSD, Linux2.4, Linux2.6)

and multiple popular, public web sites. Our implementation is able to operate at gigabit speeds including

per-packet IP filtering of millions of addresses. We also found our approach to be very effective against high

volume SYN flooding attacks.

The rest of the paper is organized as follows. In the next section we present related work. In Section 3, we

provide an overview of flow-cookies. In Section 4 we describe the flow cookie protocol in detail. Section 5

discusses the properties of flow-cookies and possible attacks that flow cookies cannot handle. Section 6

describes our implementation and evaluation of flow cookies. Finally, we conclude and present future work

in Section 7.

2 Related Work

SYN-Cookies. SYN-cookies [13] are designed to prevent SYN floods from exhausting server connection

state with half-open connections. They operate by using a cryptographically secure cookie in place of the

ISN in the SYN|ACK from the server. If the subsequent ACK from the client contains a valid cookie,

then connection state is allocated at the server. Flow-cookies generalizes SYN-cookies by requiring all

client packets (except the initial SYN) to contain a valid cookie. In our scheme, SYN-cookies are used for

connection establishment and “flow-cookies” are placed in the TCP timestamp field of all subsequent data

packets (details in Section 3).

Filtering and Capability-based approaches. Two classes of solutions have been proposed to handle band-

3



width exhaustion DDoS: filter-based and capability-based.

Filter-based approaches, such as Pushback [18] and AITF [12] require the identification and blocking

of illegitimate traffic from within the network. In Pushback, a router attempts to identify attack traffic

by determining that it is in a congested state, finding an “aggregate” that describes the attack traffic, and

pushing the “aggregate” upstream to be blocked close to the source. In pushback routers must discern

legitimate traffic from the illegitimate; In contrast, our solution lets the web server decide.

AITF is an optimization of Pushback that is based on the observation that a pure filter-based approach

requires too much state in core routers, AITF decentralizes the state by pushing filtering rules as close to

the source as possible. However, it does not consider how the filtering rules are determined and whether the

attack recognition mechanism is resistant against spoofing.

Flow-cookies can be viewed as a simplified variant of network capabilities [27, 26], which strive to offer

“complete path protection”. With capabilities, clients first receives a capability from the server which must

accompany each subsequent data packet. Current capability proposals call for modifications to the IP layer

or the addition of a shim layer and infrastructural changes to the network. In contrast, flow-cookies requires

no modification to routers, nor to IP or TCP. Also, flow cookies aims for “partial path protection”, and trusts

one end of the communication: the public web sites. The less-ambitious goals of flow cookies allow it to be

simpler and easier to adopt.

Overlays. A few approaches based on overlay networks [19, 10] have been proposed for protecting online

servers against DDoS: Protection is enforced by only allowing a small set of IP addresses (whose value is

unknown to the attacker) or nodes to communicate with the server. These nodes belong to a secure overlay.

To access the overlay, a client must validate itself at predetermined entry points. In contrast, flow cookies

provides a webserver the ability to accept connections from unknown clients and then enforce immediate

filtering if a client is deemed malicious.

Commercial solutions. Many large web sites use CDNs [1] to diffuse DDoS attacks. CDNs are mainly

employed for protecting static content. They are seldom used for content involving user information–quite

common to e-commerce sites, which are often victims of DDoS attacks.

DDoS solutions relying on the deployment of security appliances, such as [4, 5], perform a number of

DDoS prevention functions such as offloading the three-way handshake with SYN cookies, enforcing per-

flow rate limiting of millions of flows and performing stochastic anomaly detection of DoS attacks, while

maintaining substantial state per flow.
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Figure 1: With flow-cookies, a webserver cooperates with a “cookie-box” connected to a high bandwidth link. The

cookie-box provides high-bandwidth protection for the web-server by filtering all blacklisted IPs and only allowing

packets that are part of legitimate flows to pass.

Flow-cookies takes a different approach: it allows the end-server to distinguish good vs bad traffic and

push the filtering decisions to the network rather than rely on sophisticated in-network detection algorithms.

Another distinction is that flow-cookies does not require per-flow state lowering the relative complexity and

cost required for implementation.

3 Our Approach

Flow-cookies operates using a stand-alone device—which we call the flow-cookie box, or cookie-box for

short—deployed by a third-party service provider. We show an idealized setup in Figure 1.1 We assume that

the cookie box is deployed in a data center with a very high speed connection to a tier-1 ISP. Note that the

cookie box could be deployed at a location far removed from the web site. Furthermore, the box could be

multihomed to several tier-1 ISPs.

All traffic to and from the protected web-server must traverse the cookie box. The cookie box maintains

a private channel to each back-end web-server it is protecting. In practice this would likely be a relatively

lower bandwidth IPSec tunnel (compared to the link between the cookie box and its ISP) or, for more severe

threat environments, a lower bandwidth leased line (for co-located clients). The cookie box announces

routes to its protected servers onto its upstream ISP(s) (To be specific, the third-party service may own a

public IP-block and assign IP addresses to its customer web-servers from it). This ensures that incoming

client traffic is routed through the box.

1While in the context of this paper we assume that flow-cookies is implemented in a stand-alone device, it is simple enough that

it could be added as extra functionality to a line card on an access ISP router.
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The cookie box and the web-servers cooperate to perform the following four tasks:

1. All incoming clients complete their 3-way handshake with the cookie box. The box uses SYN cookies

for the handshake. SYN cookies does not require state maintenance at the cookie box and can be run

at gigabit line speeds [4]. This step ensures that SYN floods cannot traverse the link between the

cookie box and the protected website.

2. Once a client has completed the handshake, the cookie box hands off the connection request to the

website using TCP-handoff [7].2

3. For outgoing packets from the web-server to its clients (this happens after the web-server has accepted

the client connection request), the cookie box adds a secure “flow-cookie” (explained below). The

flow-cookie is echoed back by the client, and checked by the cookie box. This is to ensure that only

packets belonging to flows accepted by the server traverse the link between the cookie box and the

web server.

4. The webserver understands the accepted usage policy of its local administration, and is already keep-

ing per-flow state for each outstanding connection. Therefore, the backend server is in the best po-

sition to determine if a client is misbehaving. IPs (and associated ports) deemed malicious by the

webserver (e.g. deviant flows) are passed to the cookie box, which filters current and future packets

from the offending clients.

Flow-cookies. To be backward compatible, we exploit the TCP timestamp option, and place the flow-cookie

from step #3 in the timestamp field of packets. The TCP timestamp option, proposed in RFC-1323 to

measure RTTs, is supported by all the major host operating systems. According to the RFC, once the option

is enabled by both ends, the sender places a timestamp in a packet, and subsequent packets from the receiver

echo the timestamp.3 On connection set up, the cookie box negotiates the timestamp option with the client.

Flow-cookies are valid for a limited period, are non-forgeable, and are computed on the basis of the IP

and port of the client. The cookie-box verifies that all packets contain a legitimate cookie thus ensuring that

only packets from clients accepted by the server are forwarded. All others are dropped. Therefore the cookie

2Instead of handing the connection directly to the website, the cookie box may hand it off to a participating layer-7 switch which

can then load-balance across multiple servers, as is common today.
3Common operating systems enable timestamps by default, with the exceptions of Windows2000 and WindowsXP. As has been

shown by [24], it is possible to trick Windows into echoing timestamps by including a timestamp option in the SYN|ACK packet.
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box provides protection proportional to its line-speed for one or more backend servers which, themselves,

have low speed connections.

Note that flow cookies require no modification of clients. The cookie box maintains no state during

normal operation (however, the box may store IPs to filter upon a webserver’s request). All per-connection

state is maintained at the web server, as is usual. In effect, flow cookies simply provides a stateless, in-band

mechanism for web-servers to signal acceptance of clients to the third-party service.

Unlike approaches common in the commercial world, flow cookies is not meant to be deployed as a

“perimeter solution” at web-sites. In contrast, we call for traffic vetting at a remote location with high speed

connection. This helps flow cookies leverage the high bandwidth and filtering capacity of the the link(s)

between the cookie box and its ISP(s) to protect the link (or path) between a cookie box and the web site

from SYN floods, connection floods, and bandwidth-hogging deviant flows.

4 Protocol Details

In this section, we present additional details of our approach starting with a description of the actions taken

by the cookie box. A cookie box must maintain the following state:

• Sr: A secret known only to itself (128 - 1024 bits).

• Cr: A counter that is incremented every n seconds (32 bits).

• IPblacklist: Table of IP addresses deemed to belong to known attackers and being actively blocked or rate

limited on request of the server.

• Flowblacklist: A more dynamic table of <source IP, source Port> pairs that are being blocked temporarily

with the associated values of Cr and Cr - 1. Each increment of Cr flushes the values associated with the old

counter value.

The steps taken by the flow-cookie box are described below and shown in Figure 2.

• The cookie box intercepts all SYN packets destined to the webserver. If the SYN packet’s source IP is

in the IPblacklist, it is dropped (i.e., the IP blacklist is only looked up for SYN packets). Otherwise,

the box responds with a SYN cookie [13] in which the source address is forged to be that of the

webserver. The cookie is computed using a keyed message authentication code, such as UMAC-32 or
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SYN

SYNCookie
timestamp=FLOW_START

ACK
timestamp=FLOW_START

DATA
timestamp=FLOW_START

DATA
timestamp=FlowCookie

ACK
timestamp=FlowCookie

Client Router

Handoff
connection
to server

Figure 2: Exchange of packets between a client and flow-cookie box.

HMAC, over the concatenation of Cr and the connection 4-tuple:

cookie = MAC(Sr, Cr|srcip|srcport|dstip|dstport)

• In addition to the SYN cookie, the cookie box includes a TCP timestamp option in the outgoing

SYN|ACK with the timestamp set to the constant value FLOW START, to indicate the possible start

of a new TCP flow. This value is unique to SYN|ACK packets.

• For all packets to the web server that carry an ACK flag and have the timestamp FLOW START, the

cookie box checks that the ACK’ed sequence number is a valid SYN cookie. If yes, and the source IP

address is not blacklisted, the connection is handed off to the web site using a TCP handoff scheme

such as [7]. Note that with a starting slow start window size of 2 MSS, the cookie box might have to

check 3 packets (ACK of SYN, and first two data packets) for a valid SYN cookie. All valid packets

are forwarded on to the server.

• For each data packet sent by the server, the cookie box inserts a “flow-cookie” in the TCP timestamp

field. The flow-cookie is calculated in the same manner as the SYN cookie.

• For all packets to the web server that carry an ACK flag but does not contain FLOW START in the

timestamp field, the cookie box checks that the returned timestamp field has a valid flow-cookie. By

design, the maximum lifetime of a cookie is 2 times the increment period of Cr. If the packet does
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not have a valid flow-cookie, it is dropped. (Note that handling websites that use timestamps for RTT

calculation requires a small modification to this step, discussed in Section 4.1.)

• If the webserver does not want to receive packets from a particular flow, it can do two things: (1) push

filters to the cookie box’s flow blacklist; in this case, the cookie box maintains the source IP and port

in a revocation list with an associated time out and filters packets accordingly. (2) inform the cookie

box to stop issuing fresh capabilities for the client. This can be done simply by closing the connection

in which case the client will no longer receive valid cookies for the flow. The first approach can be

employed to filter high-bandwidth malicious flows immediately. The second approach can be used in

less critical situations or to shut off low priority clients when under overload.

• If a server determines that an attacker is behind a given IP address (or address block), it can request

the cookie box to add the IP (address block) to the IP blacklist.

The cookie-box’s per-packet forwarding checks from client to server is shown in pseudocode in Figure 3.

And the forwarding checks from server to client is included in Figure 4. In the next section we discuss

practical issues regarding the timestamp, RST packets and persistent connections.

4.1 Design Considerations

Patching timestamps. RFC-1323 does not specify how the timestamp value is to be encoded in the option

field. To prevent disruption, the cookie box and the webserver must explicitly agree on a format. Also, care

needs to be taken if the web site wishes to use timestamps to measure RTTs. The simplest approach to avoid

undesirable interactions with flow cookies is for the third-party service to dissuade webservers from using

timestamp values in RTT calculations. This requires a relatively insignificant modification to the TCP stack

at the web server. Also, all stacks are able to do RTT calculations without the aid of timestamps.

An alternate method that does not require any modification of the webserver is to store a portion of

the timestamp: Using this approach, the cookie box places the cookie in the most-significant 24 bits of

the timestamp, reducing cookie size from 32 to 24 bits and preserving the low-order bits of the timestamp.

When the client echoes the cookie, the cookie-box uses the last-seen timestamp (Ts) from the server to

replace the upper 24 bits of the timestamp field thus patching-up the original timestamp. We note that as

long as the RTT between the web site and the client is less than what can be represented by 8 bits in the
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Sr: secret

Cr: current counter value

Ts: last server timestamp

1 if packet is SYN:

2 if scrIP in IPBlacklist:

3 drop packet and exit

4 syn_cookie = UMAC(Sr, Cr | 4-tuple)

5 send back SYN_ACK with ISN = syn_cookie and

timestamp = FLOW_START

6 else:

7 cookie = UMAC(Sr, Cr | 4-tuple)

8 if timestamp == FLOW_START:

9 if ACK sequence != cookie:

10 drop packet and exit

11 else:

12 if timestmp[8:32] != cookie:

13 drop packet and exit

14 else:

15 if <srcIP and srcPort> in FlowBlacklist:

16 drop packet and exit

17 set timestmp[8:32] = Ts[8:32]

18 forward the packet

Figure 3: Per-packet logic at the cookie box for packets destined to the protected web-server.

1 Ts = timestamp value

2 cookie = HMAC_UMAC(Sr, Cr | 4-tuple)

3 timestamp[8:32] = cookie

Figure 4: Per-packet logic at the cookie box for packets sent from the protected web-server.

Figure 5: Preserving bits 4 through 12 from the original timestamp to support clients with high RTT to the server.
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timestamp (i.e. 256ms if a millisecond resolution timer is being used), the original timestamp used by the

web site is restored.

If the RTT is greater (or the server has a higher precision timer), the cookie-box can use higher-order bits

of the timestamp (we use bits 4 through 12), effectively reducing the RTT timer granularity (see Figure 5).

In Section 6 we show that reducing the fidelity of the timestamp by truncating the least significant 4 bits

does not produce any measurable effect on throughput.

RST Packets. Flow-cookies relies on all packets to have a valid cookie in the TCP timestamp field. Unfor-

tunately, the timestamp field is only valid if the packet’s ACK bit is set. All TCP packets between a server

and its client (in either direction) have their ACK bit set, except RST packets. RST packets are sent when

clients continue to receive packets from the server, even after closing a connection. In our proposal, we rate

limit TCP RST packets to the web server to a small percentage of the web site’s link bandwidth Lb. Note that

an attacker could fill the queue with illegitimate RSTs starving out the legitimate ones. However, the only

adverse effect is that under attack conditions the web site sends out marginally more data on connections

that could not complete a proper shutdown.4

Persistent Connections. Flow-cookies are issued for every packet from the server to its client. As long as a

client can elicit a steady stream of packets from the server, it is assured of a valid capability. However, TCP

connections such as persistent web sessions may remain idle for prolonged periods, in which case the client

cookie may go stale (in our implementation, cookies time out after 30 seconds). To address this problem,

the webserver can issue HTTP keep-alives (say every 15s) to updating the client flow-cookies. Keep-alives

are small and will not consume significant bandwidth relative to the content at a busy Internet site.

Service Classes. In addition to enforcing the binary decision of accepting or denying a packet, flow-cookies

can aid in differentiating flows into multiple classes. This is especially important under stress or attack

conditions. The main idea is to encode the service class into the cookie (e.g as a 3bit value) which the

cookie-box then uses to place incoming packets in the appropriate service queue. Doing so requires a

change to the cookie computation so that instead of using a keyed hash, the cookie-box encrypts to generate

the cookie and decrypts to retrieve the service class. We plan to continue to explore this area as future work.

4We note that outgoing RSTs are commonly blocked by firewalls today to protect against RST and inverse port scans.
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5 Discussion

In this section, we discuss protection properties of the flow cookie mechanism. In addition, we discuss

alternate avenues for attacking this mechanism, and possible workarounds.

5.1 Properties of Our Approach

As with most protection schemes, flow-cookies merely raise the bar of difficulty for an attacker to exhaust

the bandwidth of a web site. Below, we outline the protection properties of flow-cookies.

Non-spoofability. Since the webserver only receives packets from established flows, flow cookies offers

“non-spoofability”: an attack IP has to be “real” for it to consume state at the cookie box or the webserver.

An attacker with a spoofed source on the SYN cannot complete the three-way handshake. Similarly, an

attacker who has established a valid connection cannot forge a valid cookie for an arbitrary source address.

As a result, no attacker (unless directly on-route) can trick the server or the cookie box into allocating state

for IP addresses other than its own.

Proportional state. In practice, the cookie box must store the IP blacklist, the flow blacklist, and the most

recent timestamp per protected web site. Assuming that the web server being protected functions properly,

the size of the two lists are proportional to the number of attacking hosts/flows, as opposed to aggregate

number of flows.

Ease of deployment. By design, flow-cookies leverages a third-party service to offer bandwidth as a re-

source for protecting against DDoS. However, flow-cookies does not require the third-party to understand

the semantics of the traffic to the servers, nor is the flow-cookie box susceptible to flow-state exhaustion

due to legitimate flows. Further, the algorithmic simplicity and state-space requirements are such that flow-

cookies can be implemented at relatively low cost.

Protection Bandwidth Guarantee. Flow cookies must make it difficult for the attacker to craft an attack

packet that is outside an established flow, yet somehow allowed past the cookie box. Note that given an n bit

cookie, for every 2n packets generated by the attacker, one packet will get through, on average. Therefore,

in order to maintain the protection bandwidth provided by the ingress link, the cookie size must be at least

log2 (Cb

Lb
), where Cb is the bandwidth of link between the cookie box and its ISP (or the aggregate bandwidth

in the case of multiple ISPs) and Lb is the bandwidth of the tunnel or link between the cookie box and the

webserver. We believe our choice of 24 bits (with 8 bits reserved for time-stamp patching) is sufficient for
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almost all cases.

Fault Tolerance. Failure of the cookie-box must not cut traffic to or from the webserver. To ensure fault

tolerance, the third-party provider could replicate the cookie-box in situ. Alternately, the provider could

deploy cookie-boxes at multiple geographic locations. Clients of the protected web server could be randomly

directed to one of the replicas using DNS (similar to existing third-party DNS mechanisms [2]) or anycast.

The webserver site could similarly buy an additional Internet connection to use as a fail-over mechanism

(special care must be taken to manage address allocation and route announcements).

5.2 Web Server Actions

In our approach, the web servers are fully responsible for discovering misbehaving clients and pushing

filtering requests the cookie-box. Because the web-server must maintain per-connection state it is in the best

position to determine if the TCP congestion protocol is not being followed or if a valid cookie is being used

for flooding. In addition, the web-servers can use knowledge of higher-layer semantics to determine if a

client is attempting to exhaust downloading bandwidth or CPU cycles. Filtering requests are pushed over

the established private connection between the server and the cookie box.

5.3 Other Attack Venues

Download Bandwidth Exhaustion. Flow-cookies does not protect the outgoing link of the server from

bandwidth exhaustion attacks. This can happen in “e-protests” where many clients plan and simultaneously

request a large data item. We believe defenses for such attacks are most appropriately employed on the

server where application specific knowledge can be used, for example, to compress specific objects.

State Exhaustion Attack on Filter Lists. An attacker may attempt to exhaust the memory used to store

flow blacklists at the cookie-box by generating a large number of malicious flows from one or more IP

addresses. However, the flow blacklist entries are established by the protected web server, which is assumed

trustworthy and entries are only placed on legitimate flows and IP addresses. Our naive implementation

discussed in Section 6 is able to handle millions of entries at gigabit speeds—orders of magnitude higher

than the largest botnets known today.

Furthermore, the third-party provider could place a bound on the amount of filtering state that a pro-

tected web-server can consume. Beyond this, the webserver will either have to pay for extra room, or push
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aggregated filters instead of individual IPs; doing the latter has the obvious downside of preventing access

to legitimate clients that share a common prefix with attackers.

Coordinated Bot Attacks. Perhaps the most effective attack against flow-cookies is for a large bot-network

to launch a sustained attack by requesting and sharing individual cookies. For example, a single bot first

obtains a flow-cookie with a 10s lifetime. It immediately communicates the cookie to the other bots of a

large network. Each host in the bot network then spoofs its source address to that of the compromised client,

and sends the webserver a burst of data, using the flow-cookie to get past the cookie-box. The webserver

can stop the attack by immediately requesting a filter on the compromised IP. However, the bot-network

could cycle through all of the IPs of nodes in the bot-net and continue to inflict damage. But we note that if

it takes the webserver 50ms to detect and blacklist the source of a flood, then in 5s a 100 node bot network

would have been exhausted; in 500 seconds, a 1000 node network etc. Larger botnets of tens or hundreds of

thousands of hosts can anyway easily render the cookie-box imeffective by flooding the link to its ISP.

Attacks on DNS and Other non-TCP Traffic. We assume that all non-TCP traffic is either explicitly

filtered, or placed in a different queue from TCP traffic, and rate limited in aggregate. However, there may

be some non-TCP traffic that is critical to operation of the server, such as DNS traffic; this could be another

avenue for attack. Though important, flow-cookies does not directly address these forms of attack. For the

purposes of this paper we assume that separate protection mechanisms are used, such as DNS offloading to

third-party services [2].

6 Implementation and Testing

We implemented our flow-cookie approach within an existing software router. While flow-cookies was

designed to be simple and amenable to hardware implementation, this remains part of our future work.

In this section, we present results from testing our implementation on clients using popular web-browsers

on commodity, unmodified operating systems against public servers. We also include results from micro-

benchmark tests designed to explore the performance characteristics of flow-cookies and any deleterious

affects caused by the loss in timer resolution of the TCP timestamp. In addition to live tests on the Internet,

we test our implementation in software using simulated traffic loads to show that even on a standard GPU,

flow-cookies can handle gigabit line speeds. Finally, we explore the effectiveness of our approach under

simulated attack conditions.

14



6.1 Implementation Details

Our implementation of flow-cookies was done in a simple software-router using a user-space network de-

velopment environment [14]. The development environment provides hooks into the kernel for sending and

receiving packets while allowing low-level network functionality to be implemented outside of the kernel.

In addition to flow-cookies, our router supports ARP, a subset of ICMP, IP-prefix forwarding and IP TTL

handling.

The implementation was done in C using HMAC-SHA1() from OpenSSL to compute the cookie. For

the HMAC we use a 64-bit secret and increment the router’s timer (Cr) every 30 seconds. Incorporating

flow-cookies into the router required an additional 320 lines of code. Also, as discussed in Section 4.1, to

repair the server timestamp value in place of the returned cookie, the implementation saves bits [4:12] of

the original timestamp in the cookie (we discuss the impact of this in Section 6.3) We did not implement

SYN cookies and the TCP handoff because it would prevent us from testing against existing, public sites

over which we have no administrative control.

The IP Blacklist is implemented as a Patricia-Trie whose minimum node size is a 4-bit nibble. We chose

to use a trie because it is space and time efficient for IP lookup [20] and amenable to hardware [21]. The

source IP of all packets are checked against the trie and discarded if a match is returned.

6.2 Compatibility Testing with Existing Servers

In our first test, we validated that flow-cookies is indeed compatible with existing operating system and

clients by testing against 10 public web-servers. To do this, we added a module to our implementation that

would “bounce” packets sent from the client after they pass through the router to the server by rewriting the

source and destinations addresses of the IP header. Packets returned from the web-servers where similarly

bounced back by the module to the client. All compatibility tests were performed over a relatively low-

bandwidth network (100Mbps).

The target websites included popular education, entertainment, news and hobby sites. For each of the

web-servers we tested various client OSes: Linux, MacOSX, NetBSD and WindowsXP (in the last case,

with timestamps turned on). Our test included recursive queries of static content as well as GETs and

POSTs when supported by the site. In all cases, we found that flow-cookies was totally compatible with

various client OSes and the servers we tested against.

In addition, we measured the the average time it took to wget files on the main page of each web site
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site RTT router bytes files avg. var.

to site recd time (s) (s)

1 77ms norm 2,860k 119 37.78 0.515

flow 2,860k 119 44.32 1.05

2 49ms norm 704k 58 19.06 1.61

flow 704k 58 18.42 .50

3 2.8ms norm 155,727k 588 75.28 2.53

flow 155,727k 588 79.12 1.19

4 97ms norm 2,303k 255 81.74 6.83

flow 2,303k 255 82.62 5.50

5 198ms norm 4,576k 230 191.93 12.51

flow 4,576k 230 179.40 8.10

Table 1: Comparison of router with (flow) and without (norm) flow cookies downloading multiple files from 5

websites.

using both the flow-cookies enabled router and an unmodified version. Some of the results of our tests are

showing in Table 1. We note that there is no observable effect on either the download times or in the variance

thereof.

6.3 Effects of RTT fidelity on total throughput

Our implementation lowered the resolution of the TCP timestamp from 1ms to 16ms increments by truncat-

ing the lower 4 bits. As shown in [28], RTTs over the Internet path can vary by several milliseconds. Hence,

the loss of granularity of RTT for < 16ms variations should not lead to drastically different client or server

behavior. This is partly supported by the results of our throughput tests above.

However, because the RTT is used to calibrate the TCP retransmission timeout value, the negative affects

of poor RTT calculation are most likely to arise during conditions of high loss. We explore this case by re-

running multiple HTTP sessions on Internet paths with different underlying RTTs using flow-cookies. We

forced a loss rate of 9%; the losses are distributed uniformly at random.

The results for two Internet paths are show in Figure 6. We see that a reduction in granularity by up

to 16ms (4 bits) does not have a significant impact on the throughput during loss conditions. However, a

further loss in granularity significantly reduces the effective throughput.

We reiterate that “patching up” the timestamp is done merely as a convenience so that the server does not

require modification to the kernel. For servers that do rely on high-precision RTTs, we would recommend

that the timestamp not be used for RTT calculation under attack conditions when flow-cookies is being used
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Figure 6: The effect of loss in RTT fidelity on total throughput over a lossy link. We test from two sources, one with

a 9ms RTT from the server and another with 90ms. The low throughput is due to high packet loss.

network throughput software

unmodified 84.84/s 8.3Gbs

flow-cookies 84.16/s 2.38Gbs

large blacklist 82.56/s 2.13Gbs

Table 2: Comparison of network and router throughput with (flow-cookies) and without (unmodified) and with 1

million randomly generated IP entries in the IP blacklist (large blacklist).

for defense.

6.4 Performance Microbenchmarks

Table 2 shows network throughput of the router before and after the flow-cookie modifications, on a 1.2GHz

Pentium III running Redhat Linux 9.0. These tests are limited by the speed of our network testbed (100Mbps).

The numbers are obtained for multiple downloads of a 512MB file through the router. We note that our flow-

cookie enabled router was able to perform at the same speed as the unmodified router. We also profiled the

CPU and found that the per-packet processing overhead was dominated by the hash computation.

In order to test the throughput performance of the flow-cookie router under stress conditions, we mod-

ified the router to read traces directly from a file and run them through the router forwarding path without

injecting them back on the network. Under these idealized conditions, our implementation of flow-cookies

was able to process packets at a speed of 2.38Gbps. Note that the forwarding path used was identical to that

in the full router, that is, it performed all the header parsing, decision logic, flow cookie computation and

TCP checksum update on modification of the timestamp.

We profiled the execution of the flow-cookies during the software test-case and, again, a significant

percentage (91%) of the time was spent in flow cookie computation. In a hardware implementation, the

17



 10000

 10000  100000  1e+06  1e+07  1e+08

H
T

T
P

 T
hr

ou
gh

pu
t (

bi
ts

/s
ec

)

Flood Bandwidth (bits/sec)

HTTP Throughput During Data Flooding

Figure 7: Affect of SYN flooding attack on legitimate, low-bandwidth HTTP flows.

hash function will be offloaded to an application specific chip as is done in crypto-accelerators today. Flow-

cookies uses the same cookie generation computation as SYN cookies which today support multi-gigabit

line speeds [4]. We also note that switches today, such as Cisco’s catalyst 6K series, can already perform

encryption at 10Gbps.

6.5 Blacklist Lookup Performance

Next, we test the impact of per-packet lookup in the IP blacklist on the router’s throughput performance.

We note that our blacklist implementation is able to handle over a million insertions per second and nearly

two million lookups per second when filled with a million entries (i.e., attacker IP addresses) generated

uniformly at random. Even given our naive software implementation which checks the blacklist serially

before the cookie computation, the lookup has little affect in the network and software tests (see Table 2,

row 3). Note that in a hardware implementation, the lookup would in fact be done in parallel with the cookie

computation.

6.6 Flood Protection

We explored the protection capacity of our flow cookie implementation for a low-bandwidth back-end server

during a high-bandwidth SYN flooding attack. In these experiments, we ran multiple legitimate HTTP

downloads to the back-end server. These downloads were rate-limited so that aggregate bandwidth did not

exceed 10Mbps. Since we did not implement SYN cookies, in order to generate flood conditions we ran

multiple instances of hping2, generating valid TCP packets with random timestamps at rates ranging from

12Kbps to 88Mbps.

The average throughput of HTTP flows during flooding is shown in Figure 7. We see that that until the
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flood nears 65Mbps, the aggregate throughput of legitimate flows is virtually unaffected. At this stage, the

router sees 75Mbps of traffic in aggregate, which is close to its capacity (85Mbps, Table 2). At saturation,

throughput drops drastically due to heavy packet loss at the router. These results show that our implemen-

tation can indeed offer back-end servers the protection bandwidth of the higher-bandwidth link between the

cookie box and its ISP for SYN flood attacks.

7 Conclusions and Future Work

Bandwidth exhaustion DDoS attacks are a very-real and serious threat on the Internet. “Flow-cookies” is

an evolutionary approach to preventing bandwidth exhaustion attacks that does not require modification of

client end-hosts. It provides a web site with the effective bandwidth of a high-speed link for processing

and discarding attack packets, without requiring the network to store per-flow state. Flow-cookies does not

require modification to clients, is resistant to source spoofing, and is simple to deploy. The state required

in the network to filter attacks is proportional to the number of real attackers and is small enough that fast

packet lookup implementations in SRAM and available TCAMs can handle multiples of the largest bot-nets

known to exist today.

A main part of our future work is to implement flow-cookies in hardware using a network programmable

FPGA platform such as NetFPGA-2 [15]. We plan to deploy a live implementation of flow-cookies in

hardware at 1Gbps speeds or higher in order to further study deployment, compatibility and performance

issues.
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