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Abstract

Most past solutions for detecting denial of service attacks (and iden-
tifying the perpetrators) have targeted end-node victims. However,
little attention has been given to this problem from an ISP perspec-
tive. This paper explores the key challenges involved in helping an
ISP network detect attacks on itself or attacks on external sites
which use the ISP network. We propose a detection mechanism
where each router detects traffic anamolies using profiles of normal
traffic constructed using stream sampling algorithms. In addition,
an ISP’s routers exchange information with each other to increase
confidence in their detection decisions. Our initial results show that
individual router profiles capture key characteristics of the traffic
effectively and help identify anomalies with low false positive and
false negative rates. We believe that profile construction can be ex-
tremely efficient, supporting even multi-gigabit speeds. We also be-
lieve that incremental deployment of such techniques is possible,
although it may signficantly impact the effectiveness of the dis-
tributed reinforced decision making.

1 Introduction

Distributed Denial of Service (DDoS) attacks have become an in-
creasingly frequent disturbance in today’s Internet. Many recent re-
search efforts have explored designing mechanisms for detecting
such attacks and identifying the perpetrators. However, all these so-
lutions are aimed at aiding end-node victims under attack. In this
work, we look at the problem from the point of view of an Internet
Service Provider (ISP). Specifically, we design mechanisms that al-
low ISPs to quickly and efficiently answer the following questions:
(1) Is the ISP backbone itself under a DDoS attack? (2) Is the ISP
network carrying much “useless” 1 traffic? (3) Which traffic is ma-
licious and what should be done to such traffic?

In today’s BGP-driven Internet, large ASes peer with other ASes at
multiple PoPs (Points of Presence). If a packet’s destination is not
within itself, an AS hands over the packet to other ASes as soon
as possible. This hot potato routing may not use the shortest route
to the destination. Due to these factors, packets going to the same
destination can traverse diverse and disjoint paths through an AS.
This “dispersion” makes it hard to detect DDoS traffic at any single
point, necessitating a distributed approach to the problem.

Our approach to this problem relies on routers within the ISP iden-
tifying traffic pattern violations themselves. This is achieved by
building traffic profiles using stream sampling algorithms which
have an extremely small memory footprint. By sampling over rela-
tively long time windows, normal traffic profiles are created while
current traffic profiles are constructed by using smaller time win-
dows. Whenever the current profile does not corroborate with the

1Attack traffic aimed at a certain destination that is ultimately dropped
at the destination.

normal one, a router becomes suspicious.

The key challenge of this approach is making it robust. Can we
ensure that our profiles are detailed enough that malicious attack-
ers cannot disguise their attack traffic as normal traffic? How do
we avoid detecting normal variations in traffic patterns (including
unusual flash crowds) as attacks? Finally, can these profiles be col-
lected efficiently without creating new opportunities for attack?

Our initial results using stream-sampling schemes to build profiles
show that it is possible to: 1) profile normal traffic reasonably ac-
curately, 2) identify anomalies with low false-positive and false-
negative rates (locally, at the router), 3) consume low per-packet
computation and memory even at very high router speeds.

However, if we rely only on this mechanism, small traffic pertur-
bations within the ISP or in the traffic will trigger many false pos-
itives. We believe that this approach can be made more robust by
having routers communicate their suspicions to other routers in the
backbone. Routers aggregate the suspicions received from all other
routers before deciding whether a certain traffic aggregate belongs
to an attack or not. The only way an attacker can circumvent this
mechanism is to successfully guise her traffic so as to fit the normal
profile at a large number of routers. If the attacker just takes very
few paths through the ISP network but still sends a large amount of
traffic, she will be easily caught. By choosing the right set of statis-
tics to constitute the normal profiles, we can ensure that the former
approach of mimicking many profiles becomes extremely hard.

We describe an example of this approach in greater detail in Sec-
tion 2 and present a brief discussion in Section 3.

2 Profile-Based DDoS Detection

It is clearly infeasible to keep traffic statistics for every single desti-
nation at a backbone router. Here, we consider a traffic profile that
can be collected with little overhead and should be able to detect
most intruders. At any point of time, only high-traffic destinations
need be considered since those exactly are the ones which are likely
to be under attack. Hence, each router keeps track of destinations
whose traffic occupies greater than a fraction θ of the capacity C

of the outgoing link using a sample-and-hold algorithm [2]. We
call these destinations popular and destinations not in this list as
unpopular.

Traffic profiles at each router are basically a set of fingerprints Fi

of the traffic to popular destinations. An effective choice of such
fingerprints is the key to characterizing traffic streams. However,
computing arbitrary fingerprints might require excessive memory
and/or computation. We have identified several fingerprints which
can be efficiently computed using stream sampling algorithms.
Some of them are:

• The total number of bytes to the destination, τ .
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• For various value of p, the number of /p prefixes sourcing traf-
fic to the destination. The motivation is that this set of fin-
gerprints characterizes source-subnet distribution and would
catch random source spoofing by an attacker.

• An approximation to the flow-length distribution of traffic to
the destination. We sample specific points on the flow-length
distribution by keeping track of the number of source IP ad-
dresses that send more than θk fraction of the total traffic to
the destination, for various values of θk.

We use sample-and-hold [2] and zeroeth moment (F0) computation
[4, 1] algorithms for computing these fingerprints. Each statistic is
computed by sampling over a small interval of time, about a minute.
To reflect the typical day-of-week and hour-of-day traffic patterns,
routers construct per-hour, per-weekday normal traffic profiles by
averaging the statistics over hourly periods.

Algorithm at Each Router. With these statistics in hand, each
router R uses the following algorithm for a popular destination:

1. Let τb be the number of bytes to the destination in the base-
profile and τ be the same statistic in current sampling interval.
If τ > τb + θC, continue to next step. Otherwise, stop.

2. For each fingerprint Fi, let vi denote the value computed in
the current sampling interval. Let µi and σi denote the mean
and standard deviation values for this fingerprint.2 If |vi −
µi| > zσi, then flag(Fi) = 1, else flag(Fi) = 0. z > 0 is
a parameter to the algorithm.

3. Let conf denote the confidence with which the router R sus-
pects an attack. We set conf =

�
i
δ(Fi) ∗ flag(Fi). δ as-

signs “weights” to a fingerprint, depending on the extent to
which that fingerprint contributes to errors (false-positive or
negatives): δ(Fi) ∝ 1

err(Fi)
where err (Fi) is the sum of

the false positive and negative rates for Fi. The ISP can per-
form measurements to determine the appropriate δ to config-
ure routers with.

For each packet, we need to perform the two operations: run
sample-and-hold [2] to probabilistically sample only large-volume
destinations requiring one hash-table lookup or update and one byte
operation; and if the packet was sampled, update statistics for the
corresponding destination. For each counting statistic, we need to
apply the algorithm in [4] involving one hash-table lookup or up-
date and 3 byte operations. If we assume that all the memory oper-
ations are performed in SRAM, profile computation consumes few
CPU cycles and can support very high data rates.

We need a slightly different mechanism for destinations which are
usually unpopular but suddenly become popular. Since it is infea-
sible to keep in-core traffic statistics for such destinations, we store
their base profiles on disk. This can be done by computing statis-
tics for randomly sampled packets over time. When a router finds
that τ > θC for a destination not in its popular list, it pages in the
corresponding base profile from disk. If no such profile exists, all
fingerprints are flagged. Otherwise, it computes flags and conf as
stated above.

Distributed Detection. For each destination with conf > 0, each
router sends the (conf , dest ) pair to its neighbors. On receiving

2This information is obtained from the base profile.

such a message, the neighbors discard duplicates, compute the ag-
gregate, Aggr of the conf values received per destination and for-
ward non-duplicates along to their neighbors. If, for any destina-
tion, Aggr exceeds a pre-defined threshold, the router concludes
that the destination is under attack. This “consensus” stage helps
reduce the errors in identification of attacks even further. These
messages could be sent using special low-bandwidth out-of-band
ICMP messages between routers. These messages between neigh-
bors can be authenticated with the use of a TTL of 255, as in [3]
and are timed out periodically (every minute) unless refreshed.

Preliminary Results. We provide a brief set of results regarding lo-
cal profile construction and attack detection functionality described
above. We use traffic generated by popular attack tools like TFN and
Trin00 along with traffic traces from Abilene backbone routers in
NS-2, varying the number of spoofed bytes in source IPs and the at-
tack rate against destinations of different levels of popularity. Our
results show that the profiles generated by our sampling schemes
are very stable and accurate across time over one hour periods. The
fingerprinting schemes also have a very low false positive rate (we
use z = 1) of about 2% for unpopular destinations and about 6%
for popular destinations. In addition, for unpopular destinations,
irrespective of the number of spoofed octets or the rate (“reason-
ably” high) of attack traffic, the false negative rate is close to zero.
For popular destinations, the false negative rate is about 20% for
low-rate, yet significant, attacks but improves rapidly as the rate of
the attack is increased (uniformly true) across varying number of
spoofed source IP octets. These results for the fingerprinting algo-
rithms are very encouraging. We are yet to experimentally analyze
the consensus algorithm.

3 Discussion
We believe that the above schemes can detect subtle and irregular
changes in traffic patterns which may not be obvious from volume
alone. For example, the subnet count fingerprints provide valuable
information to distinguish a flash crowd from a DDoS attack [5].

It is hard for an attacker aiming to orchestrate a DDoS attack on
a single machine or on the ISP infrastructure to circumvent the
above mechanism. Since the fingerprints at each router keep track
of details like the flow-length distribution and the traffic due to var-
ious source subnets, an attacker that uses arbitrarily spoofed source
IP addresses on his attack packets makes detection/trace-back even
simpler. Even if the attacker only spoofs a small number of source
IPs and still orchestrates a heavy attack, the attack will be detected
at routers where the attack traffic significantly impacts the normal
operation of the ISP network, albeit with low confidence. Moreover,
the consensus algorithm helps improve the detection accuracy.

Notice that it is possible for an attacker to “train” the normal traf-
fic profiles over time to identify attack traffic as legitimate. We are
investigating the balance between reacting to persistent changes
in traffic and being susceptible to this form of attack. Also, the
randomization of the measurement intervals (with a mean of one
minute) helps ensure that the attacker cannot escape detection by
spreading attack traffic over consecutive intervals to avoid detec-
tion in either interval.

We are investigating several important questions that still need to
be addressed. These include identifying attacks that could avoid
the measure profiles, measuring the exact space/computation re-
quirements on modern router architectures and measuring conver-
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gence/effectiveness of the consensus algorithm. We are also consid-
ering partial or incremental deployment issues such as identifying
which subset of routers provide the best detection and the impact of
partial deployment on the consensus algorithms. Finally, we plan to
validate these algorithms by running them on real attack datasets.
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