
On the Responsiveness of DNS-based Network Control

Jeffrey Pang � , Aditya Akella � , Anees Shaikh
�
, Balachander Krishnamurthy

�
, Srinivasan Seshan �

�
Computer Science Department

�
Network Software and Services

�
AT&T Labs – Research

Carnegie Mellon University IBM T.J. Watson Research Center Florham Park, NJ 07932-0971
Pittsburgh, PA 15213-3891 Hawthorne, NY 10532-2134 bala@research.att.com�

jeffpang,aditya,srini+ � @cs.cmu.edu aashaikh@watson.ibm.com

ABSTRACT
For the last few years, large Web content providers interested in im-
proving their scalability and availability have increasingly turned
to three techniques: mirroring, content distribution, and ISP multi-
homing. The Domain Name System (DNS) has gained a prominent
role in the way each of these techniques directs client requests to
achieve the goals of scalability and availability. The DNS is thought
to offer the transparent and agile control necessary to react quickly
to ISP link failures or phenomenon such as flash crowds.

In this paper, we investigate this assumption with the objective
of quantifying the degree of responsiveness that can be expected
from DNS. We use a combination of Web and DNS access mea-
surements from several busy Web sites, as well as a large content
distribution network, to characterize the behavior of end-systems
and local DNS servers in terms of their adherence to DNS-based
controls. Our results suggest that DNS is at best a coarse-grained
mechanism, and poorly suited for applications, such as route con-
trol, which require quick response to link failures or performance
degradations. We then propose several proactive techniques that,
when deployed in cooperation between large content providers and
important clients, have the potential to improve the responsiveness
of DNS-based control.

Categories and Subject Descriptors: C.2.2 [Computer Systems
Organization]: Computer-Communication Networks–Network Pro-
tocols

General Terms: Measurement

Keywords: DNS, time-to-live, network control

1. INTRODUCTION
With the growing popularity of Internet services and applica-

tions, large content and service providers have turned to a number
of distribution techniques to improve their scalability, availability,
and performance. For example, in the face of an ever-increasing
request rate, some popular Web sites deliver their content via re-
dundant mirror sites, or by outsourcing delivery to alternate servers
in a content distribution network (CDN). Many large data centers
and enterprises also rely on multihomed connectivity, coupled with
intelligent route control, to improve resilience to network or link

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

failures while optimizing performance and bandwidth costs.
A common requirement in each of these approaches is the need

for tighter network control over client access to the application. For
example, in a CDN or mirrored site deployment, clients must be
directed to servers that are available and offer good response time.
Similarly, when employing route control with multiple ISP connec-
tions, directing packets over the correct provider link is crucial to
extract the performance and reliability benefits of multihoming.

Over the last few years, the Domain Name System (DNS) [1]
has emerged as a common approach for this type of network con-
trol. The appeal of DNS-based techniques arises from its ubiquity
and transparency. By leveraging the DNS, content providers can
provide a “late binding” that controls which IP address is returned
to the client during the name resolution operation. This returned
IP address, in turn, determines which server is contacted, or which
ISP is used. Inherent in this approach is the assumption that DNS-
based control responds quickly enough to unexpected conditions,
such as link failures, flash crowds [5], or increased congestion.

Responses to name resolution requests have an associated time-
to-live (TTL) value that determines how long the response should
be cached by the client’s local nameserver. Setting the TTL to a
very small value (e.g., 10 seconds or even zero) forces clients to
resolve the IP address frequently, thus providing fast response. In
practice, however, this is complicated by the behavior of the wide
variety of applications and DNS servers deployed in the Internet.
Many applications perform their own internal DNS caching that
does not adhere to the expected behavior, and some implementa-
tions of local DNS server (LDNS) software have been reported to
not adhere to the specified DNS TTLs [11]. This would imply that
clients behind those LDNSes will continue to connect via the failed
link, or access the more loaded mirror site.

In this paper, we consider the degree of responsiveness that can
be expected from DNS-based network control in practice. We base
our analysis on empirical observations of client access behavior
for several large Web sites hosting major sports events, as well as
requests from a wide variety of LDNSes contacting authoritative
DNS servers in a large CDN. Our results show that, while a major-
ity of clients and LDNSes honor DNS TTLs, a significant fraction
does not (up to 47% of clients and LDNSes collectively, and 14% of
LDNSes in our measurements). Moreover, those that violate TTLs
do so by a large amount, in excess of 2 hours.

Our findings suggest a need for mechanisms to improve DNS
responsiveness, since we expect Internet services and applications
to continue to rely on DNS for network control, in addition to its
traditional distributed database function. Hence, we propose sev-
eral architectural techniques to increase DNS agility that are most
useful for deployment by performance- or availability-sensitive ap-
plication providers in cooperation with specific users.

Previous work has addressed other issues with DNS-based con-
trol, focusing on the context of server selection in CDNs. Some
examples include: the impact of small TTLs on response time [12];
the effect of DNS lookups on overall client-perceived response time [9];
the question of accuracy due to the proximity of clients and their
LDNSes [10, 12]; and the effects on DNS cache hit rates [6] from
small TTLs. Our contribution is the measurement and quantifica-
tion of the level of responsiveness offered by the DNS. We view this
as an important issue, given the continued growth in the number of
services and vendor products using DNS as a control mechanism.

In the next section we provide a brief overview of some of the
related research on DNS. Section 3 follows with a description of
our measurement data collection methodology. In Section 4 we
present our observations and analysis, and follow with proposals
for improving the responsiveness of DNS-based control in Sec-
tion 5. Section 6 summarizes the paper.

2. RELATED WORK
There has been considerable work in the DNS arena ranging

from exhaustive characterization on a local and wide-area level to
examinations of (mis)use of DNS for specific applications. Traf-
fic to the root DNS servers, especially unnecessary traffic [14], has
also been characterized. The CAIDA team has examined the im-
pact of DNS caching software [15] on load at upper levels of DNS
hierarchy. In [6], the authors collect local area traces of DNS and
application traffic to characterize DNS performance and caching
behavior. Proposed modifications to DNS to improve Web perfor-
mance include piggybacking HTTP responses in DNS replies [7],
and having LDNSes renew cache entries proactively [2].

The notion of leases arose in the context of Web cache coherency
to reduce staleness in caches. Recent work on adaptive leases [3]
discusses ways by which caches can avoid having to constantly poll
to reduce risk of staleness primarily by promising to flush cached
objects upon lease expiry or when proactively notified by the origin
server. We draw upon this idea to examine ways by which Web
content owner or a CDN can notify cooperating LDNS to flush their
caches.

3. DATA COLLECTION METHODOLOGY
In order to measure the responsiveness of DNS-based control,

we should ideally observe how clients respond to DNS changes that
update the name-to-address mapping (i.e., A records) for a particu-
lar domain). This requires, for example, access to application logs
at various servers to track the access patterns of clients, along with
information about the timing of DNS updates. This would allow
us to measure how quickly clients respond to DNS changes. The
challenge is to identify data sources from which both DNS update
logs and application logs are available, and also where DNS entries
are updated often enough to collect a reasonable set of observations
of how clients react to the DNS.

Since it is difficult to obtain such coordinated data, we use ob-
servations of specific behavior from several different data sets to
collectively infer DNS responsiveness. In particular, we focus on
client and LDNS behavior in terms of adherence to DNS TTLs.
Our approach is to identify the frequency with which clients and
LDNSes use cached DNS records beyond their specified TTL to
access an application or another DNS server. We refer to this be-
havior as TTL violations. If violations are widespread, we can infer
that DNS techniques for network control are not well-suited for sit-
uations that require fast response. On the other hand, if the number
of violations is small, it suggests that DNS-based control can in-
deed provide good responsiveness.

Below, we describe the characteristics of our measurement data
sets, and how we use them in the analysis.

3.1 Observations from large Web events
Our first data set consists of cache logs from a distributed host-

ing infrastructure that serves content for a number of Web sites. We
collected logs from three large sporting events with worldwide au-
diences that were held in April, June, and July, 2003 and hosted on
this infrastructure. During each event, when the request rate was
very high, the authoritative name servers directed all clients to the
set of distributed caches with a 10 minute TTL. At the conclusion
of each event, they were “archived” by updating the name servers
to direct clients to lower capacity origin servers. We combine the
cache access logs with an administrator log containing timestamps
indicating when updates to the DNS are made to archive each event.

After combining the access logs from all cache sites, we ex-
tracted a roughly 2-day long segment for each event near the time at
which the corresponding DNS update took place. Ideally, all traf-
fic to the caches should subside 10 minutes (i.e., the TTL period)
after the DNS update to archive the event. In our analysis we focus
on client requests that continue to arrive at the cache sites after the
DNS is updated and the TTL expires. We count these requests as
TTL violations, and further classify them according to how long
beyond the TTL expiry they arrive at the caches, and the network
location of the clients that originate such requests. We also allow a
30 second “grace time” after the DNS update log timestamp to ac-
count for any delay in updating the DNS, though we believe this is
quite conservative. As a result, we may underestimate the number
of violations. Note that since we can only view client requests, we
cannot distinguish between violations caused by client applications
and those caused by noncompliant LDNS servers. Also, our data
for each event extends approximately a day after the TTL expira-
tion, thus we cannot count violations beyond one day.

3.2 LDNS behavior in a large CDN
The second data set consists of measurements from servers be-

longing to the Akamai CDN. The CDN employs a two-level name-
server hierarchy to achieve fine-grained client redirection and load
balancing. By analyzing this data set, we aim to characterize the ef-
fectiveness of DNS referrals, and adherence to TTLs on NS records,
both of which are crucial parts of a DNS-based network control in-
frastructure.

In this data set, we first collect DNS request logs (containing A
requests) at the “high-level” name servers of the CDN for the du-
ration of a day. These logs contain the IP address of the requesting
LDNS server, along with a summary of the request made (e.g., the
requested domain name, timestamp, etc.). In response to these re-
quests from the client LDNS , the high-level name servers return a
referral, typically a list of NS records for “low-level” CDN name
servers, which are deemed to be close to the requesting LDNS
servers. The LDNS server then sends its request to one of these
low-level servers (typically the first on the list). These NS records
could each have different TTLs, typically, they are 30, 45, or 60
minutes.

We pick a random sample of 100,000 LDNS IP addresses appear-
ing in the high-level request logs, out of a total of approximately 1.2
million (about 8%). For each LDNS IP from the 100,000 chosen,
we track the DNS requests it makes, if any, at the low-level name
servers returned to it by the high-level servers. We only tracked
64,611 of the 100,000 since the others did not appear in the low
level request logs within the time window we tracked. In the ideal
case, after the TTL on the low-level record expires, the LDNS must
make a fresh request to the high-level server. Therefore, we check

04-13 15:00 04-13 18:00 04-13 21:00 04-14 00:00 04-14 03:00 04-14 06:00 04-14 09:00
Date / time

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k
T

ot
al

 r
eq

ue
st

 v
ol

um
e

06-08 12:00 06-08 15:00 06-08 18:00 06-08 21:00 06-09 00:00 06-09 03:00
Date / time

0

25000

50000

75000

100000

125000

150000

T
ot

al
 r

eq
ue

st
 v

ol
um

e

07-06 12:00 07-06 18:00 07-07 00:00 07-07 06:00 07-07 12:00 07-07 18:00 07-08 00:00

Date / time

0

25 k

50 k

75 k

100 k

125 k

150 k

T
ot

al
 r

eq
ue

st
 v

ol
um

e

04-13 22:30 04-13 23:00 04-13 23:30 04-14 00:00 04-14 00:30 04-14 01:00
Date / time

0

25 k

50 k

75 k

100 k

125 k

150 k

175 k

200 k

T
ot

al
 r

eq
ue

st
 v

ol
um

e

06-08 18:00 06-08 18:30 06-08 19:00 06-08 19:30 06-08 20:00
Date / time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

T
ot

al
 r

eq
ue

st
 v

ol
um

e

07-07 09:00 07-07 09:30 07-07 10:00 07-07 10:30 07-07 11:00 07-07 11:30

Date / time

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

T
ot

al
 r

eq
ue

st
 v

ol
um

e

(a) April 2003 (b) June 2003 (c) July 2003

Figure 1: Traffic volume near a DNS change for three large Web-hosted events. The bottom row of graphs zoom in on the time
around the DNS update and TTL expiry. Timestamps on the x-axis are EDT.

to see if the LDNS continues to approach (i.e., send requests to) a
given low-level name server even after the NS record it holds for
the name server has expired, indicating a violation of the TTL.

Our logs were collected on March 3, 2004 between 1AM and
10PM. We limit our analysis to resolution requests for names that
represent static image content, e.g., domain names of the form
aXX.img.CDN.net. Incorporating requests for other CDN names
into our analysis may yield different values for the number of vio-
lating LDNSes.

4. ANALYSIS RESULTS
In this section, we describe observations made from the Web

event and CDN access measurements and analysis. From these
results, we can observe the extent to which clients and LDNSes
in our data sets adhere and respond to DNS TTLs, and draw some
inferences about the responsiveness of DNS-based control.

4.1 Observations from Web Events
In Figure 1, we show the aggregate request volume to all caches

during the time near the end of the three events. These requests
were grouped into 1-minute intervals. The top graphs show a clear
peak occurring at the end of the event, followed by a period of rel-
atively constant and sustained traffic until the DNS update (marked
by the solid line). In each case, the effect of the DNS change is
dramatic, causing a sharp drop in requests coming to the cache lo-
cations as clients are redirected to the archive servers.

The bottom graphs in Figure 1 zoom in on the portion of the
trace near the DNS update. In these graphs, the solid line denotes
the time of the update and the dashed line is the time when the
10 minute TTL expires. Requests arriving after the TTL expiry
are considered to be in violation in our analysis (subject to the 30
second grace period). Between the update time and the TTL expi-
ration, the request volume decreases rapidly by roughly 53%, 60%,
and 67% for the April, June, and July events respectively. However,

the remaining one half to one third of the traffic decays very slowly
over a long period, which we discuss in more detail below. We can
see that while more than half of the client requests can be shifted
away quickly, the remaining requests using the stale DNS entries is
significant.

In Figure 2(a), we plot the distributions of the extent of DNS
TTL violations over all requests arriving after the TTL expiration
for each event. A few specific times are annotated on the graph,
such as 10 seconds, 30 seconds, up to 1 day after the TTL expira-
tion. The graph shows that the bulk of the violations are very long,
between two hours and a day. In fact, the requests may arrive even
long after a day, but our access logs extend only roughly a day past
the DNS update time. Since the duration of the majority of viola-
tions is so long, DNS would provide very little control over clients
that do not honor the TTLs. That is, there are very few cases in
which clients violate the TTL by only a small amount. This effect
is consistent across all three events.

Figure 2(b) further illustrates this effect. It plots a distribution
of the maximum observed TTL violation for each client that makes
a request after the DNS update. So, if a particular client makes
several requests after the TTL expires (i.e., in violation), this graph
captures the last time a request from the client was observed. Again,
since our traces do not extend beyond one day after the DNS up-
date, the distribution is truncated to roughly a day. Similar to Fig-
ure 2(a), we see that most clients that violate the TTL continue to
use DNS entries well after they expire. The graph shows that 75–
85% of the clients violate the TTL by more than 2 hours.

4.2 LDNS accesses in a large CDN
In Figure 3(a), we show a CDF of the length of the time for

which local DNS servers cache NS records with stale TTLs (i.e.,
the duration of a TTL violation). Notice that about 86% of the
random sample of LDNSes observed in the high-level name server
trace do not exhibit any violation of the NS record TTL. About

1 10 100 1000 10000 100000
Time after TTL expiry (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e f

ra
ct

io
n

of
 T

TL
 v

io
la

tio
ns

 <
 x

 se
c

April ’03 event
June ’03 event
July ’03 event

10s 30s 1min 5min 30min 1hr 2hr 1day

1 10 100 1000 10000 100000
Max arrival time after TTL expiry (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e f

ra
ct

io
n

of
 T

TL
 v

io
la

tio
ns

 <
 x

 se
c

April ’03 event
June ’03 event
July ’03 event

10s 30s 1min 5min 30min 1hr 2hr 1day

(a) All violations (b) Maximum violation

Figure 2: CDF of the request arrival time in violation of the DNS TTL (a) and the maximum arrival time (b), for each event. Time
on the x-axis is on a logarithmic scale.

2% of the LDNSes made exactly one request to the top-level name
server and did not return during the course of our log collection. As
a result, we could not determine the duration of their TTL violation
(as such, the CDF does not reach “1” on the y-axis).

In Figure 3(b), we show a similar CDF for just the violating
LDNSes (which constitute about 14% of all LDNS servers). Notice
that nearly 70% of the noncompliant LDNSes show a violation of
TTLs in excess of 1 hour. Nearly 25% of exhibit violations of more
than 5 hours in length. These observations are roughly similar to
those made for the Web Event dataset in Figure 2(b).

However, the above characterization is biased in favor of LDNSes
making very few total requests. That is, we are likely to report some
of these LDNSes as adhering to TTLs while, in reality, they may
not. This is because our analysis depends heavily on the number
and frequency of the requests made by an LDNS in order to clas-
sify it as a violator or not. For example, an LDNS server that con-
sistently violates TTLs by about an hour, but has a request rate of
once every 2 hours in our low-level trace, is likely to be identified
as an TTL-adhering server.

To address this issue, we also plot the CDF of the TTL violation
duration for the top 93 LDNSes ranked by the volume of requests
they generate to the high-level name server logs in both Figures 3(a)
and (b)1. Notice in Figure 3(a) that more than 37% of these violate
TTLs. Of these, about 15% exhibit TTL violations in excess of 5
hours.

Finally, we characterized the LDNSes according to their network-
aware clustering (NAC), which groups IP addresses that are close
together topologically and likely under common administrative con-
trol [8]. We are interested in whether noncompliant LDNSes are
more likely to appear in small networks in which addressing DNS
configuration or deployment issues may be easier than in larger
ones. Hence, our analysis considers whether clusters of particular
sizes have relatively higher fractions of non-compliant LDNSes.

We first collect a large list of all LDNSes observed in both the
high-level and the low-level DNS logs, and group them accord-
ing to their NACs using BGP tables collected by the Route Views
project at roughly the same time as our LDNS logs [13]. We do the
same for the violating LDNSes. Finally, we classify the LDNSes
(both violators and non-violators) according to ranges of the prefix

1Although we collected the top 100 requesting LDNSes, 7 of these
did not appear in our low-level logs, primarily because we did not
have access to all low-level server logs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Fr
ac

. s
er

ve
rs

 w
ith

 m
ax

 T
TL

 v
io

la
tio

n
<

x

Max TTL violation (hours)

LDNS Random Sample
LDNS Top 93

(a) All LDNSes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

Fr
ac

. s
er

ve
rs

 w
ith

 m
ax

 T
TL

 v
io

la
tio

n
<

x

Max TTL violation (hours)

LDNS Random Sample
LDNS Top 93

(b) Violating LDNSes

Figure 3: CDFs of the duration of the TTL violation on NS
records by LDNSes. In (a), we show all LDNSes observed in
the low-level trace. In (b), we plot only the violating LDNSes.
In either figure, the solid line shows the CDF for the random
sample of LDNSes; the dashed line shows the CDF for the 93
LDNSes that made the most requests to the top level servers.

All LDNS Servers Violating Servers
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pe

rc
en

ta
ge

 o
f

to
ta

l

/25 to /32

/21 to /24

/17 to /20

/13 to /16

/9 to /12

/0 to /8

LDNS server subnet size

1.41.4
4.68.4

31.6
30.4

36.437.9

26.4
19.4

1.71.3

Figure 4: Relative distribution of all LDNSes (left bar) and of
violating LDNSes (right bar) according to the size of their cor-
responding NAC.

length of their NAC2.
The results for this characterization are shown in Figure 4. We

see that LDNSes in NACs of lengths 21–24 constitute about 19% of
all LDNSes, but 26% of all violating servers, suggesting that these
small clusters have a relatively higher fraction of violators. On the
other hand, LDNSes in NACS of lengths 9–12, constitute about 8%
of the servers, but only 4% of the violators. NACs of lengths 13–16,
and 17–20, have a more even distribution of violators.

Our measurements, though based on a limited sample, suggest
that the relative proportion of non-compliant LDNSes is higher in
smaller NACs (especially in NACs of lengths 21–24). Changing
the operation of LDNSes in these smaller networks could eliminate
a substantial number of non-responsive local DNS servers.

4.3 Additional findings
A natural question that arises from our analysis is why the num-

ber of violations is so significant. One intuition may be that partic-
ular noncompliant DNS server implementations are primarily re-
sponsible. Or perhaps most of the violations can be traced to a
relatively small number of misconfigured networks. In this section,
we describe some additional analyses to consider these questions.

DNS implementations. An obvious place to look for root causes
of TTL violations is in DNS server implementations. To perform
this analysis, we combined our list of violating LDNS servers with
a list of LDNS addresses gathered from earlier measurements of
DNS implementations taken in October 20033 . Our results are lim-
ited to Berkeley Internet Name Domain (BIND) implementations,
which is widely used by nameservers in the Internet [4]. We found
11,744 common LDNS addresses for which a BIND version re-
sponse was available. Among these, 2237 addresses belonged to
LDNSes that violated TTLs according to our observations. In Ta-
ble 1, we list the top 10 BIND implementations over all LDNSes
and also the top implementations of violating LDNSes. The ta-
ble omits the count of DNS error messages returned in response
to the version queries (e.g., NOTIMP, REFUSED, SERVFAIL, and
FORMERR). These responses, particularly NOTIMP, often indicate
a non-BIND implementation such as Microsoft Windows DNS or
TinyDNS.

From Table 1, there does not seem to be a single distribution of
BIND that is used by a large majority of violating LDNSes. It is

2The prefix length of the NAC 9.0.0.0/8 is 8, for example.
3It is possible that the BIND version discovered in October 2003
for a particular address was changed by March 2004.

All LDNSes Violating LDNSes
BIND version count BIND version count
9.2.1 2199 9.2.1 248
8.2.3-REL 712 8.2.3-REL 148
9.2.2 378 8.3.4-REL 114
8.3.4-REL 339 9.2.2 64
9.1.3 294 8.3.3-REL-NOESW 55
9.2.0 276 8.2.2-P5 55
8.3.3-REL 219 8.3.3-REL 50
8.2.2-P5 210 8.2.2-P5 42
8.3.3-REL-NOESW 183 8.2.4-REL 30
8.2.4-REL 165 9.1.3 29

Table 1: LDNS BIND versions

therefore difficult to argue from our data sets that a single software
implementation is responsible for TTL violations.

Identifying noncompliant networks. We performed a sim-
ple enumeration of client networks to gain some initial insight into
whether a few clients or networks were primarily responsible for
observed TTL violations in our Web access data. For each of the
events, we clustered the IP addresses of violating clients into class
C networks (e.g., /24 clusters) and ranked them according to how
many unique addresses were observed from the cluster. We then fo-
cused on identifying the networks of the top few violating clusters
to see if any patterns emerged. Note that this approach is limited by
the client workload; our identification of the top violators is subject
to the popularity of the Web events among clients in each cluster.
Nevertheless, a few interesting observations arose which we dis-
cuss below.

In two of the three events, the top violating clusters belonged to
the Web crawler of a popular search engine. This indicates that
crawlers continue to visit live Web pages without re-resolving the
corresponding hostnames. We also found a few cases of specific
regional networks that were responsible for many violating clients.
In the June 2003 event, for example, the top 13 clusters belong to
two networks, a provincial network in Asia and a dial-up ISP in
Europe. Another notable finding from the April 2003 event was
the relatively large number of noncompliant requests generated by
dial-up and broadband subscribers of a single U.S. ISP. Finally, we
found client addresses belonging to multiple sites of the same en-
terprise network among the top violating clusters in all three event
logs. The last few examples are particularly interesting, since they
imply that DNS TTL violations may in fact be due to misconfigu-
rations (or optimizations) in specific networks.

5. ARCHITECTURAL SUPPORT FOR
PROACTIVE DNS

Our previous observations suggest that DNS has limited abil-
ity to provide fine-grained network control. However, as we argue
below, it can still be useful to attain network control in cooper-
ative settings. For example, content or application providers can
deploy DNS-based control mechanisms in cooperation with cus-
tomers who stand to benefit. These customers may be willing to
modify their DNS infrastructure to enable performance enhance-
ments such as dynamic server selection or route control.

Ideally, the content provider can simply set the TTL on A records
aggressively and advise its customers to ensure that their LDNS
servers and client applications obey these TTLs. As earlier work [6]
has shown, lowering TTLs on A records in this manner does not
significantly reduce DNS cache hit rates, or cause a large increase

in wide-area DNS traffic. Therefore, this is a viable option for cus-
tomers to consider if they are promised better performance or avail-
ability in return.

In addition to simple TTL-based mechanisms, it is possible to
achieve additional control in cooperative settings by establishing
out-of-band negotiation channels between the content or service
providers and the customer LDNS servers. Below we outline two
approaches that employ this idea.

Push-based invalidation. In this approach, the ADNS and
LDNS servers negotiate out of band during the initial exchange of
DNS request and response. Modifying the ADNS server is rela-
tively easy, since it is under the control of the content publisher,
who is interested in using DNS-based control. Customers modify
their LDNS servers to accept invalidations from the ADNS. Fur-
ther, these customer LDNS servers must act on the invalidations by
flushing out their caches. Such an invalidation from the ADNS can
trigger a new resolution or can include an alternate address that the
LDNS should use until the next communication. Again, the par-
ticipating set of LDNSes would likely belong to large, “high-end”
customers who would gain increased availability and performance
from such an approach. The clients in these customer networks
are more likely to reach lightly loaded mirror sites of the content
publisher and should be able to fetch content faster.

Adaptive leases. The final approach requires tighter integration
between the ADNS and LDNS, and also entails more explicit coop-
eration. In this approach, the ADNS will partition the list of LDNS
servers into different classes based on their request frequency and
the importance of the client base behind those LDNS servers. Cus-
tomers in the “high-volume” class (either in terms of traffic or the
revenue they generate) should be willing to accept leases and peri-
odically renew them.

During the duration of the lease, the ADNS server will support
fine-grained invalidations of resource records. These invalidations
could be triggered by the perceived need at the ADNS to force its
clients to employ a different address. Alternately, the LDNS can
poll the ADNS for updates in the records. The lease renewal period
will likely depend on the relative importance of the LDNS but it
can be influenced by a variety of other factors, such as the expected
frequency of changes in the performance of the path between the
publisher and the client. The lease can be communicated to the
LDNS via a resource record (RR) with the duration of the lease
being set as the TTL for the record, for example.

6. SUMMARY
In this paper, we consider the degree of responsiveness that can

be expected from DNS-based network control techniques such as
server selection in CDNs or link selection in multihomed end-networks.
We collect measurements of client access behavior for large Web
sites, as well as requests from LDNSes accessing nameservers in
a large CDN. Our results show a majority of clients and LDNSes
honor DNS TTLs, but a significant fraction does not. For exam-
ple up to 47% of Web event clients, and 14% of LDNSes in our
measurements do not adhere to DNS TTLs. Moreover, those that
violate TTLs do so by a large amount, in excess of 2 hours. We also
suggested several architectural techniques, including proactive in-
validation and adaptive leases, that can be deployed cooperatively
between application providers and their customers to improve the
responsiveness of DNS-based control.

As future work, we plan to conduct a more active study of LDNS
behavior, for example using probes to trigger DNS lookups to gauge

their adherence to TTLs. We also intend to further investigate
causes of noncompliance, and develop and evaluate our initial ar-
chitectural techniques.

Acknowledgment
We are very grateful to Roberto De Prisco (Akamai), Bruce Maggs
(Akamai and CMU), and Herbie Pearthree (IBM Global Services)
for their assistance in obtaining log data for this study. We also
thank Oliver Spatscheck, Michael Rabinovich, Duane Wessels, and
the anonymous reviers for their valuable feedback.

7. REFERENCES
[1] P. Albitz and C. Liu. DNS and BIND. O’Reilly and

Associates, 2001.
[2] E. Cohen and H. Kaplan. Proactive caching of DNS records:

Addressing a performance bottleneck. In Proceedings of the
Symposium on Applications and the Internet, January 2001.

[3] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A
strong consistency mechanism for the World Wide Web.
IEEE Transactions on Knowledge and Data Engineering,
5(5):1266–1276, September 2003.

[4] Internet Systems Consortium. ISC BIND.
http://www.isc.org/sw/bind.

[5] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
Crowds and Denial of Service Attacks: Characterization and
Implications for CDNs and Web Sites. In International
World Wide Web Conference (WWW), May 2002.

[6] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS
performance and the effectiveness of caching. IEEE/ACM
Transactions on Networking, 10(5), October 2003.

[7] B. Krishnamurthy, R. Liston, and M. Rabinovich. DEW:
DNS-enhanced Web for faster content delivery. In
International World Wide Web Conference (WWW),
Budapest,Hungary, 2003.

[8] B. Krishnamurthy and J. Wang. On Network-Aware
Clustering of Web Clients. In Proceedings of ACM
SIGCOMM, Stockholm, Sweden, August 2000.

[9] B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and
performance of content distribution networks. In
Proceedings of ACM SIGCOMM Internet Measurement
Workshop (IMW), San Francisco, CA, November 2001.

[10] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J. Wang. A precise and efficient
evaluation of the proximity between web clients and their
local DNS servers. In Proceedings of USENIX Annual
Technical Conference, Monterey, CA, June 2002.

[11] North American Network Operators’ Group. Nanog mailing
list. http://www.nanog.org/mailinglist.html,
1999,2000.

[12] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness
of DNS-based server selection. In Proceedings of IEEE
INFOCOM, Anchorage, AK, April 2001.

[13] University of Oregon. Route views project.
http://routeviews.org.

[14] D. Wessels and M. Fomenkov. Wow, that’s a lot of packets.
In Proceedings of Passive and Active Measurement
Workshop (PAM), La Jolla, CA, April 2003.

[15] D. Wessels, M. Fomenkov, N. Brownlee, and kc claffy.
Measurements and laboratory simulations of the upper DNS
hierarchy. In Proceedings of Passive and Active
Measurement Workshop (PAM), Antibes Juan-les-Pins,
France, April 2004.

