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Abstract edge, particularly when writing a block to disk. For each

We introducerange writes a simple but powerful change to thetrite, the file system must specify a single target address;
disk interface that removes the need for file system micromdfe disk must obey this directive, and thus may incur un-
agement of block placement. By allowing a file system to speecessary seek and rotational overheads. The file system
ify a set of possible address targets, range writes enaldigh Micromanages block placement but without enough infor-
to choose the final on-disk location of the request; the disk i mation or control to make the decision properly, precisely
proves performance by writing to the closest location armseu the case where micromanagement fails [6].
quently reporting its choice to the file system above. Thaltes Previous work has tried to remedy this dilemma in nu-
is a clean separation of responsibility; the file system {gh-h merous ways. For example, some have advocated that
level manager) provides coarse-grained control over ptecg, disks remap blocks on-the-fly to increase write perfor-
while the disk (as low-level worker) makes the final fine-geal  mance [7, 10, 34]. Others have suggested a wholesale
placement decision to improve write performance. We shaw tiove to a higher-level, object-based interface [1, 13]. The
benefits of range writes through numerous simulations amd-a pformer approach is costly and complex, requiring the disk
totype implementation, in some cases improving perforreant® track a large amount of persistent metadata; the latter
by a factor of three across both synthetic and real workloads approach requires substantial change to existing file sys-
. tems and disks, and thus inhibits deployment. An ideal
1 Introduction approach would instead require little modification to ex-
File systems micromanage storage. Consider placemigtihg systems while enabling high performance.
decisions: although modern file systems have little un-In this paper, we introduce an evolutionary change to
derstanding of disk geometry or head position, they dgre disk interface to address the problem of micromanage-
cide the exact location of each block. The file system hagnt: range writes The basic idea is simple: instead of
coarse-grained intentions (e.g., that a data block be glaggecifying a single exact address per write, the file sys-
near its inode [22]) and yet it applies fine-grained contrabm presents a set of possible targets (i.e., a range) to the
specifying a single target address for the block. disk. The disk is then free to pick where to place the block
Micromanagement of block placement arose due to thghong this set based on its internal positioning informa-
organic evolution of the disk interface. Early file systemgon, thus minimizing positioning costs. When the request
such as FFS [22] understood details of disk geometgpmpletes, the disk informs the file system which address
including aspects such as cylinders, tracks, and sect@ghose, thereby allowing for proper bookkeeping. By de-
With these physical characteristics exposed, file systegign, range writes retain the benefits of the existing inter-
evolved to exert control over them. face, and necessitate only small changes to both file sys-
The interface to storage has become more abstract aeh and disk to be effective.
time. Currently, a disk presents itself as a linear array ofRange writes make a more successful two-level man-
blocks, each of which can be read or written [2, 21]. Ogyerial hierarchy possible. Specifically, the file system
the positive side, the interface is simple to use: file syg:e., the manager) can exert coarse-grained control over
tems simply place blocks within the linear array, makingjock placement; by specifying a set of possible targets,
it straightforward to utilize the same file system acrosstige file system gives freedom to the disk without relin-
broad class of storage devices. quishing all control. In turn, the disk (i.e., the worker)
On the negative side, the disk hides critical informgs given the ability to make the best possible fine-grained
tion from the file system, including the exact logical-todecision, using all available internal information.
physical mapping of blocks as well as the current posi-|mplementing and utilizing range writes does not come
tion of the disk head [32, 37]. As a result, the file systeithout challenges, however. Specifically, drive schedul-
does not have ac_curate knowledge of disk internals. Hoyyz algorithms must change to accommodate ranges ef-
ever, the current interface to storage demands such knomf“ently. Thus, we develop two novel approaches to
*Now a Ph.D. student at U.C. Berkeley scheduling of range writes. The firgxpand-and-cancel
TNow at Google schedulingintegrates well with current schedulers but in-




duces high computational overhead; the secdwghar- ters. This indirection has the advantage that the disk can
chical range schedulingrequires a more extensive relay out blocks to improve performance, but it has the dis-

working of the disk scheduling infrastructure but miniadvantage that the client does not know where a particular
mizes computational costs as a result. Through simulagical block is located. For example, optimizations such

tion, we show that both of these schedulers achieve ex@d-zoning, skewing, and bad-block remapping all impact
lent performance, reducing write latency dramatically akse mapping in complex ways.

the number of targets increases. The service time of reading or writing a request has two

In addition, file systems must evolve to use rangmsic componentgositioning time or the time to move
writes. We thus explore how range writes could be ithe disk head to the first sector of the current request, and
corporated into the allocation policies of a typical file sysransfer time or the time to read/write all of the sectors
tem. Specifically, we build a simulation of the Linux ext®h the current request. Positioning time has two dominant
file system and explore how to modify its policies to ineomponents. The first componensisek timemoving the
corporate range writes. We discuss the core issues gk head over the desired track. The second componentis
present results of running a range-aware ext2 in a numbatational latency waiting for the desired block to rotate
of workload scenarios. Overall, we find that range writeshder the disk head. The time for the platter to rotate
can be used to place some block types effectively (e.ig.roughly constant, but it may vary around 0.5% to 1%
data blocks), whereas other less flexibly-placed data-stro€ the nominal rate. The other mechanical movements
tures (e.g., inodes) will require a more radical redesign ¢e.g., head and track switch time) have a smaller but non-
obtain the benefits of using ranges. negligible impact on positioning time [27].

Finally, we develop and implement a software-basedMost disks today also suppdegged-command queue-
prototype that demonstrates how range writes can be us&gi[24], in which multiple outstanding requests can be
to speed up writes to the log in a journaling file systeraerviced at the same time. The benefit is obvious: with
Our prototype transforms the Linux exi@ite-ahead log multiple requests to choose from, the disk itself can sched-
into a more flexiblenrite-ahead regiopand in doing so ule requests it sees and improve performance by using de-
avoids rotational overheads during log writes. Undertailed knowledge of positioning and layout.
transactional workload, we show how range writes ¢ . .
improve journaling performance by nearly agfactor of tw?‘2 ] Reducing Write _COStS

The rest of this paper is organized as follows. In Sel this paper, our focus is on what we refer to as the
tion 2, we discuss previous efforts and why they are ng@Sitioning-time problenior writes; how do we reduce
ideal. We then describe range writes in Section 3 aRfi €liminate positioning-time overheads for writes to
study disk scheduling in Section 4. In Section 5, we shd#{sk? The idea of minimizing write time is by no means
how to modify file system allocation to take advanta%ew [20]. However, there is as of yet no consensus on
of range writes, and then describe our prototype impl 1e best approach or the best division of labor between

mentation of fast journal writing in Section 6. Finally, ifiSk and file system for achieving this goal. We briefly
Section 7, we conclude. describe previous approaches and why they are not ideal.

2.2.1 Disk Scheduling
2 BaCkg round Disk scheduling has long been used to reduce positioning

We first give a brief tutorial on modern disks; more detailsverheads for writes. Early schedulers, built into the OS,
are available elsewhere [2, 26]. We then review existitiged to reduce seek costs with simple algorithms such as

approaches for minimizing positioning overheads. elevator and its many variants.
. More recently, schedulers have gone beyond seek op-
2.1 Disks timizations to include rotational delay. The basic idea

A disk drive contains one or morglatters where each is to reorganize requests to service the request with the
plattersurfacehas an associated disk head for reading asbortest positioning time first (SPTH)stead of simply
writing. Each surface has data stored in a series of cahe request with the shortest seek time (SSTF). Perform-
centric circles, otracks Within each track are thgectors  ing rotationally-aware scheduling within the disk itsedf i
the smallest amount of data that can be read or written @fatively straightforward since the disk has complete and
the disk. A single stack of tracks at a common distanaecurate information about the current location of the disk
from the spindle is called aylinder. Modern disks also head and the location of each requested block. In contrast,
contain RAM to perform caching. performing rotationally-aware scheduling within the OS
The disk appears to its client, such as the file systeimmuch more challenging, since the OS must predict the
as a linear array of logical blocks; thus, each block has emrrent head position. As a result, much of the schedul-
associated logical block number, or LBN. These logicalg work has been performed through simulation [18, 28]
blocks are then mapped to physical sectors on the plat-has been crafted with extreme care [17, 23, 36, 38]



More fundamentally, disk scheduling alone cannot corare likely to exhibit temporal locality (e.g., the inode and
pletely eliminate rotational delays. For example, if toall data blocks of the same file), the file system would like
few requests exist in the scheduling queue, smart schedalensure that those blocks are placed somewhat near one
ing cannot avoid rotation. another to optimize future reads. Thus, pushing full re-

2.2.2 File System Structures sponsibill_ty for block placement into the disk is not the
best division of labor.

Another approach to solving the positioning-time prob-
lem for writes is to deve|op a file system that transforrTNeW Interfaces: A related set of efforts allows the disk to
the traffic stream to avoid small costly writes by decontrol placement but requires a new interface; this idea
sign. A prime example is the Log-structured File Sydlas appeared in different forms in the literature as Log-
tem (LFS) [25]; many commercial file systems (e.gi¢al Disks [8], Network-Attached Storage Devices [13],
WAFL [14], ZFS [31]) have adopted similar approachesand Object-based Storage [1]. With this type of new inter-
LFS buffers all writes (including data and metadat&dce, the disk controls exactly where each objectis placed,
into segmentsvhen a segment is full, LFS writes the seg@nd thus can make intelligent low-level decisions. How-
ment in its entirety to free space at the end of the logver, such an approach also has its drawbacks. First, and
By writing to disk in large chunks (a few megabytes at@ost importantly, it requires more substantial change of
time), LFS amortizes positioning costs. both disks and the clients that use them, which is ||k6|y a
By design, LFS avoids small writes and thus woulghajor impediment to widespread acceptance. Second, al-
seem to solve the positioning-time problem. Howevd@wing the disk to manage objects (or similar constructs)
LFS is not an ideal solution for two reasons. First, thigwplies that the disk must now be concerned with consis-
approach requires the widespread adoption of a new f@t update. Consider object-based storage: when adding
system; history has shown such adoption is not straightnew block to an object, both the new block and a
forward. Second, LFS and similar file Systems do n@pinter to it must be allocated inside the disk and com-
perform well for all workloads; in particular, underneatinitted in a consistent fashion. Thus, the disk must now
transactional workloads that frequently force data to diskiSo include some kind of logging machinery (perhaps to

LFS performance suffers [29]. NVRAM), duplicating effort and increasing the complex-
, o ity of the drive. Logical disks go a step further, adding a
2.2.3 Write Indirection new “atomic recovery unit” interface to allow for arbitrary

Many researchers have noted that another way to Migites to be grouped and committed together [8]. In either
mize write delay is to appropriately control the placemegbproach' complexity within the disk is increased.
of blocks on disk. This work, which introduces a layer

of indirection between the file system and disk, can be ¢.3 A Cooperative Approach

vided into two camps: that which assumes the traditional

interface to disk (an array of blocks), and that which pro-previous Approach Problems

poses a new, higher-level interface (usually based on olpisk scheduling [17, 18, 23, 28, 36,38]  Needs many requests,

jects or similar abstractions). _ _ hard to implement in OS
Write-anywhere file systems [14, 25, 31] Gaining acceptance

Traditional Disks: In the first approach, the disk itself synchronous workloads
controls the layout of logical blocks written by the file Eager writing [10, 34] Drive complexity, -
system onto the physical blocks in the disk. The basic : lack of FS information

" . . igher-level interfaces [1, 8, 13] Drive complexity,
approach has been to perforeager writing in which gaining acceptance
the data is written to the free disk block currently clos-
est to the disk head. There are three basic problems within contrast to previous approaches, range writes divide
these approaches. First, this approach assumes thatharresponsibilities of performing fast writes across both
indirection mapexists to map the logical block addresfle system and disk; this tandem approach is reminiscent
used by the file system to its actual physical location @f scheduler activations [3], in which a cooperative ap-
disk [7, 10, 34]. Unfortunately, updating the indirectioproach to thread scheduling was shown to be superior to
map atomically and recovering after crashes can incue#her a pure user-level or kernel-level approach. The file
significant performance overhead. Second, these systesystem does what it does best: make coarse-grained lay-
need to know which blocks are free versus allocated. Uit decisions, manage free space, track block ownership,
fortunately, although the file system readily knows thend so forth. The disk does what it does best: take ad-
state of each logical block, it is quite challenging for diskvantage of low-level knowledge (e.g., head position, ac-
to know whether a block is live or dead [30]. Third, thisual physical layout) to improve performance. The small
approach forces the file system to completely relinquishange required does not greatly complicate either sys-
any control over placement; given that the file systetam or significantly change the interface between them,
knows which blocks are related to one another and thihisis increasing the chances of deployment.




direction 3.1.1 Range Specification
of rotation range write options:

13-16, 19-22 One challenge is to decide how to specify the set of pos-
sible target addresses to the disk. The format of this
range description must both be compact as well as flex-
ible, which are often at odds.

We initially considered a single range, but found it was
too restrictive. For example, a file system may have a
large amount of free space on a given track, but the pres-
ence of just a few allocated blocks in said track would
greatly reduce the utility of single-range range writes. In
other words, the client may wish to express that a request
can be written anywhere within the ran@g. i, 10 Bepnd
scheduler chooses 19 b ) exceptfor blocks Byegin + 1 and Byegin + 2 (because

for fastest write ”ﬂ;ﬁ“e those blocks are already in use). Thus, the interface needs
Figure 1:Range Writes. The figure illustrates how to use rangel© SUppOrt such flexibility.
writes. The disk has just serviced a write to block 5, andémthiven a YW also considered a list of target addresses. While
write with two ranges: 13 through 16, and 19 through 22. Thekdgiven this approach is quite flexible, we felt it added too much
its current position, realizes that 19 will result in the fest write, and overhead to each write command. A file system might
thus chooses it as the target. The file system is subseqirgntimed.  wish to specify a large number of choices; with a range,

) in the best case, this is just the start and end of a range; in
3 Range Writes the list approach, it comprises hundreds or even thousands

In this section, we describe range writes. We descripétarget addresses.
the basic interface as well as numerous details about th®ue to these reasons, we believe that there are a few
interface and its exact semantics. We conclude with a di&nsible possibilities. One is a simpigt of ranges the
cussion of the counterpart of range writes: range readsclient specifies a list of begin and end addresses, and the
disk is free to write the request within any one such range.
3.1 The Basic Interface A similar effect could be achieved with the combination
Current disks support the ability to write data of a speadf a single large range and correspondbigmap which
fied length to a given address on disk. With range writdadicates which blocks of the range are free. Both the
the disk supports the ability to write data to one addrelist-of-ranges and bitmap interfaces are equivalent, &g th
out of a set of specified options. The options are speattow full flexibility in compact forms; we leave the exact
ified in arange descriptar The simplest possible rangespecification to the future.
descriptor is comprised of a pair of addresg8s,;;,, and
Bena, designating that data of a given length can be wrig-1.2  Overlapping Ranges
ten to any contiguous range of blocks fitting witti#g.,;, Modern disks allow multiple outstanding writes. While
andB.,q4. See Figure 1 for an example. improving performance, the presence of multiple out-
When the operation completes, the disk returrtara standing requests complicates range writes. In particular
get addressthat is, the starting address of the region @ file system may wish to issue two requests to the disk,
which it wrote the data. This information allows the file?; andRs. Assume both requests should end up near one
system to record the address of the data block in whateaapther on disk (e.g., they are to files that live in the same
structure it is using (e.g., an inode). cylinder group). Assume also that the file system has a
One option the client must include is théignmentof free block range in that disk regios; throughB,,.
writes, which restricts where in the range a write can beThus, the file system would like to issue both requests
placed. For example, if the file system is writing a 4-KB; and R, simultaneously, giving each the randa
block to a 16-KB range, it would specify an alignment d¢hroughB,,. However, the disk is thus posed with a prob-
4 KB, thus restricting the write to one of four locationdem: how can it ensure it does not write the two requests
Without such an option, the disk could logically choose to the same location?
start writing at any 512-byte offset within the range. The simplest solution would be to disallow overlapped
The interface also guarantees no reordering of blocksites, much like many of today’s disks do not allow mul-
within a single multi-block write. This decision enabletiple outstanding writes to the same address (“overlapped
the requester to control the ordering of blocks on diskpmmands” in SCSI parlance [35]). In this case, the file
which may be important for subsequent read performansgstem would have two choices. First, it could serialize
and allows a single target address to be returned by the two requests, first issuing,, observing which block
disk. The interface is summarized in Table 1. it was written to (sayBj), and then submitting request




Classic Write 3.2 Beyond Writes: Range Reads

in.  address, data, length

out: status It is of course a natural extension to consider whether
range reads should also be supported by a disk. Range
Range Write . _ reads would be useful in a number of contexts: for ex-
mase Idssctr}; ptor, alignment, ample, to pick the rotationally-closest block replica [16,
out: status, regsm ting target address 38], or to implement efficient “dummy reads” in semi-

preemptible 1/0O [9].
Table 1: Classic vs. Range Writes. The table shows the However, introducing range reads, in particular for im-
differences between the classic idealized disk write andnge write. proving rotational costs on reads, requires an expanded
The range descriptor can be specified as a list of free ranges(ioegin, - jterface and implementation from the disk. For exam-
end) pair plus bitmap describing the free blocks within thege. ple, for a block to be replicated properly to reduce ro-
tational costs, it should be written to opposite sides of
Ro with two ranges B to By_1 and By 41 t0 B,). Al-  a track. Thus, the disk should likely support a replica-
ternately, the file system could pick subsets of each rangeating write which tries to position the blocks properly
(e.9.,B1, Bs, ..., Bx—1 in one range, andy, By, ..., Bx  for later reads. In addition, file systems would have to be
in the other), and issue the requests in parallel. substantially modified to support tracking of blocks and
However, the non-overlapped approach was too restribeir copies, a feature which only a few recent file sys-
tive; it forces the file system to reduce the number of taems support [31]. Given these and other nuances, we
gets per write request in anticipation of their use and thigave range reads for future work.
reduces performance. Further, non-overlapped ranges . .
complicate the use of range writes, as a client must thdn  DiSk Scheduling

make decisions on which portions of the range to giyg this section, we describe how an in-disk scheduler
to which requests; this likely decreases the disk’s contigl;st evolve to support range writes. We present two ap-
over low-level placement and thus decreases performa%aches_ The first we cadixpand-and-cancel schedul-
For these reasons, we chose to allow clients to issue me, a technique that is simple, integrates well with ex-
tiple outstanding range writes with overlapping ranges. isting schedulers, and performs well, but may be too
Overlapping writes complicate the implementation @omputationally intensive. Because of this weakness,
range writes within the disk. Consider our example abowge present a competing approach knowsarchical-
where two writes?; and R are issued concurrently, eacltange schedulingwhich requires a more extensive re-
with the rangeB; throughB,,. In this example, assumestructuring of a scheduler to become range aware but thus
that the disk schedulds; first, and places it on block;. avoids excessive computational overheads.
It is now the responsibility of the disk to ensure tHaf ~ Note that we focus on obtaining the highest perfor-
is written to any block excepB;. Thus, the disk must mance possible, and thus consider variants of shortest-
(temporarily) note thaB; has been used. positioning-time-first schedulers (SPTF). Standard modi-
However, this action raises a new question: how loffigations could be made to address fairness issues [18, 28].
does the disk have to remember the fact thatvas writ-
ten to and thus should not be considered as a poss#ld Expand-and-cancel Scheduling
write target? One might think that the disk could forgéhternally, the in-disk scheduler must be modified to sup-
this knowledge once it has reported ti#gthas completed port servicing of requests within lists of ranges. One sim-
(and thus indicated thaB;, was chosen). However, beple way to implement support for range writes would be
cause the file system may be concurrently issuing anottieough a new scheduling approach we exlpand-and-
request?s to the same range, a race condition could ense@ncel scheduling (ECSas shown in Figure 2. In the
and blockB; could be (erroneously) overwritten. expand phase, a range write requBsb block rangeB;
Thus, we chose to add a new kind of write barrier to thbroughB,, is expanded inta independent request&;
protocol. A file system uses this feature as follows. Firghrough R,, each to a single location; through B,,,
the file system issues a number of outstanding writes, pespectively. When the first of these requests complete
tentially to overlapping ranges. The disk starts servicirfgs dictated by the policy of the scheduler), the other re-
them, and in doing so, tracks which blocks in each rangeests are canceled (i.e., removed from the scheduling
are written. At some point, the file system issues a barrigueue). Given any scheduler, ECS guarantees that the
The barrier guarantees to the disk that all writes followirtgest scheduling decision over all range writes (and other
the barrier take into account the allocation decisions wfquests) will be made, to the extent possible given the
the disk for the writes before the barrier. Thus, once tlsairrent scheduling algorithm.
disk completes the pre-barrier writes, it can safely forget The main advantage of ECS is its excellent integration
which blocks it wrote to during that time. with existing disk schedulers. The basic scheduling pol-
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Figure 2: Expand-and-cancel Scheduling.The figure de-
picts how expand-and-cancel scheduling operates. Rangesnare
placed into the leftmost queue and then expanded into thesdtilof
writes on the right. In step 0 (not shown), two range writegvarsi- Figure 3: Hierarchical-range Scheduling. The figure de-
multaneously and are placed in the range write queue on titetheir  picts how hierarchical-range scheduling works. For thereat request,
expansions are placed in the expanded queue on the righttemls the scheduler must choose which of two possible ranges te tor{18-

the scheduler (which examines all requests in the expandedegand 20 on the adjacent track or 9-11 on the current). The schedulst

greedily chooses the one with minimal latency) decides aicgethe serviced a request to 5, and thus must choose whether to stéyeo
write to 21. As a result, the range write to (6, 11, 16, 21) imeved current track and wait for range 9-11 to rotate under the headwitch

from the range write queue (step 2a), and the expanded réegjte$, tracks and write to 18-20. Depending on the relative costsaafching

11, and 16 are canceled (step 2b). tracks and rotational delay, HRS will decide to which rangentite.

icy is not modified, but simply works with more requestg within the range on that track, HRS chooses the next
to decide what is the best decision. However, this aglosest spot within the range as the target, and thus es-
proach can be computationally expensive, requiring ejimates the total latency of positioning (roughly the cost
tensive queue reshuffling as range writes enter the systethe seek and settling time). If the head is outside the
as well as after the completion of each range write. Futinge, HRS includes an additional rotational cost to get to
ther, with large ranges, the size of the expanded quehe first block of the range. Because HRS knows the time
grows quite large; thus the number of options that musgiese close-by requests will take, it can avoid considering
be examined to make a scheduling decision may becotmese requests whose seek times already exceed the cur-
computationally prohibitive. rent best value. In this manner, HRS can consider many
Thus, we expect that disk implementations that chodgsver options and still minimize rotational costs.

ECS will vary in exactly how much expansion is per- Anexample of the type of decision HRS makes is found
formed. By choosing a subset of each range requgskigure 3. In the figure, two ranges are available: 9-11
(e.g., 2 or 4 or 8 target destinations, equally spac@sh the current track) and 18-20 (on an adjacent, outer
around a track), the disk can keep computational oveiack). The disk has just serviced a request to block 5 on
heads low while still reducing rotational overhead sulhe inner track, and thus must choose a target for the cur-
stantially. More expensive drives can include additiongdnt write. HRS observes that range 9-11 is on the same
processing capabilities to enable more targets, thus allayack and thus estimates the time to write to 9-11 is the

ing for differentiation among drive vendors. time to wait until 9 rotates under the head. Then, for the
_ _ _ 18-20range, HRS first estimates the time to move the arm
4.2 Hierarchical-Range Scheduling to the adjacent track; with this time in hand, HRS can es-

As an alternative to ECS, we present an approach timate where the head will be relative to the range. If the
call hierarchical-range scheduling (HRSHRS requires seek to the outer track is fast, HRS determines that the
more exact knowledge of drive details, including the culhead will be within the range, and thus chooses the next
rent head position, and thus demands a more extensivedleck in the range as a target. If, however, the short seek
working of the scheduling infrastructure. However, thigkes too long, the arm may arrive and be ready to write
added complexity comes with a benefit: HRS is mughst after the range has rotated underneath the head (say
more computationally efficient than ECS, doing less woek block 21). In this case, HRS estimates the cost of writ-
to obtain similar performance benefits. ing to 18-20 as the time to rotate 18 back under the head
HRS works as follows. Given a set of ranges (assumiggain, and thus would choose to instead write to block 9
for now that each range fits within a track), HRS deteif the first range.
mines the time it takes to seek and settle on the track ofA slight complication arises when a range spans mul-
each request and the resulting head position. If the hegude tracks. In this case, for each range, HRS splits the
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Figure 4: No Range Writes. The figure plots the performanceFigure 5: Track-sized Ranges. The graphs plot the perfor-

of an in-disk SPTF scheduler on a workload of writes to randoca-
tions. The x-axis varies the number of outstanding requestd the
y-axis plots the time per write. The leftmost graph plotsfgrenance
of writes to random locations over the entire disk; the rigbst graph

mance of range writes under randomized write workloadsgitie hi-
erarchical range scheduler. The experiments are identicghose de-
scribed in Figure 4, except that range writes are used irstegatradi-
tional writes; the range is set to 100 blocks, just biggerrtibe track

plots performance of random writes to a 4096-block group. size of the simulated disk (thus eliminating rotation).
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4.3 Methodology a
We now wish to evaluate the. l_Jtlhty of range writes in disk 1 2 4 8 1632641 2 4 8 16 32 64
schedulers. To do so, we utilize a detailed simulation en- Queue Size Queue Size

Vlr\cl)\?men;bu”t within the DIIISkEIm frarI\heworI;][S]:[ Di kSFi ure 6: Group-sized Ranges.The graph plots performance
€ made numerous smail changes throughoutLis (5 ange writes, as described in Figure 5. The small diffeeenrange

to provide support f(_)r range writes. We implemenmds‘%e is set to 4096 blocks (the size of a block group).
small change to the interface so pass range descriptors to

the disk, and more extensive changes to the SPTF schgdi o isk implies the target address for the write was

uler to implement both EC and HR scheduling.  Ovegy,sen at random from the disk; a span of a block group

all, we changed or added roughly one thousand IIneSilf?{plies the write was chosen from a localized portion of

code to the simulator. Unless explicitly investigating Ethe disk (from 4096 blocks, akin to a FFS cylinder group).
scheduling, we use the HR scheduler. Figure 4 presents our results

. For al! simulated experiments, we use the HP C2247AFrom the graphs, we make three observations. First, at
dl_sk, which hasarot_atlonal speed of 5400 RPM, and argls, |eft of each graph (with only 1 or 2 outstanding re-
atively small track size (roughly 60-100 blocks, depen Uests), we see the large amount of time spent in seek

ing on the zone). IF IS-an older model, an_d thus, as COK rotation. Range writes will be of particular help here,
pgred to modern d'Sk,S' its absolute positioning costs @tentially reducing request times dramatically. Second,
high whereas track size and data transfer rates are | m the right side of each graph (with 64 outstanding
However, when writing to a localized portion of disk, th?equests), we observe that positioning times have been
relative balance between seek and rotation is reasonaglﬁjstantially reduced, but not removed altogether. Thus,
thus we believe our results on reductions in positioninginijity in exact write location as provided by range
time should generalize to modern disks. writes could help reduce these costs even further. Third,
we see that in comparing the graphs, the span greatly
impacts seek times; workloads with locality reduce seek

solve the positioning-time problem? costs while still incurring a rotational penalty.

Traditional systems attack the positioning-time problegw We also note that having a queue depth of wo is no

by sending multiple requests to the disk at once; inter‘-etter than having a queue depth of one. Two outstand-

ui_%requests does not improve performance because in the

nally, an SPTF scheduler can reorder said requests g eady state, the scheduler is servicing one request while

reduce positioning costs [28]. Thus, the first question we . : . . .
. . another is being sent to the disk, thus removing the possi-
address is whether the presence of multiple outstandwﬁt . u N
R ifity of choosing the “better” request.
requests solves the positioning-time problem.
In this set of experiments, we vary the number of oud-4.2 What is the benefit of range writes?
standing requests to the disk under a randomized wnitée now wish to investigate how range writes can improve
workload and utilize an in-disk SPTF scheduler. Each eperformance. Figures 5 and 6 presents the results of a set

periment varies thepanof the workload; a span of theof experiments that use range writes with a small (track-

4.4 Experiments
4.4.1 Do multiple outstanding requests



Queue Size=1 Queue Size=16 4.4.4 What is the difference between ECS and HRS?

N
o

Jotal Joltd  We next analyze the costs of EC scheduling and HR
1 Rotation & Rotation @  scheduling. Most of the work that is done by either is the

=
o

estimation of service time for each possible candidate re-
quest; thus, we compare the number of such estimations to
- : : , - = - . gaininsight on the computational costs of each approach.
0% 25% S50% 75% 100%0%  25% S0% 7% 100%  Assume that the size of a rangedsand the size of a
Percent Reads Percent Reads track on the disk i€". Also assume that the disk supports

Figure 7: Mixing in Reads. The graphs plot the performance() outstanding requests at a given time (i.e., the queue
of range writes to random destinations when there is someepéaige  sjze). We can thus derive the amount of work that needs
of reads mixed in. We utilize track-sized ranges and writedoanly to 4 pe performed by each approach. For simplicity, we as-

Locat'ggstw'tlhc;g; blo‘;ktﬁro“p' _Thel )i-atxrls vanes thf_ petm;f'"ds sume each request is a write of a single block (generaliz-
rom P76 f0 LU, and ihe y-axis plots e average time Peraiiier -4 14 |arger block sizes is straightforward).

read or write). Finally, the graph on the left has 1 outstargdrequest . . .
EO disk Where)as the ;’raph gn tﬂe right has 16 mylreq For EC scheduling, assuming the full expansion, each

single request in the range-write queue expandsSie-

guests in the expanded queue. Thus, the amount of work,
sized) or large (block-group-sized) amount of flexibilityy, performed by ECS is:

We again perform random writes to either the entire disk
or to a single block group. Wee =5-Q (1)

Figure 5 shows how a small amount of flexibility can
greatly improve performance. By specifying track-sized.
ranges, all rotational costs are eliminated, leaving o
seek overhead and transfer time. We can also see
track-sized range writes are most effective when there are S
few outstanding requests (the left side of each graph); Whr = (ﬂ Q 2)
when the span is set to a block group, for example, posi-
tioning costs are halved. Finally, we can also see from thisfowever, HRS need not consider all these possibilities.
graph that range writes are still of benefit with mediuns3Pecifically, once the seek time to a track is higher than
to-large disk queues, but the benefit is indeed smaller. the current best seek plus rotate, HRS can stop consider-

Figure 6 plots the results of the same experiment, hOWg whether to schedule this and other requests that are
ever with more flexibility: range size is now set to th n tracks that are further away. The worst case number

entire block group. When the span of the experiment% tracks that must be considered_is_thus bpunded by the
the entire disk (left graph), this makes little differenc umber of tracks one can reach within the time of a revo-

rotational delay is eliminated. However, the right grath'on plus the time to seek to the nearest track. Thus, the

with a span of a block group shows how range writes ¢ Huation above_ represents an upper bound on the amount
also reduce seek costs. Each write in this experiment 8’;{ ork HRSt;:V'II do. i ke cl hv HR schedul
be directed to any free spot in the block group; the result Ven so, the equations make clear why schedul-

is that there is essentially no positioning overhead, ahy performs much less work Fhan EC schedullng n T“OSt
almost all time spent in transfer. cases. For example, assuming that a file system issues

range writes that roughly match track siz¢ &€ T), the
amount of work performed by HRS is roughly. In con-
4.4.3 What if there are reads in the workload? trast, ECS still performs' - @ work; as track sizes can

We have now seen the benefits of range writes in synthdl N the thousands, ECS will have to execute a thousand
workloads consisting purely of writes. We now inclugimes more work to achieve equivalent performance.

reads in the workload, and show the diminishing benefit4. 5 How many options does ECS need?

of range writes in read-dominated workloads. FigureFinally, given that EC scheduling cannot consider the full
plots the results of our experiments. range of options, we investigate how many options such
From the figures, we observe the expected result tliascheduler requires to obtain good performance. To an-
with an increasing percentage of reads, the benefit safer this question, we present a simple workload which
range writes diminishes. However, we can also see thepeatedly writes to the same track, and vary the number
for many interesting points in the read/write mix, rangef target options it is given. Figure 8 presents the results.
writes could be useful. With a small number of outstand- In this experiment, we assume that if there exists only
ing requests to the disk and a reasonable percentaga sfngle option, it is to the same block of the track; thus,
writes, range writes decrease positioning time noticeab$uccessive writes to the same block incur a full rotational

Time (Ms)

(&)

o

In contrast, HR scheduling takes each range and divides
nto a set of requests, each of which is contained within
g{;lck. Thus, the amount of work performed by HRS is:



Diminishing Benefits 5 Integrating Range Writes into

Classic File System Allocation

In this section, we explore the issues a file system must
address in order to incorporate range writes into its allo-
cation policies. We first discuss the issues in a general
> 4 & 1e = setting, and then describe our effort in building a detailed
Log (Choices) ext2 file system simulator to explore how these issues can
be tackled in the context of an existing system.

Time (ms)
OFRP NWMIUTO

Figure 8:The Diminishing Benefits of More Choice.The
figure plots the performance of successive write requestiegame 5.1 File System Issues
track. Along the x-axis, we increase the number of choicagadble for

. . . There are numerous considerations a file system must take
write targets, and the y-axis plots average write time.

into account when utilizing range writes. Some compli-
cate the file system code, some have performance ramifi-
delay. As further options are made available to the schegtions, and some aspects of current file systems simply
uler, they are equally spaced around the track, maximiziggake using range writes difficult or impossible. We dis-
their performance benefit. cuss these issues here.

From this figure, we can conclude that ECS does not . o
necessarily need to consider all possible options withira-1  Preserving Sequentiality

range to achieve most of the performance benefit, as &41€ problemfaced by file systems utilizing range writes is
pected. By expanding a entire-track range to just ei loss of exact control over placement of files. However,

choices that are properly spaced out across the track, nfssfnost file systems only have approximate placement as
of the performance benefits can be achieved. their main goal (e.g., allocate a file in the same group as

However, this example simplifies that problem quite Its inode), loss of dgtglled control is acceptable.
bit. For ranges that are larger than a single track, theLOSS of sequentiality, however, would present a larger

expansion becomes more challenging; exactly how o blem. For example, if a file system freely writes blocks
should be done remains an open problem of a file to non-consecutive disk locations, reading back

the file would suffer inordinately poor performance. To
avoid this problem, the file system should present the
4.5 Summary disk with larger writes (which the disk will guarantee
Our study of disk scheduling has revealed a number & kept together), or restrict ranges of writes to make it
interesting results.  First, the overhead of positioninglite likely that the file will end up in sequential or near-
time cannot be avoided with traditional SPTF schedulirgquential order on disk.
alone; even with multiple outstanding requests to the disk, .
seek and rotational overheads still exist. 5.1.2 Determining Proper Ranges _
Second, range writes can dramatically improve perf(ﬁAr‘-r_m_ther problem that arises for the file system is de_tgr-
mance relative to SPTF scheduling, reducing both rof&-”_“”gthe properrange f_orarequest. How much flexibil-
tional and seek costs. To achieve the best performanc@/é\S needed by the disk in order to p_erform well? )
file system (or other client) should give reasonably lar en gene_r_al, _the _'arg‘?f the range given to th? disk, the
ranges to the disk: track-sized ranges remove rotatio%é?re positioning time Is re_duced. The 5|ml_JIat|on results
costs, while larger ranges help to noticeably reduce séﬁﬁs_ented in Section 4 indicate that_ track-5|ze_d ranges ef-
time. Although range writes are of greatest utility Wheﬁ:ctlvely remove rotational costs while larger sized rage

there are only a few outstanding writes to the disk, rané;%g_" several thou§§1nq blopks) help with seek CC_)StS' In
writes are still useful when there are many. e ideal case, positioning time can be almost entirely re-

Third, the presence of reads in a workload obvious!ﬁoved if the size of the target range matches the span of

. e current workload.
reduces the overall effect of range writes. However, ranger < ine file system should specify the largest range
writes can have a noticeable impact even in relatively bal '

. at best matches its allocation and layout policy. For ex-
anced settings.

mple, FFS could specify that a write be performed to an
Finally, both the EC and HR schedulers perform we b iC spectly i P y

ree block within a cylinder group.
and thus are possible candidates for use within a dISE y group

that supports range writes. If one is willing to rewrité®.1.3 Bookkeeping

the scheduler, HR is the best candidate. However, if o®@e major change required of the file system is how it
wishes to use the simpler EC approach, one must dohsmdles a fundamental problem with range writes which
carefully: the full expansion of ranges exacts a high comwe refer to agddelayed address notificatiorSpecifically,
putational overhead. only as each write completes does the file system know the
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Figure 9: File Create Time (Empty File System). The Figure 10: File Placement. The figure shows how files were
figure plots the average write time during a file create bermtkmThe placed per mini-group across two different experimentsthinfirst, a
benchmark creates 1000 4-KB files in the same directory. ®amiges single process (PID) created 1000 files; in the second, edehnas
are either used or not, and the files are either created by glsiprocess created by a different PID. The x-axis plots the mini-growmier, and
or multiple processes. The y-axis plots the average write tof each the y-axis shows the number of files that were placed in thegronp,
write across the 1000 data block writes that occur. for both range writes and traditional writes.

target address of the write. The file system cares about Qj@%rs to improve performance. We now describe the basic
result because it is in charge of bookkeeping, and mygcation policies.
record the addre_ss in a pertinent structure (e.g., an inode)wnen creating a directory, the “Orlov” allocation algo-
In general, this may force two alterations in file Sysithm is used. In this algorithm, top-level directories are
tem allocation. First, the file system must carefully traciread out by searching for the block group with the least
outstanding requests to a given region of disk, in order fmper of subdirectories and an above-average free block
avoid sending writes to a full region. However, this Mo¢sount and free-inode count. Other directories are placed
ification should not be substantial. _ in a block group meeting a minimum threshold of free in-
Second, delayed notification forces an ordering on fi{gjes and data blocks and having a low directory-to-file
systems, in that the block pointed to must be written bggtio. In both cases the parent's block group is preferred
fore the block containing the pointer. Although reminiggiven that it meets all criteria.
cent of soft updates [12], this ordering should be easier 0rpg jiocation of data blocks is done by choosing a goal
implement, because the file system will likely not employjock and searching for the nearest free block to the goal.
range writes for all structures, as we discuss below.  por the first data block in the file the goal is found by
5.1.4 Inflexible Structures choosing a block in the same group as the inode. The

Finally, while range writes are quite easy to use for cetPecific block is chosen by using the PID of the calling
tain block types (e.g., data blocks), other fixed structur@§¢€ss to select one of 16 start locations within the block
are more problematic. For example, consider inodes i#%uP; we call each of these 16 locationsneni-group
standard FFS-like file system. Each inode shares a bidkin the greater block group. The desire here is to place
with many others (say 64 per 4-KB block). Writing an in-functionally related” files closer on disk. All subsequent
ode block to a new location would require the file systefifita Plock allocations for a given file have the goal set to
to give each inode a new inode number; doing so necH Next sequential block. _ _
sitates finding every directory in the system that contains 0 Utilize range writes, our variant of ext2 tries to fol-
those inode numbers and updating them. low the basic constraints of the existing ext2 policies. For
Thus, we believe that range writes will likely be use8%@mple, if the only constraint is that a file is placed
at first only for the most flexible of file system structuredVithin a block group, than we issue a range write that
Over time, as file systems become more flexible in th&Pecifies the free ranges within that group. If the policy
placement of structures, range writes can more broadly#shes to place the file within a mini-group, the range
applied. Fortunately, modern file systems have more fleytites issued for that file are S|m|IarIy gonstrqmed. We
ible structures; for example, Sun’s ZFS [31], NetApp’§|50 make sure to preserve sequentiality of files. Thus,

WAFL [14], and LFS [25] all take a “write-anywhere” ap-ONce a file’s first block is written to disk, subsequent
proach for most on-disk structures. blocks are placed contiguously beyond it (when possible).

5.2 Incorporating Range Writes into ext2 5.3 Methodology

We now present our experience of incorporating range investigate ext2 use of range writes, we built a detailed
writes into a simulation we built of Linux ext2. Alloca-file system simulator. The simulator implements all of
tion in ext2 (and ext3) derives from classic FFS alloc#éhe policies above (as well as a few others not relevant for
tion [22] but has a number of nuances included over tttgs section) and is built on top of DiskSim. The simulator



) Traditional ext2 with Range Writes
Fuller File Systems 9

@ 15 Untar 143.0 123.1

E ] No Range PostMark 29.9 22.2

°§> 10 4 [ Range Andrew 23.2 23.4

'_

pe Table 2: File System Workloads. Each row plots the perfor-
= mance (in seconds) of a simulated workload. In the left coluesults
g represent the time taken to run the workload on our simulateddard

50% 80% 90% 95% ext2, whereas on the right, the time to run the workload o2 &ith

Percent Full range writes is presented. Three workloads are employetarunhich

unpacks the Linux source tree; PostMark, which emulatesvir&load

Figure 11:File Create Time (Fuller File System). The of an email server (by creating, accessing, and deleting)filesing its
figure plots the average write time during a file create bermtimThe default settings; and the modified Andrew benchmark, whichlates
benchmark creates 1000 4-KB files in the same directory. &amiies typical user behavior. The simulations were driven by filstem-level

are either used or not, and the files are either created by @lsiprocess. traces of the given workloads which were then played backnagaur
The x-axis varies the fullness of the block group. simulated file system.

presents a file system API, and takes in a trace file whiel#.2 Small-File Creation on Fuller File Systems

allows one to exercise the API and thus the file systel¥e now move to a case where the block group has data

The simulator also implements a simple caching infrais-it to begin. This set of experiments varies the fullness

tructure, and writes to disk happen in a completely unf the block group and runs the same small-file creation

ordered and asynchronous fashion (akin to ext2 mounteghchmark (focusing on the single-PID case). Figure 11

asynchronously). We use the same simulated disk as plets the results.

fore (the HP C2247A), set the disk-queue depth to 16, and=rom the figure, we can see that by the time a block

utilize HR scheduling. group is 50% full, range writes improve performance over
classic writes by roughly 20%. This improvement stays
roughly constant as the block group fills, even as the aver-

5.4 Results age write time of both approaches increases. We can also

5.4.1 Small-File Creation on Empty File Systems  See the effect of fullness on range writes: with fewer op-

tions (as the block group fills), it is roughly 70% slower
We first show how flexible data block placement can inﬂiﬁan it(was with an gm;ts t:Ioc):klg:ouprg y o SIOW
y

prove performance. For this set of experiments, we simp
create a large number of small files in a single directory.4 3 Real Workloads

Thus, the file system should create these files in a singige first two synthetic benchmarks focused on file cre-
block group, when there is space. For this experiment, Wgon in empty or partially-full file systems, demonstrat-
assume that the block group is empty to start. ing some of the benefits of range writes. We now simulate
Figure 9 shows the performance of small-file allocahe performance of an application-level workload. Specif-
tion both with and without range writes. When comingally, we focus on three workloads: untar, which unpacks
from a single process, using range writes does not héfig Linux source tree, PostMark [19], which simulates the
much, as all file data are created within the same mimorkload of an email server, and the modified Andrew
group and indeed are placed contiguously on disk. HoBenchmark [15], which emulates typical user behavior.
ever, when coming from different processes, we can skgble 2 presents the results.
the benefits of using range writes. Because these file alloywe make the following two observations. First, for
cations get spread across multiple mini-groups within therkloads that have significant write components (un-
block group, the flexibility of range writes helps reducgar, PostMark), range writes boost performance (a 16%
seek and rotation time substantially. speedup for untar and roughly 35% for PostMark). Sec-
We also wish to ensure that our range-aware file systemd, for workloads that are less 1/O intensive (Andrew),
makes similar placement decisions within the confines@ige writes do not make much difference.
the ext2 allocation policies. Thus, Figure 10 presents the
breakdowns of which mini-group each file was placed if.5  Summary
As one can see from the figure, the placement decisiondmiegrating range writes into file system allocation has
range writes, in both the single-process and multi-procgs®ven promising. As desired, range writes can improve
experiments, closely follow that of the traditional extZerformance during file creation while following the con-
Thus, although the fine-grained control of file placemestraints of the higher-level file system policies. As much
is governed by the disk, the coarse-grained control of fibé write activity is to newly created files [4, 33], we be-
placementis as desired. lieve our range-write variant of ext2 will be effective in



practice. Further, although limited to data blocks, our ap-
proach is useful because traffic is often dominated by data Toumana Taver Linux ext3
(and not metadata) writes. -

Of course, there is much left to explore. For example,

Journal Traffic

partial-file overwrites present an interesting scenarar. F Write-Ahead Log —
best performance, one should issue a range write even for .. ;faf%(;mt
previously allocated data; thus, overwritten data may be N

allocated to a new location on the disk. Unfortunately, Bare s

this strategy can potentially destroy the sequentiality of RN

later reads and should be performed with care. We leave ||t smipcd o skiplpcd Te skiplp;dT | |
this and many other workload scenarios to future work. - Write-Ahead Region

6 Case StUdy Log Sklpplng Figure 12: Bark-itecture. The figure illustrates how a file sys-

We now present a case study that employs range writ&s can be mounted upon Bark to improve journal write perforce.
to improve journal update performance. Specifically, wAdl journal traffic is directed through Bark, which picks aiidistance
show how a journaling file system (Linux ext3 in thi®ased on think time and the position of the last write to di&rk per-
case) can readily use range writes to more flexibly chodggns this optimization transparently, thus improving reformance
where each Iog update should be pIaced on disk. By ({1) journal writes with no change to the file system above. &she-

. . lina fil tem can avoid the rotations thCI {c example shown, the file system has committed threeairtioss to
Ing S0, a journaling i€ Sys Isk: Ta, Th, and Tc. Bark, using its performance model, Ipasasl the

_Occur when performlng _many SynChronous writes to ﬂflrgnsactions across the physical disk, leaving empty spédenoted as
journal and thus greatly improve performance. “skipped”) in the write-ahead region.

Whereas the previous section employed simulation to
study the benefits of range writes, we now utilize a prawot be written immediately. The sectors that need to be
totype implementation. Doing so presents an innate prafritten have already passed under the disk head and thus
lem: how do we experiment with range writes in a real rotation is incurred to write the commit block.
system, when no disk (yet) supports range writes? ToOur approach is to transform the write-ahead log of a
remedy this dilemma, we develop a software layer, Baflpurnaling file system into a more flexiblerite-ahead
that emulates a disk with range writes for this specific afegion Instead of issuing a transaction to the journal
plication. Our approach suggests a method to build accapthe location directly following the previous transac-
tance of new technology: first via software prototype (tton, we instead allow the transaction to be written to the
demonstrate potential) and later via actual hardware iext rotationally-closest location. This has the effect of

realize the full benefits). spreading transactions throughout the region with small
L distances between them, but improves performance by
6.1 Motivation minimizing rotation.

The primary problem that we address in this section isOur approach derives from previous work in database
how to improve the performance of synchronous writesanagement systems by Gallagher et al. [11]. Therein,
to a log or journal. Thus, it is important to understand tithe authors describe a simple dynamic approach that con-
sequence of operations that occur when the log is updatgtlially adjusts the distance to skip in a log write to re-
A journaling system writes a number of blocks to thduce rotation. Perhaps due to the brief description of their
log; these writes occur whenever an application explicitylgorithm, we found it challenging to successfully repro-
forces the data or after certain timing intervals. Firsg tiduce their results. Instead, we decided on a different ap-
system writes alescriptor block containing information proach, first building a detailed performance model of the
about the log entry, and the actual data to the log. Aftirg region of the disk and then using that to decide how to
this write, the file system waits for the descriptor blocKsest place writes to reduce rotational costs. The details of
and data to reach the disk and then issues a synchronmwsapproach, described below, are based on our previous
commit blockio the log; the file system must wait untilvork in building the disk mimic [23].
the first write completes before issuing the commit block We now discuss how we implement write-ahead re-
in case a crash occurs. gions in our prototype system. The biggest challenge to
In an ideal world, since all of the writes to the logvercome is the lack of range writes in the disk. We de-
are sequential, the writes would achieve sequential basdribe our software layer, Bark, which builds a model of
width. Unfortunately, in a traditional journaling systemthe performance contours of the log (hence the name) and
the writes do not. Because there is a non-zero time elapseds it to issue writes to the journal so as to reduce rota-
since the previous block was written, and because the diglal overheads. We then describe our experiments with
keeps rotating at a constant speed, the commit block ctre Linux ext3 journal mounted on top of Bark.



w/o Bark w/ Bark Null
Uncached 50.7 42.1 38.8
Cached 44.2 27.3 254

100% CDF of Write Times
b _

80%
60%

Table 3: Bark Performance. Each row of the table plots the

Percent of Requests

0p -
overall performance (in seconds) of TPC-B in three differsettings: 40% — with Bark
without Bark, with Bark, and on a “null” journal that reportsuccess 20% mthou?rBark
for writes without performing disk I/O (the null journal regsents the 0% I I I T : .
best possible improvement possible by using Bark). Thedinsteports 60 1. 2 3 4 5 6
performance of a cold run, where table reads go to disk. Thersrow Time (ms)

reports performance when the table is in cache (i.e., onlyesrgo to - Figure 13:Write Costs. The figure plots the cumulative distribu-
disk). Experiments were run upon a Sun Ultra20 with 1 GB of a1gm tjon of write request times during TPC-B. Two lines are @ottthe first
and two Hitachi Deskstar 7K80 drives. The average of threesris shows the cost of writes through Bark, whereas the seconassbosts
reported; there was little deviation in the results. without. The data is taken from a “cached” run as describedah

6.2 Log-Performance Modeling is the management of free space in the log. Bark keeps a

Bark is a layer that sits between the file system and dgﬂta structure t_o track which bIO_CkS are free "! the journal

and redirects journal writes so as to reduce rotational-ov Pd thus_candlda'Fes for fast writes. The main challenge
head. To do so, Bark builds a performance model of t ¥ Bark is deteciing \_Nhen a_prewously-uged block pe-

log a priori and uses it to decide where best to write ﬂlc?omes free. B_ark achieves this by monitoring overwrites
next log write. y the journaling layer; when a block is overwritten in

Our approach builds on our previous work that meﬁl}e logical j_our_nal, Bark frees the corresponding physical
sures the request time between all possible pairs of d ck'to which '_t had _bee” mapped.

addresses in order to perform disk scheduling [23]. OurThe_SeCOnd ISSUE 1S suppo_rt for recovery. Journals are
problem here is simpler: Bark must simply predict whefot write-only devices. In particular, during recoveryeth

to place the next write in order to reduce rotation file system reads pending transactions from the journal in

To make this prediction, Bark performs measuremerﬂ&derto reP'ay them to the file system proper and thus re-
of the cost of writes to the portion of the disk of interesfOVE the fll.ehsystt;:_lm oa consstglr]l.t stz?lte. To eknable this
varying both the distance between writes (the “skip” siz e}covery without file sys_tem modr |cat|on,_ Bar . would
and think time between requests. The data is stored iHeaed to record a small bit of extra information with each
table and made available to Bark at runtime set of contiguous writes, specifically the address in the

For the results reported in this paper, we created a d,g@cal address space to which this write was destined.

profile by keeping a fixed write size of 4 KB (the size Olp_omg so would enable Bark to scan the write-ahead re-

a block), and varying the think time from 0 ms to 80 mdion during recovery and reconstruct the logical address

in intervals of 50 microseconds, and the skip size frofp ¢ and thu_s allows recovery to proceed without any
0 KB to 600 KB in intervals of 512 bytes. To gain Con(_:hangeto the file system code. However, we have not yet

fidence each experiment was repeated multiple times Q;Hmlngplem.en;efd this (fjeature (early experience suggests
the average of the write times was taken. itwill be straightforward).

6.3 From Models to Software 6.4 Results
With the performance model in place, we developed Bayke now measure the performance of unmodified Linux
as a software pseudo-device that is positioned betwes#3 running on top of Bark. For this set of experiments,
the file system journaling code and the disk. Bark thige mount the ext3 journal on Bark and let all other check-
presents itself to the journaling code as if it were a typpoint traffic go to disk directly.
cal disk of a given siz&. Underneath, Bark transparently For a workload, we wished to find an application that
utilizes more disk space (say- S) in order to commit stressed journal write performance. Thus, we chose to run
journal writes to disk in a rotationally-optimal manner, aan implementation of the classic transactional benchmark
dictated by the performance model. Figure 12 depicts tAiI®C-B. TPC-B performs a series of debits and credits to a
software architecture. simple set of database tables. Because TPC-B forces data
At runtime, Bark receives a write request and must dt® disk frequently, it induces a great deal of synchronous
cide exactly where to place it on disk. Given the timgO traffic to the ext3 journal.
elapsed since the last request completed, Bark looks ufable 3 plots the performance of TPC-B on Linux ext3
the required skip distance in the prediction table and usashree separate scenarios. In the first, the unmodified tra-
it to decide where to issue the current write. ditional journaling approach is used; in the second, Bark
Two issues arise in the Bark implementation. The first used underneath the journal; in the third, we implement



a fast “null” journal which simply returns success wherf Conclusions

given a write without doing any work. This last optiotwe have presented a small but important change to the
serves as an upper-bound on performance improvemefiétage interface, known as range writes. By allowing the
realized through more efficient journaling. file system to express flexibility in the exact write loca-
Note also that each row varies whether table reads tin, the disk is free to make better decisions for write
to disk (uncached) or are found in memory (cached). targets and thus improve performance.
the cached runs, most table reads hit in memory (and thu$Ve believe that the key element of range writes is their
disk traffic is dominated by writes). By measuring peevolutionary nature; there is a clear path from the disk of
formance in the uncached scenario, we can determine th@ay without range writes to the disk of tomorrow with
utility of our approach in scenarios where there are reatliem. This fact is crucial for established industries, veher
present in the workload; the cached workload stress#g®mnge is fraught with many complications, both practical
write performance and thus presents a best-case for Ban technical; for example, consider object-based drives,
under TPC-B. which have taken roughly a decade to begin to come to

From the graph, we can see that Bark greatly infarket[13]. _ _
proves the overall runtime of TPC-B; Bark achieves a Interestingly, the world of storage may be in the midst
20% speedup in the uncached case and over 61% in @h& revolution as solid-state devices become more of a
cached run. Both of these approach the optimal time parketplace reality. Fortunately, we believe that range
measured by the “null” case. Thus, beyond the simulrites are still quite useful in this and other new envi-
tion results presented in previous sections, Bark shof@@ments. By letting the storage system take responsibil-

that range writes can work well in the real world as wellity for low-level placement decisions, range writes enable

Fiqure 13 sheds some liaht on this improvement high performance through device-specific optimizations.
perfgrmance Therein we pglot the cumulzgtive OlistribuE_'urther, range writes naturally support functionality lsuc
tion of journal-write times across all requests during tq%segvn?:r\;\lli\i/lzlIrr]e%'u?:?:gtir:wl::r?;)::g:zgIzgilt?/ increase device

cached run. When usin ' i - . : .
g Bark, most journal writes corn We believe there are numerous interesting future paths

plete quickly, as they h_aV(_e been rotau_onally well pIaC(?{c)ir range writes, as we have alluded to throughout the pa-
through our simple skipping mechanism. In contras

writes to the journal without Bark take much longer o ér. The corollary operanon, fange rgads, presents new
challenges but may realize new benefits. Integration into

average, gnd are spread across the rotational spectrurBR D systems introduces intriguing problems as well; for

the disk drive. . .
example, parity-based schemes often assume a fixed off-
set placement of blocks within a stripe across drives. An

6.5 Discussion elegant approach to adding range writes into RAIDs may

) ~well pave the way for acceptance of this technology into
We learned a number of important lessons from our inge higher end of the storage system arena.

plementation of log skipping using range writes. First, inding the right interface between two systems is al-
we see that range writes are also useful for a file systgfays challenging. Too much change, and there will be no
journal. Under certain workloads, journaling can inducgjoption; too little change, and there is no significant ben-
a large rotational cost; freedom to place transactions t@& e believe range writes present a happy medium: a
free spot in the journal can greatly improve performancgmg|| interface change with large performance gains.
Second, with read traffic present, the improvement seen

by Bark is lessened but still quite noticeable. Thus, eVAcknowledgments

with reads (in the uncached case, they comprise rough¥ thank the members of our research group for their in-
one-third of the traffic to the main file system), flexiblgightful comments. We would also like to thank our shep-
writes to the journal improve performance. herd Phil Levis and the anonymous reviewers for their ex-

Finally, we should note that we chose to incorporaf€!lent feedback and comments, all of which helped to
flexible writes underneath the file system in the simplegteatly improve this paper. . _
possible way, without changing the file system implemen- T his work is supported by the National Science Foun-
tation at all. If range writes actually existed within thdation under the following grants: CCF-0621487, CNS-
disk, the Bark layer would be much simpler: it would is9°09474, CCR-0133456, as well as by generous dona-
sue the range writes to disk instead of using a model{gns from Network Appliance and Sun Microsystems.
find the next fast location to write to. A different approach ANy Opinions, findings, and conclusions or recommen-
would be to modify the file system code and change tfations expressed |nlth|s material are those of the authors
journaling layer to support range writes directly, soménd do not necessarily reflect the views of NSF or other

thing we plan to do in future work. institutions.
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