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Abstract—The diversity, sophistication and availability of mali-
cious software (malcode/malware) pose enormous challenges for
securing networks and end hosts from attacks. In this paper,
we analyze a large corpus of malcode meta data compiled
over a period of 19 years. Our aim is to understand how
malcode has evolved over the years, and in particular, how
different instances of malcode relate to one another. We develop
a novel graph pruning technique to establish the inheritance
relationships between different instances of malcode based on
temporal information and key common phrases identified in
the malcode descriptions. Our algorithm enables a range of
possible inheritance structures. We study the resulting “likely”
malcode families, which we identify through extensive manual
investigation. We present an evaluation of gross characteristics
of malcode evolution and also drill down on the details of the
most interesting and potentially dangerous malcode families.

I. I NTRODUCTION

Malicious activity in the Internet is growing at an alarming
rate. There are daily reports in the technical and popular press
about new vulnerabilities and new types of attacks, and the
rapidly increasing economic incentives are sure to catalyze
this activity for a long time to come. Well known examples of
malicious activity include denial of service, spam, information
gathering, and resource gathering. In all cases, this activity
is based on the use of software, also called “malcode” or
“malware”, that enables attacks to be carried out from one
or more hosts distributed throughout the Internet.

Creating effective countermeasures for these threats is ex-
tremely difficult. First, the ever increasing complexity of
networked systems and software means that it is difficult to
build them to be inherently free from vulnerabilities. Second,
network and end-host security today is realized as a patchwork
of add-on software, features and capabilities that are unlikely
to ever close all opportunities for intelligent and determined
attackers. Third, and perhaps most significantly, the authors
of malcode are well aware of the details of network and end
host security mechanisms, and are developing increasingly
sophisticated and effective methods for subverting them.

In this paper, we present a study of malware characteristics
that focuses on key properties that are common to “malware
families” and on the evolution of key malware characteristics
over time. The goal of our work is to highlight trends in
malware design that can broaden our understanding of the
effectiveness of existing defenses, and inform the design of
sound malware defense mechanisms in the future.

Our study is based on a large corpus of malware metadata
derived from McAfee’s threat library database. This metadata
is used by McAfee for internal documentation, and is partially

available to the community through its web site [17].1 The
metadata used in our study was compiled over a period of 19
years. The malware described in the data set is highly diverse
in terms of sophistication of design, level of potency, methods
of spreading, and vulnerability targets. For instance, some of
the malware we study are documented as having spread via
floppy diskettes!

To understand the trends in malware design, we mine
the metadata for “relationships” between different instances
of malcode and study how these relationships evolved over
time. We consider two malware instances to be related when
they share important characteristics. Examples of malware
characteristics that can reflect relationships include targeting a
common vulnerability, using a common method for scanning
or denial of service and, especially, sharing specific pieces of
code – a practice that is widely assumed to be common in
malcode development. We refer to a group of malware that
share many important characteristics as belonging to a single
malware family.

We evaluate malware relationships in several different ways.
We ask, for example, what is the lifetime and size of a typical
malware family? What features are common to the malware
belonging to long-lived families? How many instances of
malware arise from a single potent “parent” (or a small set of
parents) and what features do the “children” differ in? To the
best of our knowledge, these aspects of malware relationships
and evolution have not been systematically explored in prior
work.

We face a key challenge in identifying malware relation-
ships, grouping malware into families, and extracting the
distinguishing features. Our study is based on metadata that
describes specific instances of malcode and not on the malcode
itself (we know of no openly available malcode repository
maintained over a similar period of time). Most of the descrip-
tions are entered in plain English sentences by human experts.
Hence we are faced with the challenge of mining relationship
information fromunstructured text.

To address this challenge, we develop a novel analysis
method that has two components: text mining and graph
pruning. The first component identifies thefrequent significant
phrasesin the textual descriptions of all instances of malware
in our data set. This process enables suppression of common
phrases (e.g.,“The following entry”) that may cause us to infer
spurious relationships between malware. More importantly,
it exposes the key features of malware behavior expressed
in specific sequences of text. After identifying the frequent

1Other anti-virus vendors have similar malware metadata available online
(e.g., [24], [25]).
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significant phrases across all malware instances, we construct
a “feature vector” for each instance based on the occurrenceof
specific significant phrases their textual descriptions. Weuse
the feature vectors to estimate the “similarity” or the extent of
the relationship between two malware instances. The salient
feature of our text pruning and similarity inference approach
is that we can draw useful observations on malware similarity
without leveraging any domain-specific information.

The second component of our methodology, graph pruning,
begins by considering all instances of malware as a fully con-
nected graph. Edges Between malware instances are labeled
with the extent of similarity, and are oriented temporally from
the older instances to the more recent one. We prune the edges
using two different pruning parameters and decompose the
graph intolikely malware families. The graph that results after
the pruning process is a “forest” of malware family trees. The
edges in this forest reflect both the temporal and feature-based
relationships between instances of malcode. We explore the
sensitivity of the pruning parameters and we also compare
the resultant malware families with themalware names(e.g.,
W32/Bagle.n@MM), that are included in the metadata. These
labels provide a means for validating the malware families that
result from our analysis.

Our analysis identifies many different intriguing character-
istics of malware families and how they have evolved. Results
with tuned parameters show that there are 669 distinct families
in the metadata. Among these are well known families such as
Mytob, Adware, W32/Bagle and lesser known such as Acid
and Coco. We find instances of families that are very short
lived (e.g.,a Loveletter family which lasts just 18 days), and
others that persist for years. We find families that have a large
fanout i.e., many children after the root (frequently the case
for well known malware such as Downloader) and others that
are quite narrow (indicating a lack of viability of a particular
family). One of the most interesting aspects of our analysis
is how new malware families evolve from old families – we
provide several examples of this phenomenon as well.

II. RELATED WORK

There are many empirical studies of malicious activity in the
Internet. Well known examples of these include [15], [18]–
[22], [28]. These studies are often focused on a particular
segment of malicious activity such as denial of service attacks
or worm outbreaks, and the reports frequently coincide with
the emergence of new threats. More recently, Freilinget
al. [13] and Rajabet al. [23] provided empirical details on
the escalation of botnet activity – one of the most potent
threats in the Internet today. Similar to our work, these studies
take advantage of a particular measurement infrastructure
such as Dshield.org [27] or distributed honeypots [2] as a
means for gathering data, and typically provide statistical
characterizations of the data. The key difference is that we
only rely on meta-data, not actual malcode (source or binaries)
or measured behavior.

Evaluating the details of malcode binaries once they have
been captured can provide interesting insights. However, it is

challenging because malcode authors are increasingly using
techniques to confound this kind of analysis. Disassemblers,
debuggers and system monitors are common tools used by AV
companies in the process of generating signatures and creating
the metadata used in our study [4], [5], [8]. An alternative is to
evaluate malware source code which can sometimes be found
on the Web or in Usenet newsgroups (See [10] for a recent
study of this kind).

Evolutionary properties of malware has also been studied
(e.g., [11], [12], [14]). Excellent, comprehensive reference
material on malware can be found in [26]. Maet al. present a
study more closely related to our own that infers the phylogeny
(i.e., behavior characteristics) of malware shellcode [16]. Our
work is most similar to these studies in that we too aim
to establish evolutionary relationships between malware.In
contrast with past studies, however, our work focuses on
malware metadata spanning many years, which enables us
to provide a long-term view into the evolution of malware
features. We also evaluate the key properties of potent malware
families.

From an algorithmic stand-point, our study is informed
by prior work in data and text mining. Zaki describes an
efficient algorithm for identifying frequent sequences in large
data sets in [29]. While efficiency is less of an issue in our
work, methods for finding all frequent sequences such as those
described in [9] are important.

III. M ALWARE FAMILIES

Our dataset contains a wealth of information on a large
number of malware instances. Almost all of this information
is entered by hand, after capturing and deconstructing the ma-
licious code in a controlled environment. Since the information
is entered manually, it is semantically rich and quite detailed.
However, not all malicious code is described in the same detail
or using the same English constructs.

In this section, we begin by providing details on the malware
dataset. We then describe the first component of our analysis,
which creates a uniform schema for malware descriptions
based ontext mining. The schema provides a baseline from
which we can establish relationships between malware in-
stances. Then, we describe our graph pruning algorithm that
we use to generate “likely” malware families.

A. Description of the Dataset

The malware meta data that we evaluate is the McAfee Avert
Labs Threat Library [17]. There are 44,504 malware instances
in the database, spanning a period of 19 years from 1987 to
2006. The database schema provides a variety of information
- e.g., the malware name, discovery date of the malware,
size of the malware (in bytes), malware type, “danger” of
payload, prevalence, etc. However, from the point of view of
inferring relationships between malware, the most useful fields
are those with semantically rich textual descriptions. There
are three such fields in the database: malware characteristics,
methods of infection, and indications of infection. A total
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of 8,182 malware instances include sufficiently detailed text
descriptions and our analysis focuses on these.

B. Challenges in Mining the Data

While the textual descriptions in the three key fields of
the database provide fascinating information, they carry no
specific structure or organization. Thus, we are faced with the
challenge of systematically organizing these descriptions with
as little human input as possible, and uncovering the most
informative properties of malware. This is crucial in order
for us to infer the relationships between malware with high
confidence. Our first insight is that we can use techniques from
Information Retrieval to mine the most defining properties of
the malware. We elaborate on this in Section III-C.

A second insight we use is that the information obtained
from unstructured data when combined with other structured
information can provided interesting views into the evolution
of malware. As an example, we use the discovery date to
“orient” the edges in our malware relationship graph and to
indicate the possibility that the newer of the two malware
was spawned from the older one. We describe this in Sec-
tion III-D.2

C. Schema Discovery Via Text Mining

In order to make the unstructured textual descriptions more
useful toward the goal of establishing malware relationships,
we create a suitable schema and convert the textual descrip-
tions into a set of informative tuples. Each malware instance
is mapped onto a tuple containing fields that describe key
properties.

To obtain the appropriate schema from the textual descrip-
tions, we usefrequent phrase extraction. We consider phrases
which occur frequently throughout textual descriptions ofall
instances of malware in the database, and make each such
phrase a column in the schema. Then, each malware instance
is represented by a tuple in the schema and the columns
take boolean values indicating the presence or absence of the
corresponding phrases in the description of a given instance.
Since our goal is to use the schema to identify relationships
(based on similar properties) between malware instances,
frequent phrases is a better choice than a standard bag-of-
words schema.

We used a frequent phrase extraction tool from the IR
community, Extrphr32 [3], which extracts themaximal fre-
quent phrases: a maximal frequent phrase is not a substring of
any other frequent phrase. The tool also considers only those
phrases which do not start or stop with “stop words”, which
are common English words like “the”, “but”, etc. To determine
if a phrase is frequent, we use a parameterσ.

Frequent phrase extraction was applied to the “virus char-
acteristics”, “methods of infection”, and “indications ofin-
fection” text fields in the database. We experimented with a
range of values and selectedσ = 30 which yielded≈ 6500

2Our analysis ignores other structured fields, such as the potency and
the prevalence of malware. This is because we want to focus primarily on
understanding how the different malware families evolve over time.
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Fig. 1. Scatter plot of frequent phrases in the malware meta-data based on
frequency of occurrence in Google search results.

frequent phrases. However, some of these were common En-
glish phrases that were clearly not specific malware properties.
To eliminate these phrases, we developed an approach for
automatically determining if a phrase is an ordinary English
phrase or something relevant to malware and security. To do
this, we use the Google search engine, which is likely to be one
of the world’s largest on-line repositories of English phrases.
We submitted each of the 6500 common phrases as a Google
search query. Intuitively, we expect common English phrases
to have a significantly higher number of Google results than
the malware-specific phrases. The scatter plot of the phrase
frequencies is given in Figure 1. The common English phrases
are typically found in hundreds of millions of documents.
Based on the scatter plot, we chose 10 million as a cutoff
to retain most of the technical information while eliminating
most of the common English phrases. After this filtering, we
were left with≈ 4500 phrases. A few examples of the phrases
that were used in our schema follow: (1) “This virus constructs
messages using its own SMTP engine. Target email addresses
are harvested from files”. (2) “memory resident at the top of
system memory but below the 640k dos boundary, hooking
interrupt 21.”. (3) “Its spreading activity remains only inthe
german language version of microsoft word. However, the
virus may be able to execute its payload in another language
version.”

Using the resultant schema, we create and populate a table
that contains the most significant defining features for each
malware instance.

D. Establishing Malware Families

Our goal is to identify malware families based on shared
key properties. In general, we say that two malware instances
are related when they share several important characteristics,
such as method of infection, method of spreading, and the
symptoms exhibited by infected hosts. Based on anecdotal
evidence [7], we speculate that such similarities arise for
one or both of the following reasons: (1) The authors of
the malicious code share some routines with each other. This
practice of code sharing is known to be common in the black
hat community. Or, (2) The authors of the malware create
code that has similar observed behavior (e.g.,exploit the same
set of vulnerabilities), but there is no explicit code sharing.
While there could be other reasons, we argue that identifying
relationships on the basis of shared properties is of intrinsic
value in understanding malware and its characteristics, and can
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be valuable in the design of defense mechanisms.
Our goal is to derive a graphG′, whose vertices represent

the unique malware instances in our dataset, and whose edges
imply that the corresponding malware instances are strongly
related. Also, we wish to make the edges of the graph directed
in order to indicate an evolutionary relationship between
malware instances.

The graphG′ is actually a collection of multiple different
malware families. The graphG′ should satisfy the following
properties: (1) A noden should only have incoming edges
from a setS of previously seen malware only ifn is “strongly
related” toS. (2) There should be no spurious or unnecessary
edges.

We begin with a completely connected graphG with di-
rected, weighted edges: each vertex in this graph is a malware
instance, and the weight of an edge is the similarity between
the sets of frequent phrases associated with the malware
instance. Edges inG point from the older instance to the
more recent instance based on the “time of discovery” field
for each. The similarity metric ranges between 0 and 1 and is
defined as follows: For an edgeA → B between two malware
instancedA andB, let S(A → B) be the set of properties in
the frequent phrase database which are common between A
and B. The weight of the edge is|S(A→B)|

|B| , where|B| is the
number of defined properties in B and|S(x)| is the cardinality
of set S(x). Thus, the similarity metric captures the fraction
of B’s properties which are also shared with A.

Note that if|B| is very small, then we do not have sufficient
information to relate it to other malware. To prevent instances
like these from corrupting our relationship graph, we introduce
a parameterγ. If |B| < γ, we do not considerB in creating
the final graphG′. We experimented with a range of values
and settled onγ = 10 for our study. The result was that
2700 malware instances were eliminated from consideration.
We concluded that this is was reasonable since manual exam-
ination of these instances showed that their descriptions were,
in fact, quite minimal.

Next, we describe our technique for systematically deleting
edges from the graphG to obtain the graph,G′ that exposes
significant sharing between malware instances.

To achieve the desired property that edges are incident on
a node only if it shares a significant number of features with
some previously seen set of malware, we introduce a pruning
parameterδ1. Consider a malware instanceA. Assume|A|
(the number of features for A) is sufficiently high and a large
fraction (> δ1) of its properties are in common with a setS

of malware instances with earlier timestamps. This means that
A shares several key features with the malware inS, and it is
therefore likely to be closely related to or even derived from
the malware inS. If, on the other hand, the total contribution
of these incoming edges is less thanδ1, then we can consider
the malware to have evolved independently.

However,δ1 by itself is not sufficient since spurious edges
are still possible. For instance, consider the case where mal-
ware instancesB and C both evolve independently fromA.
Assume bothB andC are similar toA, and similar to each

other, and thatB has an earlier time stamp thanC. With just
the δ1 parameter, we will have two incoming edges: one from
A, and one fromB into C. Likewise if A spawns a number
of children, we will have many spurious edges among the
children ofA. We need to remove these spurious edges from
the graph.

We introduce a second pruning parameterδ2 to address the
spurious edge problem. If an edge does notuniquelycontribute
more thanδ2, we prune the edge. Specifically, say a nodeC

has a pair of incoming edgesA → C andB → C. We check
if |S(A→C)−S(B→C)|

|C| < δ2 (the numerator in the inequality
computes the set difference). If this inequality is satisfied, we
delete the incoming edge with the lesser weight.

Thus, the complete graph pruning algorithm is as follows.
For each node, incoming edges that do not have a sufficient
unique contribution are pruned using theδ2 parameter. Next,
all of the remaining incoming edges are pruned if they together
do not contribute at leastδ1 fraction of the node’s properties.
A formal description of our graph construction algorithm is
given in Figure III-D.

It should be noted that the algorithm allows for the possi-
bility of a given malware instance being related to or having
evolved from multiple parents. This kind of “bundling of
threats” has, in fact, been observed in the wild. Note that1

δ2

is the maximum number of incoming edges on any malware
instance. Thusδ2 captures the maximum number of parents
allowed for any node in the graph.

ObtainingG′

1. Each malware instance is a vertex. Start with a completelyconnected
graph. The direction of each edge is from the older malware tothe more
recent one.

2. For a nodei with k = the set of incoming edges
Consider allkC2 combination pairs of incoming edges.
For every incoming edge pair(x, y),
if weightminus(x, y) < δ2

Delete either x or y
(delete the one that has a lesser weight).

3. For a nodei with r = the remaining set of incoming edge
If weightunion(r) < δ1, delete all the edges inr.

4. Repeat steps 2 and 3 for all nodes.

Fig. 2. Constructing the malware relationship graph. If a node C has a pair
of incoming edges x and y, defineweightunion(x, y) as |S(x)∪S(y)|

|C|
and

weightminus(x, y) as|S(x)−S(y)|
|C|

.

The final graphG′ should contain several directed acyclic
sub-graphs. In each component sub-graph, there will be one
or more malware instances with zero edges incident on them.
We refer to these instances asroots.

Sub-graphs with more than one root are caused by nodes
with multiple parents at the lower levels. We split these
components into as many families as the number of roots. In
doing this, we assign nodes with multiple parents to the family
which contributes the “heaviest” edge incident on the malware
instance. We perform this decomposition of our relationship
graphG′ into malware families only because it allows us to
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simplify our analysis and speak of “likely” malware families.
With this decomposition, we can now study key properties
of the likely families, such as the total number of malware
instances, the life-span of the family, the total number of
generations, etc.

Evaluation of the malware family trees in Section III-F
indicates that our algorithm works well. However, it is pos-
sible that malware instances that are classified into different
families by our algorithm are actually related. Indeed, when
we examine the resulting families closely (see Section V),
we noticed that several well-known malware instances (e.g.,
instances ofBagle malware) are spread across multiple
families. However, our classification ensures that members
within a family are much more likely to be strongly related to
each other than to members across families.

E. Parameter Selection

Our algorithm uses two pruning parametersδ1, and δ2.
The characteristics of the resultant malware families hinges
crucially on how these parameters are chosen. An overly
permissive setting for these parameters (low values for both)
could cause us to infer relationships where there are none. An
overly conservative choice may cause us to miss important
relationships.

We systematically consider the impact of the values for the
δs. A very low value ofδ1 will lead to a completely (or almost
completely) connected graph, while a very high high value of
δ1 will result in a graph with no edges. A very low value of
δ2 can result in a huge number of parents, while a very high
value ofδ2 will result in no node having more than one parent.
In Table I we illustrate the effect of 20 different parameter
choices on the entire relationship graph (more instances were
considered but these are representative). The candidate choices
for δ1 andδ2 lie on the more conservative side in order to to
identify several “good” relationships accurately.

We analyzed four features of the relationship graph: the
overall number of single-parent and multiple-parent nodes,
the number of roots and the total number of nodes that do
not belong in any family (i.e. isolated nodes - neither have
incoming nor outgoing edges). First, as expected, the number
of single-parent nodes decreases with higher values ofδ1 and
is unaffected byδ2. The number of multiple-parent nodes
drops drastically withδ2 and becomes insignificant when
δ2 > 0.3. The total number of roots does not show a clear
monotonic trend as it has a complex dependence on bothδ1

andδ2. On the other hand, the total number of isolated nodes
increases withδ1 (andδ2), with the total number atδ1 = 0.9
almost 50% higher than the number atδ1 = 0.7.

Since we would like to have as few isolated nodes as
possible (to prevent the families from becoming degenerate),
while keeping our parameter choice as conservative as possible
(to eliminate spurious edges), we choseδ1 = 0.7 andδ2 = 0.3
to establish the family trees evaluated in Sections IV and V.
We note that a few different parameter choices (e.g.(δ1, δ2) =
(0.6, 0.3), (0.7,0.3)) provide roughly similar trade-offs.

F. Robustness and Validation

It is important that the parameter choice be robust to the
amount of data in the database. To verify this, we split our
database into 3 random parts, each of size 2727 nodes. We
ran the algorithm independently over these three subsets,
and generated the statistics in Table I for the number of
single-parent nodes, multiple-parent nodes, roots, isolates, and
entropy (defined below). In each subset, the statistics follow
essentially the same trend as in Table I. For instance, the
number of single-parent nodes decreases with the increase in
δ1. There are almost no multiple-parent nodes in all three cases
whenδ2 > 0.3. Likewise, the number of roots follows a very
similar trend to the above table, increasing up to certain values
of δ1 andδ2, and then falling. The number of isolated nodes
in all three tables increase sharply with the increase inδ1.

A complete validation of all of the malware families that
are generated by our algorithm is not possible. Furthermore,
even the task of quantifying the accuracy of the relationships
we infer is challenging. Both of these limitations arise because
we only have access to the malware meta-data. We focus on
the latter issue in this paper because it is more tractable.

One approach we considered was to verify that malware
instances identified as being related also share similar names.
The experts who generate the malware metadata attempt to
name malware instances according to a group that they believe
it belongs to. For example, most variants of W32/Gaobot are
named W32/Gaobot.*.*. To verify that the malware classifica-
tion due to our algorithm aligns with the names provided by
McAfee, we developed an “entropy metric”, described below.

Assume our algorithm generatesk families T1, .., Tk. Also
assume there areN families of malware according to names in
the McAfee database. If a McAfee familyi hasni members,
and these are distributed across thek families output by our al-
gorithm. If, for the McAfee familyi, the fractions of its mem-
bers across ourk families aref1, .., fk, then the entropy of
that family in our classification isei = Σk

j=1(−fjlogfj). The

mean entropy of all the McAfee families will beΣ
N

i=1
ni∗ei

ΣN

i=1
ni

.
The entropy value lies between 0 andlog2k. The entropy

value will be smaller if members of the same McAfee family
are assigned to a single family generated by our algorithm.
Note that this metric is based only on the malware instances
that have been classified into named families by McAfee.
Note also that this metric does not quantify the evolutionary
patterns. Nonetheless, it provides a reasonable sanity check.

For (δ1, δ2) = (0.7, 0.3) we obtaink = 669 families. Our
algorithm has an entropy of 1.19 in this case (see Table II).
Drawing a simple analogy, the entropy metric can be inter-
preted as the mean number of binary questions to ask in order
to decide which family a malware instance is placed in. Thus,
for the members of a McAfee-named family, we need to ask
only ∼ 1 question (equivalent to deciding between 2 families)
which we believe is fairly reasonable. (A bad algorithm can
end up with an entropy value oflog2669 =∼ 9).

We used the McAfee names only during the entropy vali-
dation and do not use them anywhere in our algorithm since
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δ1 → 0.6 0.7 0.8 0.9
δ2 ↓
0.1 3767 2962 2015 1170
0.2 3767 2962 2015 1170
0.3 3767 2962 2015 1170
0.4 3767 2962 2015 1170
0.5 3767 2962 2015 1170

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓
0.1 1362 1748 1832 1174
0.2 463 419 304 134
0.3 66 65 42 14
0.4 6 6 6 2
0.5 0 0 0 0

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓
0.1 282 565 1061 1495
0.2 600 791 794 622
0.3 513 669 612 474
0.4 474 620 578 460
0.5 476 620 575 458

δ1 → 0.6 0.7 0.8 0.9
δ2 ↓
0.1 2771 2907 3274 4343
0.2 3352 4010 5069 6256
0.3 3836 4486 5513 6524
0.4 3935 4594 5583 6550
0.5 3939 4600 5592 6554

(a) Num. single-parent nodes (b) Num. multiple-parent nodes (c) Num. roots (d) Num. isolated nodes
TABLE I

THE EFFECT OFδ1 AND δ2 ON THE RELATIONSHIP GRAPH.
δ1 → 0.6 0.7 0.8 0.9
δ2 ↓
0.1 0.56 0.97 1.44 1.97
0.2 1.26 1.31 1.34 1.48
0.3 0.93 1.19 1.22 1.36
0.4 0.91 1.15 1.19 1.45
0.5 0.91 1.14 1.20 1.45

TABLE II
THE ENTROPY IN THE NAMES ASSIGNED BYMCAFEE.

we do not want our family trees to be biased by the McAfee
names. It is important to note that simply using the McAfee
names to construct families is not very helpful. There is
no clear way of deciding the edges within members of a
single McAfee name-based family. Furthermore, having an
algorithm independent of the names helps us use the names
for validating the algorithm. More importantly, a significant
portion of the malware instances do not fall intoany McAfee
named family. For instance, among the 3092 edges (in the
δ1 = 0.7, δ2 = 0.3 case), 469 edges are between members
of the same McAfee named family, 611 edges are between
members of different McAfee named families. The remaining
2012 edges are incident on malware neither of which fall in
any McAfee named family. So, these 611 + 2012 edges are
completely new in the sense they cannot be inferred by just
looking at McAfee names. The 611 edges between different
McAfee named families are also interesting. Though some of
them might be false positives, the others might give useful
new insights into how the different families evolved from one
another. We give some examples of these edges in the family
descriptions in Section V, while leaving an in-depth inspection
of all these edges for future work.

To further examine the quality of our inferred relationships,
we augmented the above checking of names with a manual
check of the accuracy of some of the relationships. Specifi-
cally, for each family we obtained, we first checked if most
of the members share a common McAfee name prefix (e.g.
W32/Gaobot). If this check is not satisfied, we manually check
the meta-data to see if we erroneously inferred a relationship.
In almost all the cases, we observed strong similarities between
a “parent” and its “child”. Additionally, some well known
malware evolutions were also observed in our families. For
example, our families expose the evolution ofMytob from
Mydoom and Zotob from Mytob, both of which are well
documented in the popular and technical press.

In Section V, we show the trees for some of the largest
families we identified. A complete list of the families we
inferred may be found at our Project Web site [1].

IV. CHARACTERISTICS OFMALWARE EVOLUTION

As mentioned earlier, 8182 malware from the original
malware database had a non-trivial textual description. Our

analysis focuses on this subset. After employing the parame-
ters described in Section III and applying the tree decomposi-
tion process, we identified 669 distinct malware family trees.
Overall, 4486 malware instances were not classified into any
family because of our choice of pruning parameters. The trees
included 2962 “single-parent” nodes and 65 “multiple-parent”
nodes. The analysis in this section is focused on examining the
key properties of the 669 families, with particular emphasis on
the larger families.

A. Family Tree Size and Fanout

Figure 3(a) shows the cumulative distribution of the number
of malware instances in each family tree. A large number of
trees are quite small:> 90% of the trees have less than 12
nodes and50% of the trees have just two nodes (a single edge).
It is interesting to note that a handful of the families among
those identified are very large: 8 of the families have more
then 50 malware instances each and the maximum number of
malware instances in a family is 119! Later in this section, we
delve deeper into some of the properties of 2 large trees. In
Section V, we study the key features that are retained across
generations of malware in some of these large families.

Next, we consider the number of “generations” in each
malware family. It is likely that a new generation malware is
developed in response to specific counter-measures that were
developed by AV companies to contain the previous gener-
ation. Thus, this analysis provides a perspective on the arms
race between malware authors and AV experts. In Figure 3(b),
we show the distribution of the heights/generations of the
25 largest family trees. On average, these families span 7
generations. In Section IV-B, we study the time-span of these
generations, and find that some of them span a few years.

Figure 3(c) shows the distribution of the maximum fanout
in family trees, as well as the fan-out of the root of the
trees. In several families, each malware instance spawns few
other malware instances over time: 92% of the trees have a
maximum fanout less than 5; and 95% of the roots have a
fanout less than 5. However, we do observe three trees with
a maximum fan-out> 20, and the maximum fanout observed
in a tree is 29.

Since the root and maximum fan-out distributions are differ-
ent, it is clear that the root does not necessarily have the largest
fan-out. This may happen when some intermediate malware
bundles together the capabilities of several of its predecessors
and in turn becomes the source for multiple future strains.

B. Family Tree Life-span

Each edge in the graph we obtain has an associatedlength.
We define the length of an edge as the difference in the “time
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Fig. 3. Figure (a) shows the distribution of the number of nodes in family trees. Figure (b) shows the height of the largest25 family trees. Figure (c) shows
the distribution of the maximum and root fan-outs in family trees.

of discovery” field in the two malware instances; we measure
the length in days. Edge lengths help us understand the time
duration over which the the successors of potent malware
instances are developed and released.

Figure 4(a) shows the distribution of the lengths of all edges
in derived family trees. The figure shows that 90% of the edge
lengths are less than 730 days long. Thus, it appears that most
malware are spawned from their predecessors in under two
years.

Figures 4(b) and (c) show scatter-plots of the fanout of
malware instances versus the mean and the minimum length
of their outgoing edges, respectively. These plots helps us
understand the correlation between the popularity of a malware
instance - defined in terms of how many immediate successors
are spawned from it - and the time to the evolution of its
successors. An interesting trend is evident: malware instances
with a high fanout do not have any long outgoing edges. In
other words, it seems that malware instances that spawn a
lot of children (perhaps because the malware’s source code
was reused very frequently), do so relatively quickly. Focusing
on malware that spawns few successors, we note that a
much longer time may elapse before they spawn their first
successors. For example, in Figure 4(c), there are several cases
where the minimum edge length is> 1000 days for malware
with a fan-out< 5.

Figure 4(d) shows the mean length of edges at each depth
in family trees. This can be interpreted as the mean time for
one generation to evolve into the next. As can be seen from
the figure, the mean time for the generations to evolve seems
to fall exponentially with the generation number.

C. Evolution Dynamics of Malware Families

We now consider the temporal patterns in the “birth”,
life-span, and “death” of malware families. Our focus is on
understanding how these evolutionary dynamics have changed
over the past decade or so. We believe that this analysis sheds
more light on the effect of two concurrent phenomena on the
overall prevalence of malware: (1) the ongoing race between
malware code writers, and the anti-virus companies, which
could cause some families to have a very long life time; and (2)
the improvements in operating system and application software
security, which could cause the death of some families.

Figure 5(a) shows the time line of the distribution of “time
of discovery” fields in the malware, binned by the year.
This graph includes all 8182 malware instances have rich

text descriptions. Thus, this plot includes even the isolated
nodes in our relationship graph. The key observations are the
acceleration in new instances since 2001 and dips between
1994-1996 and in 1998.

Figure 5(b) shows the distribution of the lifetime of the
25 largest malware families as well as the distribution of the
lifetimes of all families. The lifetime of a family is definedas
the difference in the timestamp of the root and the timestamp
of the most recent member of the family. We observe that 80%
of all families have a lifetime less than 730 days (around 2
years). However, a small fraction of the families, roughly 9%,
last more than 1960 days (around 5 years). Among the top 25
families,∼ 50% have a lifetime greater than 950 days (around
2.5 years), and 18% of them have a lifetime more than 2350
days (around 6.5 years). Thus, it appears that the large families
also have very long lifetimes.

We consider families that were last seen in 2006 to be “ac-
tive”. These families have not been included in the aforemen-
tioned lifetime distributions. There are 68 “active” families,
of which 46 have more than 2 nodes. Furthermore, we found
that 9 of the 25 largest families are still active. The 46 active
families with> 2 nodes have been in existence for mean time
of 544 days.

Figure 5(c) delves deeper into the malware evolution dy-
namics. Here, we compare the cumulative counts over time of
the total number of trees born and the total number of trees
that died since the first family originated in 19873. The gap
between the two cumulative counts indicates the number of
families alive in a given year. Note that there is a huge gap
between the two plots in the early 1990s, indicating that a
lot of families were active. By 1998, the two curves almost
meet indicating (perhaps) that most of the vulnerabilitiesof
the early nineties were patched. Along the same lines, we can
infer that the early 2000’s saw a revival of sorts in malware
exploits (the two plots are almost parallel). These observations
are supported by the anecdotal evidence on the prevalence of
malware in recent years.

The right half of Figure 5(c) is even more interesting: the
slope of the “birth of trees” curve becomes very steep, yet
the gap between the two curves remains roughly fixed. This is
representative of the ongoing tussle between malware authors
and AV companies. For every malware family the AV com-

3By ”dying” we simply mean that there are no further generations of the
family, not that the malware is removed from the Internet
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Fig. 5. Figure (a) shows the number of malware instances borneach year. Figure (b) shows the distribution of lifetimes for all family trees and for the 25
largest family trees. Figure (c) shows The cumulative countof the number of families born and the number of families thatdie. Figure (d) shows the timeline
of the five largest malware families.

panies eliminate, malware authors are able to come up with
newer families that (possibly) exploit newer vulnerabilities.

Finally, we focus on the 5 largest families and dig a
bit deeper into their life-spans (a more in-depth analysis is
presented in the next section). Figure 5(d) shows the timelines
of the five largest families. The largest family was chiefly
active in 1997 and 1998. The members of this family do not
have any specific McAfee family name. Most of the members
of this family are viruses that infect files. These viruses mostly
spread via floppy diskettes and online downloads. The second
and fourth largest families are Adware/Spyware/Keylog fam-
ilies. They were widely active in 2005 (68 and 47 malware
respectively in 2005). They continue to be active in 2006 and
must be monitored closely. Likewise, the third largest family (a

Downloader family) was widely active in 2005 (52 malware).
The fifth largest family was a Word Macro family which was
mainly active in 1997, and died after that.

V. A D EEPERLOOK AT SOME MALWARE FAMILIES

The malware families we identify are useful to domain
experts as they can aid in the development of strong counter-
measures for future malware. We believe that understanding
these issues is important to evaluate the effectiveness of
malware defenses developed over the years.

In this section we drill down on the details and unexpected
characteristics of some of the largest families we identified
in by our algorithm. We name each family according to the
most commonly appearing McAfee-assigned name across all
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Tabela

W32/Beagooz

W32/Bagle.n@MM

W32/Bagle.z@MM W32/Bagle.p@MM

W32/Bagle.aa@MM W32/Bagle.af@MM W32/Bagle.ag@MM W32/Bagle.ad@MM

W32/Bagle.ab@MM

W32/Bagle.bf@MM

W32/Bagle.ai@MM W32/Bagle.dq@MM

W32/Bagle.bn@MM W32/Bagle.dr@MM W32/bagle.ds@MM

W32/Bagle.dt@mm

W32/Bagle.du@MM

W32/Bagle.dy@MM W32/Bagle.dx@MM

W32/Bagle.aq@MM W32/Bagle.at@MM W32/Bagle.az@MM

W32/Bagle.bj@MM W32/Bagle.bk@MM W32/Bagle.bb@mm W32/Bagle.bc@MM W32/Bagle.bd@MM

W32/Bagle.bl@MM

W32/Bagle.ae@MM

W32/Bagle.cb@MM W32/Bagle.q@MM

W32/Bagle.df@MM W32/Bagle.t@MM W32/Bagle.r@MM W32/Bagle.s@MM

Fig. 6. A Bagle family tree. The first instance (W32/Bagle.n@MM) appeared on 03/13/2004 and the last instance (Tabela) appeared on 04/15/2006.

malware instances in the family. We show graphical repre-
sentations of one of the malware family trees. The rest are
available at [1] due to space limitations.

A. A Mytob Family

The “Mytob” malware instances are spread across several
families in our classification. We discuss here the largest
Mytob family. An important feature of this tree is that in
addition to Mytob instances, Zotob instances are evident. It
has been reported the popular press that the same hacker
responsible for creating the Zotob worm also authored several
variants of the Mytob family [6]. It is instructive to note that
our classification algorithm is able to unearth such evolution-
ary trends without the direct aid of specific text describing
the evolution. There are three other small families in which
Mytob instances appear, and these families show relations
between Mytob and Mydoom, Polybot, and Gaobot (Gaobot
also spawns Sdbot in the same family) malware. It is well
known that Mytob is a variant of Mydoom. The largest Mytob
family has 46 nodes, a height of 15 (the maximum among all
the Mytob families), and a maximum fanout of 8.

Most of the Mytob variants in this family spread via email.
We examined some of the phrases which were common across
the different generations of the malware in this family. We
noticed phrases such as “sender address”, “mass mailing
worm”, “mail propagation”, “arrives in an email message”,
“via SMTP”, “via SMTP constructing messages using its
own SMTP engine the worm guesses the recipient email
server prepending the target domain”, and “worm contains
strings which it uses to randomly generate or guess email
addresses these are prepended as user names”. Looking at the
common phrases at the various depths can also provide useful
information. For instance, the backdoor component was added
in the 8th generation of the family.

Another interesting aspect of this family is its structure.
This family is dominated more by depth than fanout, and it
has 15 generations. This suggests that the Mytob authors are
designing new variants to get past the latest defenses. The
family is more or less a linear chain in the initial parts. Then
W32/Mytob.cv@MM malware instance spawns 8 children. It
takes 2 months from the root toW32/Mytob.cv@MM. This
suggests that it took roughly around two months before a My-

tob instance became popular and spawned new variants. Two
of W32/Mytob.cv@MM’s children, W32/Mytob.eu@MM,
and W32/Mytob.dl@MM seem to be spawning important
strains and the family appears to be evolving along these two
main sub-families.

B. A Bagle Family

The W32/Bagle.* collection of malware is one of the most
prolific in our entire dataset. In our classification, we found
that the Bagle malware instances were spread across fourteen
different families. The biggest among the families is shown
in Figure 6. This family has 36 nodes, a depth of 8 and a
maximum fanout of 5. The non-Bagle members in this family
areW32/Beagooz andTabela. Some of the phrases which
were common to the malware in this family include “address
is spoofed”, “worm opens”, “mail propagation”, “copies itself
to folders”, “contains its own smtp engine”, “contains a
remote access component”, “peer to peer applications”, “kazaa
bearshare limewire”, “email addresses are harvested”, “spam”,
and “mass mailing worm”. As is well known (and as the
phrases seem to indicate), the Bagle variants copy themselves
to the shared folders of popular peer-to-peer applications.

The malware instances belonging to this family were most
active 2004, with 22 variants being discovered in that year.
Only six new variants were discovered in 2005, and eight in the
first few months of 2006. This may suggest that the malware
had lost some of its prevalence, but there are a few unpatched
vulnerabilities that continue to be exploited by the new variants
of Bagle. We speculate that the high number of variants in
2004 may be due to the rise and popularity of peer to peer
applications around that time, and that the drop in 2005 may
have come about due to the community’s growing awareness
of the security problems associated with popular peer-to-peer
applications.

VI. CONCLUSIONS

Users throughout the Internet are plagued by malicious at-
tacks on an on-going basis. The task of defending against these
attacks is complicated by many factors, including complexity,
scale, and the increasing sophistication of malware authors.
The premise of our work is that an expanded perspective on
malware behavior and in particular the relationships between
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malware variants will eventually lead to the development of
more effective countermeasures.

In this paper we present an analysis of malcode meta-data
compiled by McAfee, one of the largest AV companies in the
world. The meta-data describes malware that was collected
by McAfee and other AV companies over a period of 19
years. The objective of our work is to identify and evaluate
relationships between malware instances based on the details
of their descriptions. We do this through a process that begins
by decomposing the descriptions into frequent phrases, and
then pruning the resulting set to eliminate the superfluous
phrases. Next, we establish relationships between instances of
malware using a tunable graph pruning algorithm that is based
on the similarity of frequent phrases between all instancesof
malware in our data set. In our analysis, we show the trade
offs in graph structure using different parameter settingsand
select a configuration that results in a graph that we validate as
being “likely” using the malware names applied by McAfee.

The resulting families have rich structure. We identify 669
distinct malware families. Some of the families are very large,
containing in excess of 50 members. We found that some of
the families were active for a few years at a stretch, while
others last no more than a few days. Detailed examination
of the families reveals many instances where specific traits
(as identified by a specific phrase) are inherited after many
months and that one instance of malware may spawn many
others. We believe that the malware families identified by
our algorithm are useful to domain experts and can aid in
developing proactive strategies to counter malware attacks.
Another application of our technique would be to identify
similar instances of malware in different repositories that use
different naming strategies.

The malware families are available at our project web-site (
[1]) for general perusal. We plan to pursue several extensions
to this work. First, we hope to expand the corpus of malware
meta-data in order to flesh out the evolutionary characteristics
of malware in greater detail. Second, we believe that adding
the behavioral characteristics such as those identified in [16]
and others will further enrich our analysis. Finally, we will
work more closely with AV companies and others concerned
with malware analysis, to develop methods for anticipating
future trends in malware development. We hope that this will
enable AV companies to generate malware counter-measures
in a more proactive fashion.
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