

Computer
Sciences
Department

Understanding and Exploiting Network Traffic
Redundancy

Archit Gupta
Aditya Akella
Srinivasan Seshan
Scott Shenker
Jia Wang

Technical Report #1592

March 2007

Understanding and Exploiting Network Traffic Redundancy

Archit Gupta⋆, Aditya Akella⋆, Srinivasan Seshan⋆⋆, Scott Shenker† and Jia Wang††

University of Wisconsin-Madison⋆, CMU⋆⋆, UC Berkeley†, AT&T Research††

Abstract— The Internet carries a vast amount and a wide range
of content. Some of this content is more popular, and accessed
more frequently, than others. The popularity of content could
be quite ephemeral - e.g., a Web flash crowd - or much more
permanent - e.g., google.com’s banner. A direct consequence of
the skew in popularity is that, at any time, a fraction of the
information carried over the Internet is redundant.

We make two contributions in this paper. First, we study the
fundamental properties of the redundancy in the information
carried over the Internet, with a focus on network edges. We
collect traffic traces at two network edge locations – a large
university’s access link serving roughly 50,000 users, anda tier-1
ISP network link connected to a large data center. We conduct
several analyses over this data: What fraction of bytes are
redundant? What is the frequency at which strings of bytes repeat
across different packets? What is the overlap in the information
accessed by distinct groups of end-users?

Second, we leverage our measurement observations in the
design of a family mechanisms for eliminating redundancy in
network traffic and improving the overall network performan ce.
The mechanisms we proposed can improve the available capacity
of single network links as well as balance load across multiple
network links.

I. I NTRODUCTION

Internet end-hosts peruse a broad range of data over the
wide-area network, including HTTP content, streaming video
and audio, sensor data, VoIP conversations, gaming data, and
files shared in a peer-to-peer fashion. Factors such as simi-
larity in social interests and hobbies, geographic proximity,
and the disproportionate popularity of some data mean that
an end-host’s transfer is somewhat likely to be similar in
content, if not entirely identical, to other concurrent network
transfers. Some of the content may overlap with transfers that
occurred at a different time (e.g. people repeatedly accessing
google.com), or with transfers involving different hosts alto-
gether (e.g. multiple news sites reporting the same Reuters’
news story, or a bit-torrent based file download).

This repetition of content is likely to be very pronounced
at the network edges, such as access links of stub networks
or the network links of small regional and local ISPs. At such
locations, groups of users and servers who share the network
infrastructure also share several other artifacts very closely,
such as work and living environment, professional interests,
interest in local events or affairs, and client bases.

From the point of view of infrastructure providers, the
repeated bytes are essentially useless orredundant. If, by some
mechanism, the infrastructure is able to carry only unique or
useful bytes, then the provider may be able to manage her
capacity in a more efficient way. In turn, this could improve the
network service for end-users and stub networks by increasing
available bandwidth.

In this paper, we make two important contributions. First,
we analyze packet level data collected at diverse network
locations to gain an in-depth understanding of the nature of
redundancy and the extent of redundant bytes in network
traffic. These measurements are unique in several ways and
are targeted at helping us understand how to build, and where
to deploy, mechanisms that can exploit the redundancy in
network traffic to the fullest extent. Second, we use our mea-
surement insights to develop two mechanisms for eliminating
redundancy and improving the overall capacity of various
network links.

Some of the questions we hope to answer via measurement
include: How redundant is network traffic? What are the likely
sources of redundancy? And, what is the overlap in the content
accessed by distinct groups of users? A number of past studies
and systems have had a similar goal of identifying and elim-
inating redundant transfers. However, most such studies [13],
[14], [4] have focused on specific applications and looked for
repetition of content at the object level. Our work takes a more
information-centricapproach. Specifically, to examine the true
extent and nature of redundancy, we look for strings of bytes
which repeat across a stream of packets.

In this context, the most similar work to ours was done
by Spring et al. [11], which also examines redundancy at the
level of strings of bytes. However, there are a number of key
contributions that are unique to our work. First, our goal is
to evaluate a wide range of system designs for eliminating
redundancy beyond the single-link techniques explored by
Spring et al. These include mechanisms which apply to pairs
of links incident on the same router, and those that apply to
the network infrastructure of an ISP as a whole. Second, to
achieve this goal, our measurement study is broader and deeper
than Spring et al.’s. We study the impact of population size,
network location, and the popularity of content on the amount
of redundancy we observe. We also measure traffic redundancy
at diverse points in the network. This allows us to explore
redundancy elimination techniques which are tailor-made to
offer the maximum benefit for specific network locations.
Finally, the Internet application mix has changed significantly
since 1999 and our observations quantify the impact of this
shift on the redundancy in network traffic.

To understand the nature of redundancy, in the first part
of the paper, we conduct an in-depth analysis of several
hours worth of packet traces collected from two very different
network locations: a large university’s access link serving
roughly 50,000 users, and a tier-1 ISP network link connected
to a large data center. We analyze this data at two levels
– “macroscopic” and “microscopic”. In our “macroscopic”

analysis, we ignore whether the content of the packets are as-
sociated with particular protocols, particular flows or particular
groups of users. Thus, the macroscopic analysis helps us gain a
high-level understanding of the redundancy in network traffic.
We find that amount of redundancy is significant and varies
greatly between network locations. We see approximately 12-
15% redundancy in our university traces, but 45% redundancy
in the data center. While the range of possible content in
transfers explains the difference between university and data
center redundancy, the sheer volume of redundant information
in our data center traces is quite staggering. In addition, we
find that eliminating redundancy would shrink the difference
between peak and minimum traffic more significantly – by
25% for the university and by 52% for the data center. This
suggests that redundancy elimination can bean effective tool
for managing network bandwidth, especially under heavy load.

In order to gain a deeper understanding of the characteristics
of redundancy, we conduct several “microscopic” analyses.
We find that a large number of data “chunks” see just a few
repeated transfers. Surprisingly, this contributes to theoverall
redundancy much more than “highly” popular data chunks
that see frequent (>10 in a 60s period) reuse. We also find
that traffic redundancy increases relatively smoothly withthe
number of users that are using a particular link. This is a
surprising contrast with previous studies [13], which measured
only minor increases in the related metric of Web cache hit
rates.

In the second part of our paper, we show how our measure-
ment observations can be employed to develop approaches
for eliminating redundancy in the network. These mecha-
nisms are quite helpful in improving the overall capacity
of the network, especially at the Internet’s edges. The first
approach we propose - peak reducer - is similar in many
ways to the design in Spring et al. We use this as a building
block to design two unique new approaches, a link load
balancer and a general network redundancy eliminator. The
load balancing design relies on the networks having some
redundant, and perhaps idle, connectivity. This is common
to a number of network topologies, such as multi-campus
enterprises and multi-homed data centers. We show how to
effectively use redundancy in their data transfers to move load
from constrained links to underutilized links. Finally, weshow
that redundancy elimination can be applied in much more
general settings to reduce the overall load on the network.
Our general network redundancy eliminator design relies on
either the use of network coding-based techniques [1], [6] or
on simple extensions to our load-balancing techniques. The
preliminary evaluation of these techniques shows that network
traffic redundancy can be exploited effectively for applications
far beyond the single link techniques studied in the past.

The rest of the paper is structured as follows. Section II
describes our traces in greater detail. We present our mea-
surement results in Section III. Section IV describes our
redundancy elimination mechanisms. In Section V we survey
related work. We summarize the paper in Section VI.

II. DATA SETS

To quantify the extent of redundancy in network traffic, and
to shed light on the factors which contribute to the redundancy,
we collect several full packet traces at two distinct network
edge locations. The first is a large university’s access linkto
the commercial Internet, and the second is the link connecting
a tier-1 backbone router with a large data center.

Due to differences in the collection infrastructure at the
two locations, the two sets of traces differ in some impor-
tant respects. We describe the traces next and highlight the
differences in the traffic they capture. We summarize the key
characteristics of our traces in Table I.

A. University Traces

We monitored the access link of a large University located
in the US. The University has a 1Gbps full-duplex connection
to the commercial Internet and has roughly 50000 users. We
used Endace Systems’ DAG 4.3GE dual-port gigabit Ethernet
network monitoring card and the associated software for
capturing packets and writing them to disk. We logged entire
packets (including payloads) going in either direction on the
access link.

A couple of limitations of our storage infrastructure imposed
key restrictions on our data collection: First, our disk array was
unable to keep up with the traffic rate at peak utilization. As
a result, we were only able to log traffic from one direction
at a time. Second, the amount of space available on the disk
was quite limited. Hence, each of our traces cover at most a
few minutes’ worth of traffic observed on the link.

We collected two sets of traces at the University access
link. First, we collected several 60s-long traces between 6am
on Friday, Dec 15 and 9pm on Saturday Dec 16, 2006. On
average, we collected approximately 3 traces per hour for
either direction during this period, resulting in a total of147
traces for the inbound direction, and 147 for the outbound
direction. We alternated between inbound and outbound traffic,
with a gap of 30s between the traces for the two directions.
The total size of these traces is 558GB. Henceforth, for
ease of exposition, we shall use termUniv-In-60sto refer to
the inbound traffic traces, and the termUniv-out-60sfor the
outbound traffic traces.

Second, on Jan 26, 2007, we collected 191GB worth of
traffic – at least 6GB in each direction – at the beginning of
every hour starting at 10am and ending at 7pm. Again, we
alternated between the incoming and outgoing directions. On
average, each trace covered 150 seconds worth of traffic in a
particular direction. Henceforth, we shall use the termsUniv-
In-long andUniv-Out-longto describe these traces.

Our collection infrastructure incurred very few drops during
the trace gathering (< 0.1%).

B. Data Center Traces

We also collected traces at a link connecting a tier-1
backbone router to a large data center which hosts several
popular content providers. A majority (75%) of the traffic
served by the content providers is HTTP and Gaming traffic.

Trace name Description Dates/Times Span of each trace Number of traces Total Volume (GB)

Univ-In-60s Inbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 253
at university access link to 9:00 PM on 12/16/06

Univ-Out-60s Outbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 305
at university access link to 9:00 PM on 12/16/06

Univ-In-long Inbound traffic 10:00 AM on 01/26/07 150s worth of traffic 10 97
at university access link to 7:00 PM on 12/16/06

Univ-Out-long Outbound traffic 10:00 AM on 01/26/07 150s worth of traffic 10 94
at university access link to 7:00 PM on 01/26/07

DC-In-Out All traffic 4:27 PM on 01/22/07 38 min worth of traffic 1 42
at data center access link to 5:05 PM on 01/22/07

TABLE I

CHARACTERISTICS OF THE DATA TRACES

Actually, the data center was connected to the backbone via
several links and traffic from the data center was load-balanced
across these links at a flow level. We tapped exactly one of
these links.

Unlike the University traces, however, we were able to
tap both directions simultaneously for the Data Center traces.
Also, unlike the university traces, we were able to collect a
contiguous 38-minute long full packet trace. This trace was
collected between 4:27PM ET and 5:05PM ET on Monday,
Jan 22, 2007. The total volume of traffic collected was 42GB.
Hence forth, we shall use the termDC-In-Out to refer to this
data.

In all, we collect and analyze 791GB worth of packet-level
data.

III. D ECONSTRUCTINGREDUNDANCY

Our goal in this paper is to understand how we can build
mechanisms which leverage redundancy in network packets to
improve the overall capacity of the network. The effectiveness
of such approaches obviously depends on how redundant
network traffic really is. Clearly, if only a small fraction of
traffic is redundant, then the cost of deploying such mech-
anisms may not measure up to the observed benefits. Even
if network traffic is heavily redundant, in order to build the
optimal mechanisms which exploit the redundancy to the
fullest, we must understand several lower-level properties of
the redundant information, e.g., how do groups of users share
redundant bytes among each other.

With these questions in mind, we perform several “macro-
scopic” analyses over the above traces; these analyses help
us quantify the extent of redundancy. We also perform sev-
eral “microscopic” analysis which help us understand the
underlying nature and causes of redundancy. We present the
macroscopic analyses of the traces in Section III-B, followed
the microscopic analyses in Section III-C.

The unique contributions of our measurement analysis are
as follows:

1) The extent of redundancy in network traffic is significant
but differs vastly for different network locations: it is
around 15% for the University traces, and 45% for the
data center traces.

2) Eliminating redundant bytes from network traffic could
smooth out variations in link utilization significantly.
The difference between peak and minimum traffic can
be shrunk by 25% for the university link and 52% for
the data center link.

3) Strings of bytes which are repeated a few times (< 3
repetitions) contribute 50-70% of the observed redun-
dancy. On the other hand, highly popular strings of
bytes which are repeated> 10 times, make a minor
a contribution (15-30%). Thus, natural implementation
alternatives in redundancy elimination systems, such as
using smart cache replacement policies, may not work
well in practice.

4) The amount of redundancy grows steadily with the
number of users that are sharing a network link. This
indicates that redundancy elimination systems may offer
better benefits when they are deployed at network aggre-
gation points such as access routers. Also, the amount
of redundant information can be reduced significantly
if groups of users can share bytes from each other’s
transfers.

Before describing the results from our analysis in greater
detail, we first outline the approach we use to identify redun-
dant strings of bytes from packet payloads (Section III-A).

A. Protocol-independent Redundancy Detection

As mentioned in Section I, we wish to study redundancy at
the level of the individual bytes in packets. Springet. aldevel-
oped an approach which uses random finger-prints to identify
strings of bytes which are repeated across packets [11]. The
approach treats the content of packets as a stream of bytes
and does not distinguish packets on the basis of application
or protocol. Hence, it may even find redundancy in packets
belonging to completely unrelated applications.

We use this approach in our study of redundancy as well.
Next, we provide a detailed overview of this approach.

For each packet, we compute a set of “fingerprints”: a
fingerprint is the output from applying a hash function to a 64
byte sub-string of the packet’s payload. Thus, if a packet has
S bytes in its payload,S ≥ 64, we compute a total ofS − 63

fingerprints. For packets containing fewer than 64 bytes, we
simply compute a single hash over the entire payload.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

Percentage redundant

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

Percentage redundant

(a) Incoming (b) Outgoing

Fig. 1. Fraction of redundant bytes at the University accesslink. The x-axis it the time elapsed (in minutes) since the start of our trace collection at 6:00AM.

We select a small subset of these fingerprints and call them
the representative fingerprints for the packet. Essentially, the
representative fingerprints are “hooks” into the packet payload
which we use to find redundant content. We store a packet’s
representative fingerprints in a “fingerprint index” and the
packet’s payload in a “packet store”. The index maps the
fingerprint one-to-one onto the region in the packet’s payload
which the fingerprint describes.

For an incoming new packet, we similarly compute its
representative fingerprints. For each representative fingerprint,
we check if it already exists in the index. Say exactly one
representative fingerprint sees a hit in the index. This means
that the incoming packet has a 64 byte sub-string that matches
with a packet currently in cache. We find the matching packet
indexed by the fingerprint and expand the 64 byte matching
region in both directions to obtain the maximal region of bytes
which are common to the two packets. We insert the new
packet into the packet store and change the association in the
index so that the matching fingerprint points to the bytes in
the new packet’s payload.

After finding a maximal match region between an incoming
packet and a cached packet, we check to see if other represen-
tative fingerprints of the incoming packet see hits in the index
as well. When this happens, it means that different regions
of an incoming packet have matched with distinct regions
of one or more cached packets. As before, we compute the
new maximal match regions, and perform the re-association
of the matching fingerprints in the index. Finally, we compute
the number of bytes in the union of all match regions in the
incoming packet.

This approach uses a simple FIFO algorithm for managing
the packet store upon overflow: when the packet store is full,
the earliest packet in the store is evicted and all fingerprints
which map to it are freed.

B. Traffic Redundancy: Macroscopic Analyses

In this section, we perform a few macroscopic analyses
which help us gain a superficial understanding of traffic
redundancy. Specifically, we focus on quantifying the extent
of redundancy and not so much on understanding the causes
thereof. We also study how factors such as the link utilization
impact the amount of redundancy we observe.

Extent of Redundancy.We focus on the Univ-In-60s, Univ-
Out-60s and DC-In-Out traces in this analysis. Where possible,
we compare observations from the two sets of traces, but for
brevity we present a majority of our results for the University
trace. As mentioned previously, we use the technique devel-
oped by Spring et al. to identify redundant bytes.

The machines on which we analyzed the data center traces
had a limited amount of memory, which constrained the size of
the packet store to≤ 0.4GB. We had a much larger amount of
memory on machines where we analyzed the University traces.
However, we use a 0.4G packet store to analyze the University
traces as well to allow for a direct comparison with the data
center results.

Note that the initial 0.4G of each trace will see fewer hits
than the rest of the trace and will contribute mainly to warming
up the packet store. To ensure this does not distort the amount
of redundancy we observe, we report results only for data
appearing past the first 0.4G in a trace.

In Figures 1(a) and (b) we show the fraction of redundant
bytes over time for Univ-In-60s and Univ-Out-60s traces. We
see that on average, 12.51% of the incoming bytes and 15.87%
of the outgoing bytes are redundant. On occasion, as many
as 22% and 21% of the bytes in the incoming and outgoing
direction are redundant. In general, we note that there are
several instances where redundancy in the incoming traffic is
quite low.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

sa
vi

ng
s

Time elapsed

Data Center

Fig. 2. Fraction of redundant bytes at the Data Center accesslink. The x-
axis it the time elapsed (in minutes) since the start of our trace collection at
4:27PM.

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500
 0

 5

 10

 15

 20

 25

D
at

a
in

 M
bp

s

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

All bytes
Unique bytes

Percentage savings

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500
 0

 5

 10

 15

 20

 25

D
at

a
in

 M
bp

s

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

All bytes
Unique bytes

Percentage savings

(a) Incoming (b) Outgoing

Fig. 3. Volume, in Mbps, of all bytes, and unique bytes.

In Figure 2, we show results from our analysis of the DC-In-
Out traces. We find that the extent of redundancy is much more
pronounced for the data center: on average, 45% of the bytes
are redundant, which is almost 3X higher than the redundancy
factors for the University! In a way, this is expected: the
university access link serves a very diverse user base, while
the link to the data center caters to a homogeneous group of
users most of whom are interested in accessing the few content
providers hosted at the data center.

The utilization on the link to the data center was fairly
low throughout our trace collection, ranging between 13% and
18%. Although we don’t have data to corrobate it, we believe
that the fraction of redundancy we observe in the data center
traffic will remain roughly the same even at very high link
utilization because the number of content providers hostedat
the data center is fixed and limited; a greater traffic volume
translates directly to more requests for the same content.

Link Utilization. We now study how the amount of redun-
dancy depends on the volume of traffic or the utilization of
the network link. If there is a positive correlation – that is, the
fraction of redundant bytes is monotonic in link utilization
– then we can significantly limit the variation in the link
utilization by removing the redundant bytes.

In Figure 3(a) and 3(b), we plot the volume in Mbps of all
bytes for the Univ-In-60s and Univ-Out-60s traces (y1-axis).
We overlay the fraction of redundancy in the same Figure
as well (y2-axis). Contrary to what we expected, we see a
slight negative correlation between the fraction of redundancy
and the volume of traffic for inbound traffic (Figure 3(a)).
However, we there is a definite positive correlation for the
outbound traffic (Figure 3(b)).

How do these correlations affect the usefulness of redun-
dancy elimination techniques? To answer this question, in
Figures 3(a) and 3(b) we also plot the volume in Mbps of
unique bytes. Comparing the total traffic volume with the
volume of unique bytes, we note the range of link utilization
can be substantially lowered by eliminating redundant bytes:
The difference between peak traffic volume to minimum traffic
when all bytes are considered is 270Mbps for Univ-Out-60s
and 420Mbps for Univ-In-60s; When only unique bytes are
considered the differences are 200Mbps (∼ 25% lower) and

370Mbps (∼ 12% lower). Because of the positive correlation
with load, the reduction is much more impressive for the
outbound direction than the inbound direction.

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

M
bp

s

Time elapsed

Data Center all bytes
ATT Data Center unique bytes

Fig. 4. Volume, in Mbps, of all bytes, and unique bytes for theData Center
traces.

The difference between the peak and minimum traffic
volumes for the data center, shown in Figure 4, is 54Mbps.
It reduces by 52% to 26Mbps when only unique bytes are
considered. Thus the benefits are more dramatic in the data
center setting.

Thus, eliminating redundant bytes from network traffic can
reduce the variations in link utilization by a significant amount.
In Section IV, we leverage these observations to motivate the
design of a “peak reducer” for reducing the load on constrained
network links.

Redundancy vs Packet-store size.In practical redundancy
elimination devices, the size of the packet store contributes
crucially to the overall cost and performance of the devices.
Larger packet stores may help identify and eliminate more
redundancy than small stores; however, it may be very ex-
pensive to provision larger stores on the devices. Thus, unless
the improvement in the fraction of redundancy identified is
significant, large packet stores may not be a viable option.

In the above analyses, we used a fairly small packet store of
size 0.4GB. To understand if larger packet stores can capture a
much greater amount of redundancy, we analyze the Univ-In-
Long and Univ-Out-Long traces using packet stores of sizes
S = 0.5GB, 1GB and 2GB. Just like the previous analyses,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 10 100 1000 10000

P
er

ce
nt

ag
e

fr
ac

tio
n

of
 fi

ng
er

pr
in

ts
 s

ho
w

in
g

at
le

as
t x

 h
its

No. of hits on a fingerprint (log scale)

Incoming-60sec-2006-11-15-13.33.pcap

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1 10 100 1000 10000

T
ot

al
 n

o.
 o

f h
its

 o
ve

r
al

l f
in

ge
rp

rin
ts

 w
ith

 >
=

x
hi

ts

No. of hits on a fingerprint

Incoming-60sec-2006-11-15-13.33.pcap

(a) 2GB snapshot: 1:30PM (b) 2 GB snapshot: 1:30 PM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 10 100 1000 10000

P
er

ce
nt

ag
e

fr
ac

tio
n

of
 fi

ng
er

pr
in

ts
 s

ho
w

in
g

at
le

as
t x

 h
its

No. of hits on a fingerprint (log scale)

Incoming-60sec-2006-11-15-15.1.pcap

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1 10 100 1000 10000
T

ot
al

 n
o.

 o
f h

its
 o

ve
r

al
l f

in
ge

rp
rin

ts
 w

ith
 >

=
x

hi
ts

No. of hits on a fingerprint

Incoming-60sec-2006-11-15-15.1.pcap

(c) 2GB snapshot: 3:00PM (d) 2 GB snapshot: 3:00PM

Fig. 5. Popularity of content in two traces: In Figures (a) and (c), we show a CDF of the number of fingerprints which see a certain minimum number of
hits. In (b) and (d), we show the total number of hits contributed by all fingerprints which see a certain minimum number of hits. Figures (a) and (b) are for
a Univ-In-60s trace collected at 1:30PM, while (c) and (d) are for a Univ-In-60s trace collected at 3:00PM.

we compute the redundancy fraction for the data past the first
S bytes in the trace. Although we do not show the results
here, when we setS = 2GB, the fraction of redundancy was
3-4 percentage points higher for Univ-In-Long traces, and 4-6
percentage points higher for Univ-Out-Long traces compared
to the 0.4G packet store. These improvements are significant
relative to the average redundancy withS = 0.4G (this fraction
is 15% for the Univ-In-Long traces and 18% for the Univ-
Out-Long traces). Thus, while our 0.4G packet store is able to
capture a majority of the redundant bytes in our traces, using
larger packet stores may help capture a significant amount of
additional redundancy.

C. Microscopic Analyses

While the previous section shed light on the prevalence of
redundant information in network traffic, in this section, we
explore several lower-level aspects of the redundancy. Ourgoal
here is to understand in detail the nature of redundancy, i.e.
key properties which are common to the redundant bytes.

Redundancy Pattern. The first question we ask is the fol-
lowing: is the redundancy in network traffic primarily due to
a few pieces of content repeated multiple times or multiple
pieces of content repeated a few times each? If the former is
true, then, a small packet store which caches only the most
frequently accessed chunks of packet data would be sufficient
for identifying a significant fraction of all redundancy in
network traffic. However, if the latter is true we may have

to store many more chunks of data in a much larger packet
store.

To answer this question we must count how often a “chunk
of data” appears in different packets. This is difficult to track
because a given data chunk may not repeat as a whole across
packets; instead, different parts of a data chunk may repeat
in different sets of packets. To simplify things we focus on
small fixed-size chunks instead; specifically, we count how
often 64B substrings repeat in a trace. Since the total number
of 64B substrings is almost as large as the total number of
bytes in packet payloads, tracking the frequency counts forall
substrings is computationally difficult. Thus, we perform this
analysis on small snapshots (1GB and 2GB long) of the traces
we collected.

In Figures 5(a) and (c), we show a CDF of the number
of 64B chunks which see a certain minimum number of
matches for 2GB-long snapshots of Univ-In-60s trace collected
at 1:30PM and 3:00PM. The redundancy fraction in these
traces was 15% and 14%, respectively, were redundant in these
traces. The results for 1GB snapshots we qualitatively similar
and we omit them for brevity.

First, we note that∼ 97% of the chunks do not see even a
single match. Among the chunks that do see a match, a large
fraction see very few matches:∼ 80% see under 3 matches,
fewer than3% see more than 10 matches, and a handful of
chunks see as many as 1000 matches.

To put these numbers in better perspective, in Figures 5(b)

and (d), we show the total number of matches contributed
by chunks which see a certain minimum number of matches.
Figures (a) and (c) showed that few chunks see more than
10 matches, and a negligible fraction see more than 50 or
100 matches; Complementing these results, Figures (b) and
(d) show that the aggregate number of matches contributed
by such chunks is also not very high. For example, chunks
which see at least 10 matches contribute to 30% of all hits for
the 1:30PM trace and 14% of all hits for the 3:00PM trace.
For chunks which see at least 100 matches, the contribution is
even lower: 8% for the 1:30PM trace and 5% for the 3:00PM
traces.

This suggests that a major fraction of the redundancy we
observe arises from multiple chunks of data which see a
handful of hits each. We also analyzed two Univ-Out-60s
traces and two DC-In-Out traces in a similar fashion, and
observed qualitatively similar results. We omit results for
brevity.

As we mentioned in Section III-A, Spring et al store packets
in a FIFO order, evicting the oldest packet upon overflow. So
is FIFO ordering a good idea in practice? Our initial thinking
was that employing “smarter” cache management techniques
such as LRU (evicting the least recently used) or Frequency
Counts (evicting a packet which saw the fewest hits) may yield
better overall redundancy. However, the above results suggest
the “smarter” cache management approaches are unlikely to
offer any improvement over FIFO.1

Properties of Users’ Sharing.In Section I, we posited that
one of the key reasons for the prevalence of redundant infor-
mation is an overlap in user interests. In practice, the extent to
which this contributes to the overall redundant traffic, andto
how one can exploit redundant information, depends on how
groups of users share interests and information. Consider two
situations: one where users belonging to different departments
in a university have no overlap in interests, and another where
there is a significant overlap. Within any window of time, we
would expect to see a greater fraction of redundancy bytes in
the latter case. Also, if groups of users in the latter case are
able to share redundant bytes with each other, then this can
save a significant amount of network bandwidth.

This notion of sharing of bytes has a counterpart in cooper-
ative Web proxy caches [4], [13]. The benefits of such systems
were studied extensively by Wolman, et al. in [13], [14].
However, there is a subtle but important difference between
cooperating proxies and sharing redundant bytes across groups
of users. We explain the difference later in Section IV.

We now explore how the sharing of bytes among groups of
users impacts the observed redundancy. We focusing on the
Univ-In-60s traffic traces. Since we do not track individual
users in our traces, we approximate the sharing among users by
instead studying sharing of information among distinct internal
IPs.

We study the dependence of the fraction of redundancy

1In fact, we implemented LRU and found that it offers no benefitover
FIFO.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5000 10000 15000 20000 25000

S
av

in
gs

 p
er

ce
nt

ag
ew

is
e

No. of users taken together

Incoming-60sec-2006-11-15-9.37.pcap
Incoming-60sec-2006-11-15-8.10.pcap

Incoming-60sec-2006-11-15-13.33.pcap
Incoming-60sec-2006-11-15-12.1.pcap
Incoming-60sec-2006-11-15-9.37.pcap

Fig. 6. Fraction of redundancy vs number of IPs for four Univ-In-60s traces.
Error bars are show for just one of the four traces. The utilization of the links
at these four time instances are: 180Mbps (0810 hrs), 260Mbps (0937 hrs),
353Mbps (1200 hrs) and 422Mbps (1333 hrs).

Fig. 7. Proxy cache byte hit rate as a function of client population in the
UW study (circa 1999). This figure is a reproduction of Figure1 in [13].

on the number of users sharing information in four Univ-
In-60s traces collected at distinct times-of-day. We use the
largest possible size for the packet store within the constraints
on our setup, namely 2GB. Some of the 60s traces were
> 2GB in size while others were smaller and therefore the
traces experience cache warming effects to varying degrees.
To ensure that this does not create a bias in our analysis, we
analyze only a 2GB snapshot from the beginning of each trace
because it is guaranteed to fit entirely within the packet store.

The results from our analysis of the four traces are shown
in Figure 6. For each trace, we produce the fraction of
redundancy atS client IPs by computing the average amount
of redundancy within the traffic destined for 5 random subsets
of S IPs each.

Before interpreting these results, we draw the reader’s atten-
tion to Figure 7 which plots the byte hit rate as a function of
client population size for a large proxy cache at the University
of Washington (this is reproduced from [13]). There is a clear
evidence of diminishing returns in the object hit rate. Our
analysis of the Univ-In-60s traces shows a steadier increase
in the fraction of redundancy: In Figure 7, the improvement
in the object hit rates between 2000 clients (43%) and 10000
clients (52%) is small relative to the hit rate for 2000 clients.

The relative improvement is more impressive in Figure 6 –
10% at 200 clients to 15% at 10000.

Fig. 8. Interpreting the user-sharing results.

Wolman, et al. suggest that sharing objects among a large
collection of cooperative caches deployed across an entire
organization is not very beneficial compared to using indepen-
dent caches for small groups of users (e.g. per department).
In contrast, our results suggests that redundancy elimination
techniques may be more beneficial if they are deployed at
locations where traffic aggregates from a large number of
users, e.g. the border router of an enterprise. This is shown
pictorially in Figure 8. Our results also suggest that coopera-
tion among redundancy elimination boxes (shown with $ signs
in Figure 8) that serve small groups of users can substantially
improve redundancy identification within a network. In turn,
this can save bandwidth on internal network links (Figure 8).
In Section IV, we use these observations to guide the design
of a network link load-balancer which facilitates sharing of
redundant bytes across packet stores shared by different groups
of users.

The previous groups arbitrary sets of users together. To
understand if a more informed grouping users according to
their network location network affects our observations, we
grouped the IPs into /24 address blocks. Upon analyzing the
dependence between the number of /24s sharing data with
each other, and the amount of redundancy identified, we saw
the same trends as Figure 6. We omit these results from the
paper.

Redundancy in popular applications. In Table II, we show
the redundancy that we observe in popular network applica-
tions. For each application, we show what fraction of all bytes
belong in the application, and the fraction of redundancy in
the application’s data. Our observations here are different from
Spring et al. in a few key ways. For example, Spring et al. [11]
found HTTP traffic and SMTP traffic to be modestly redundant
(∼ 30% and∼ 20%, respectively, when averaged across in-
bound and outbound). In contrast, we see that the redundancy
in SMTP traffic is much higher, while the redundancy in HTTP
traffic is lower. Also, Spring et al. observed a much larger
fraction of port 80 traffic (62% averaged across inbound and

outbound) of all bytes belong to port 80 traffic, while we an
average of 45%. These differences show evidence of the shift
in the application mix and usage since 1999. We also note that
5% of all bytes, on our average belong to HTTPS and hence
are part of encrypted payloads. As expected, HTTPS shows
minimal redundancy.

IV. EXPLOITING REDUNDANCY

In the previous section, we studied the extent and the
nature of redundant bytes in network traffic. We found that a
significant fraction of bytes are redundant and that sharingof
redundant bytes among groups of users can yield significant
benefits. Next, we show how to leverage these observations
to design mechanisms for improving network performance.
Specifically, we present three different techniques which can
be used to manage scarce network capacity at edges of the
Internet. Here, we make liberal use of the term “edge” to
include: (1) stub networks, (2) data centers (3) ISP access
infrastructures, (4) the network infrastructure of small,regional
tier-3 or tier-4 ISPs, and (5) boundaries between neighboring
ISPs, or peering locations, specifically those involving small
regional ISPs.

The Internet’s edge is known to be capacity-limited. It is
widely believed that bandwidth constraints at last mile home
access links contribute to the packet drops and queuing delays
experienced by most Internet transfers. Enterprises and stub
networks lack the economic means and incentives to over-
provision their access connections. Large data-centers buy
plenty of excess bandwidth from their ISPs to accommodate
surges in traffic; but the excess bandwidth is also quite
expensive.

Even if we set last mile constraints aside, recent measure-
ment studies have shown that limited bandwidth provisioning
in smaller ISPs, such as regional and local ISPs, DSL and
Cable Internet providers, can also cause serious congestion
on end-to-end transfers [2], [5]. These studies also show that
network peering points have very little spare capacity; in
particular, at peering links where one or both ISPs are small
(e.g. tier-3 or tier-4), the available capacity is often under
10Mbps.

In what follows, we present three preliminary techniques
which leverage traffic redundancy to save bandwidth and
enable cost-effective management of traffic at the afore-
mentioned edge locations.

Our first technique – peak reducer – is similar in many
ways to the design in Spring et al. and can help reduce traffic
variations on individual network links. Our second technique
– load balancer – can use redundancy elimination to move
traffic from constrained links to under-utilized links. Ourthird
technique uses redundant traffic to either identify network
coding opportunities [1], [6] or to perform load balancing
across multiple end-to-end paths in a network. We present
preliminary evaluation results that show the effectiveness of
these techniques.

Port Number Protocol Univ-In-60s Univ-Out-60s
% of all bytes % redundancy % of all bytes % redundancy

20 ftp-data 0.04 16.93 1.1 7.5
25 smtp 0.02 22.69 0.08 70.63
53 dns 0.22 21.39 0.14 47.99
80 possibly http 58.10 12.49 31.69 20.37
443 https 0.60 2.00 3.59 2.08
554 rtsp 3.38 1.99 1.34 24.40

TABLE II

REDUNDANCY IN KEY APPLICATIONS

A. Redundancy Eliminator/Peak Reducer

The first approach we propose is a simple “Redundancy
Eliminator” or “Peak Reducer” which works across individual
network links. This is based on a similar idea that was sketched
in [11]. We will use the redundancy eliminator as a basic
building block in the remaining two techniques.

Fig. 9. Redundancy Eliminator/Peak Reducer.

Referring to Figure 9, we assume that neighboring routers
A and B use the algorithm in Section III-A for identifying
redundant content. Both routers store the contents of the packet
they saw in the recent past, and they use packet stores of
the same size. As mentioned earlier, packets in the store
are indexed by a small number of finger-prints. When an
incoming packet has a matching fingerprint, we grow the
matched bytes leftward and rightward to obtain the maximal
match region. Redundancy elimination works at router A for
packets traversing the A–B direction.

Say a fraction of bytes in packet P’, which arrives at time T1
at A, match with those in packet P which arrived at time T0,
T 0 < T 1. When A encounters P’, it computes the maximal
match region with packet P. A then transmits a stripped version
of P’, say P”. P” has the same header as P’, a shim header, and
the bytes which are not common to P and P’. The shim header
contains (1) the fingerprint which matched in the two packets
(4 bytes) and (2) the byte range summarizing the match region
corresponding to the fingerprint (∼ 4 bytes per match region).
A also marks a bit in the P” IP header (e.g. in the TOS field)
to indicate to B that new P” needs reconstruction.

When B receives P”, it parses the shim header, looks up the
packet P using the finger-print (note that in B’s packet store,
the fingerprint will point to the packet P), retrieves the bytes
from P as indicated by the byte range and inserts them into
P”, to create P.

In our original description of Spring et al’s algorithm in
Section III-A, we noted that the approach could identify

multiple match regions within the same packet. One might
consider encoding only the first one or two matching regions
and ignore other matching regions to keep the size of the
shim header small. We evaluated this approach using Univ-In-
60s traces and found that it misses out on a large fraction of
redundant bytes (we saw a reduction in the redundancy fraction
by 15% when we encoded the first three match regions).
Thus, practical implementations must either use a large fixed-
size shim, or a variable length shim which encodes all match
regions.

By filtering out redundant bytes from packets traversing the
A-B link, the peak reducer lowers the average link utilization.
As we show in Figures 3 and 4 of Section III-B, the redun-
dancy elimination approach can also significantly reduce the
variations in the volume of traffic network links. Thus, when
networks use redundancy eliminators on their links, they will
have less of a need to over-provision link capacity.

B. Redundancy-based Load Balancer

The above approach applies the benefits of redundancy
elimination to managing load on individual network links. This
is useful to manage the capacity on an enterprise access link,
a congested link in an ISP’s access tree, or at a peering link.

We now propose a “Load Balancer” which extends the
benefits across several links of a network, specifically to links
which share a ingress end point. This approach leverages the
observations in Section III-C that the amount of redundancy
that we can identify increases steadily with the number of
users sharing information.

We illustrate the approach using the example in Figure 10.

Fig. 10. Redundancy-based load balancing.

Say router A receives a packet P’ at time T1. According
to A’s routing table, the next hop for P’ is C; by default, P’

would have traversed A-C-D’ to reach its eventual destination
D’.

We propose a simple modification to traditional route look-
up at A and argue that this modification can save the bandwidth
on links A-C and A-B. We assume that all routers—A,
B and C—use a single packet store and they all employ
the redundancy eliminator approach to identify and encode
redundant information.

Our modification requires that A look not only at the
destination address in P’, but also at the payload in P’ to
compute the next hop. To do this, A annotates each packet in
its store with the interface on which it was forwarded.

Thus, referring to Figure 10, when A receives P’, the
annotation in A’s packet store will indicate that some of the
bytes in packet P’ have already traversed the A–B link at an
earlier time, say as part of packet P. Instead of sending P’ along
A–C according to its traditional routing table, A invokes its
redundancy eliminator to send the unique bytes in P’ (i.e. diff
(P’, P)) to B, along with the matching fingerprint and the bytes
range for the redundant region. B can then reconstruct P’ from
its cache. On the other hand, if router A finds that the bytes
in P’ are all unique, then it sends P’ to C, just as its routing
table dictates.

After the reconstruction, B looks up the destination address
for P’ in its routing table and forwards it along to the
destination. This may take P’ along the B-C-D’ path or along
an entirely different route; this depends on B’s routing table.

Discussion of the approach.This approach is a variant of
traditional load balancing, but with two key differences. First,
it functions at a packet level while traditional load balancing
approaches work at a flow level. We acknowledge that this will
create reordering in packets received by end-hosts.2. Second,
unlike load balancing, it can lower the aggregate network
traffic volume at the same time as balancing the load on links.
Thus, redundancy-based load balancing increases the overall
capacity of the network.

We make a few key assumptions above in the above sim-
plistic description of load balancing: First, we assume that the
amount of spare bandwidth on the path between B and D’ is at
least as high as the spare bandwidth on the path between C and
D’. If this is not true, then the load balancing approach may
overload network links which are already congested. Thus,
for the approach to be effective, routers in the network must
have reasonably accurate information on the status of various
network links.

Second, we assumed that both B and C are located in the
“general direction” of D’. If this is not the case, then load
balancing can cause packets to linger in a network for a long
time. To prevent this from happening, the load balancer can
keep a short list of 2-3 “good” next hops per destination (i.e.
routers which take packets closer to the destination), and only
use these hops to forward packets.

The load balancing approach is similar in spirit to sharing

2However, several recent mechanisms have been proposed for dealing with
out of order packet arrivals at end-hosts [16].

among proxy caches, but there is an important difference. For
redundancy-based load balancing to work, we either need: (1)
a direct link between the packet stores which are sharing bytes,
or (2) a path between them that bypasses the network links
which are traversed by packets arriving at the packet stores. We
note this is common to a number of network topologies, such
as multi-campus enterprises and multi-homed data centers.In
contrast, the requirements are less stringent for proxy caches:
as long as proxy caches are closer to the groups of users
they serve than to most general Internet Web servers, they can
offer significant savings in Web access latency and wide-area
bandwidth.

Fig. 11. Emulation of Redundancy-based load balancing.

Preliminary Evaluation. We now present preliminary evi-
dence of the benefits of our load balancing approach. Specif-
ically, we show how sharing redundancy within a network
can improve the fraction of redundant bytes which can be
eliminated from network links.

To perform this study, we use a simple emulation running
on a stand-alone PC (See Figure 11). We modified Spring
et. al’s approach to use an annotated packet store, and to
forward packets using both the destination address as well
as the redundancy in the packet payload, as described above.
We run the load balancer on our stand alone PC.

We feed several Univ-In-60s traces into the PC. Thus,
the PC emulates the University’s border router. We obtained
the forwarding table from the university border router and
use the table to map the packets in Univ-In-60s traces onto
“virtual links” incident on the stand alone PC. The virtual
links represent university-internal links which carry incoming
traffic to internal destinations. We call them “virtual” because
any packet we send on them during our emulation is simply
used for tallying the redundant bytes and then dropped. We
used a 2GB packet store on the PC.

Based on the border router’s routing table, we had to use
∼ 10 such virtual links. Of these, two links—which we
call link A-B and link A-C—carried the greatest amount of
incoming traffic during the course of our measurements. In
reality, routers B and C are connected by an internal network
link as well.

The central goal of our emulation experiment is to quantify
the additional byte savings from applying the load balancing
approach at the border router. We present the results of our

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

Absolute redun percent
Same Link redun percent

Across Links redun percent
Added redun percent

Link A-B borrowing from A-C

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

re
du

nd
an

cy

Minutes elapsed

Absolute redun percent
Same Link redun percent

Across Links redun percent
Added redun percent

Link A-C borrowing from A-B

(a) Link A-B (b) Link A-C

Fig. 12. Analysis of the benefits of redundancy-based load balancing using a simple emulation set-up.

emulation in Figure 12. Our analysis uses the Univ-In-60s
traces.

Figures 12(a) and (b) show the fraction of redundant bytes
traversing the A-B and A-C links, respectively, when load
balancing is not employed. This is labeled “same link” re-
dundancy. The fraction varies between 5% and 25% on link
A-B, and 5% and 15% on link A-C. In a few cases we see
that the fraction of redundancy on either link is higher thanthe
overall redundancy in the Inbound traffic at the university (this
is labeled “absolute” redundancy). However, in a majority of
instances, the links A-B and A-C see lesser redundancy than
the overall amount.

We also show the additional redundant bytes on link A-B
and A-C when load balancing is employed across all internal
links. We plot this as a fraction of all bytes traversing the link
and label it “across links” redundancy. This emulates anideal
situation where links A-B and A-C are able to share redundant
bytes with all other internal links incident on the border router,
as well as with each other. We see that, on average, the
magnitude of the additional redundancy is roughly a third of
the redundancy on the link. Surprisingly, there are instances
where the added redundancy fraction is comparable to the
redundancy within the link. By summing up the additional
redundancy and the redundancy in traffic within a link, we
can observe the benefit that load balancing brings to traffic
on a single link; this is shown by the line labeled “Added”
redundancy which closely tracks, and some times overshoots,
the overall redundancy fraction at the border router. These
results show evidence of the value of redundancy-based load
balancing in managing the load on groups of network links.

Finally, Figures 12(a) we show the additional redundant
bytes on link A-B when load balancing is applied only across
A-B and A-C (As we mentioned earlier, an internal link
directly connects nodes B and C in the University network).
A similar curve is shown for link A-C in Figure 12(b).
Again, there are several instances where both links benefit
significantly by sharing redundant bytes with each other using
the load balancing approach.

Possible deployment domains.In a practical deployment,
the load balancer will likely be deployed at “aggregation
points”, such as enterprise gateway routers and ISP peering

routers. Other “internal routers”, such as department gateways
in a university should simply use the rudimentary peak re-
ducer/redundancy eliminator. Also, the load balancing func-
tionality could be turned off by default, and switched on as
soon as the load on network links crosses a certain threshold.

Next, we enumerate several operational scenarios where
redundancy-based load balancing could prove very useful.
Multi-homed data centerswhich load-balance out-bound traf-
fic on their ISP connections can employ this approach to
optimize the usage of their multiple Internet connections.Of
course, the ISPs must be willing to cooperate with the data
center (e.g. in reconstructing packets).
Multi-campus enterpriseswhich buy expensive VPN services
from large ISPs to connect multiple branches together can
also use this approach to save bandwidth costs on their VPN
tunnels. For example, suppose an enterprise uses three VPN
tunnels to connect its head office in New York city (equivalent
to router A in Figure 10), with branch offices in Yorktown, NY
(router B) and White-Plains, NY (router C), and to connect
its branch offices directly. When an important memo from
the NYC office needs to be distributed to all employees, our
load balancing approach will ensure that the tunnels carry a
minimal amount of traffic.
Regional ISPswhich serve limited geographic regions, e.g.
tier-3, tier-4 and DSL providers, can also find this approach
useful. If the ISP has a backbone of its own, then this approach
is directly applicable: for example, out of the 10 tier-3 ISPs
study in the Rocketfuel project [10], one ISP has a small, 3-
PoP, fully-connected backbone which looks very similar to the
triangle configuration in Figure 10 (AS 3701). The inter-link
latencies are 5-10ms.

Even if the ISP leases connectivity at multiple locations
from a single large ISP, the approach is still applicable (this
situation is analogous to the multi-campus enterprise example).
Of course, the larger ISP must agree to perform the load
balancing.
Finally, single-campus enterpriseswho may not have the
means to over-provision their internal network links can use
this approach to for intra-enterprise traffic management. If the
enterprise’s IP network is a tree rooted at its Internet gateway,
then the approach is useless. However, we expect that most

small enterprises would add a few additional internal linksfor
redundancy reasons as well as to maintain internal connec-
tivity in the event that the Internet gateway goes down. The
university network we study in this paper has the property that
a few “cross links” connect different departments internally.

C. Exploiting Network-wide Redundancy

We now discuss two other techniques to exploit redun-
dant information traversing unrelated network links. These
approaches take a more holistic view of the redundancy in the
information carried by the entire network. These approaches
are useful to further reduce the load on backbone links of
small region ISP networks.

We develop these techniques using the toy example in
Figure 13(a). This figure shows the backbone network of a
small ISP, consisting of four routers - A, B, C and D - located
at different PoPs, and two internal routers E and F. Two similar
copies of packet P enter the network at A, destined for C and
D respectively. Two copies of another packet Q enter at B,
destined again for C and D. The routes taken by the packets
in the default case, where routers forward on the basis of
destination address alone, are shown in Figure 13(a). Note
that the total number of packets traversing all links in this
example in 8.

Network Coding. The first technique we proposed is based on
network coding [1], a topic of intense recent interest in both
the networking and theory communities. Several techniques
based on network coding have been proposed to improve the
throughput of multicast transmissions [17], [3]. Recently, Katti
et al have shown how to extend the benefits of network coding
to unicast traffic in the wireless domain [6]. They argue thatthe
broadcast nature of the wireless medium, where a single packet
transmission can be heard by multiple receivers at once, can
create several unique opportunities for coding. In what follows,
we use an example to argue informally thatredundant content,
which may in fact span multiple related or unrelated unicast
or multicast streams, can offer similar coding opportunities as
well.

We illustrate network coding in Figure 13(b). Say routers A
and B employ a modified load balancer which simply marks
a few bit in the header of a repeated packet indicating that a
similar packet was forwarded on a different network link. The
modified load balancer simply forwards the marked packet
along the default forwarding routes. Thus, in Figure 13(b),
router A marks a few bits in the header of the copy of P
traversing the A–E link, indicating that a similar copy was
forwarded on another network link (A–C) toward C. Similarly,
B marks the copy of Q traversing the B–E link indicating
that another copy was forwarded toward D. When E receives
the marked packets, it immediately identifies an opportunity
to performing “coding” on the information contained in the
packets: E combines the packets and forwards a single copy
of P ⊕Q to F. F duplicates the combined packet and sends a
copy each to C and D. C can in turn retrieve Q from P and
P ⊕Q. The total number of packets traversing the network in
this example is 7, one less than the default case.

Next, we present a variant of load-balancing which is a
simpler to implement. Also, as we will show, the approach
can offer better performance than the coding approach for the
example we consider (We have constructed other examples
where coding is identical to or marginally better than the
approach below. We omit these for brevity).

Load-balancing revisited. Consider Figure 13(c), where we
show how redundancy-based load balancing at routers A and
B can further improve the load on the network. In this case a
single copy of P and Q first traverse the A–C and B–D links
respectively. When it is time to send another copy of P to
D, router A sends a small token to C, just like in the peak
reducer example, indicating C to retrieve a copy of P from its
packet store, and forward it along to the eventual destination.
A similar sequence of actions are executed independently for
Q. It may well be the case that according to C’s routing table,
the reconstructed copy of P must be forwarded to D via F,
and then onward to the final destination. In this case, the total
number of packets traversing all network links is 6, one less
than the coding example, and 2 less than the default routing
approach.

Coding vs. Load-Balancing.while the network coding ap-
proach is theoretically appealing, it faces serious implemen-
tation challenges. For example, router E may have to buffer
“code-able” packets such as P for a small amount of time, until
a suitable counterpart is found. In the above example, Q is suit-
able for P because a replica of Q has already been forwarded to
the network location (i.e. router D) where P eventually needs
to go. Packets must carry additional information for routers to
consider them suitable for coding. Also, only the redundant
bytes in the packets can be coded together. The unique bytes
must be transmitted separately, and this may require the packet
to be fragmented.

In contrast with the coding approach, the load-balancing
approach is much simpler to implement. The routers in the
load-balancing approach use purely local information to make
forwarding and redundancy elimination decisions. For exam-
ple, the load balancing approach treats P and Q independently,
while the coding approach naturally needs to consider them
together. Also, load-balancing does not cause packet frag-
mentation. Thus, it imposes fewer performance constraintson
routers. We believe that because of its local nature and ease
of implementation, the load balancing approach is also more
likely than the coding approach to identify and exploit the
redundancy in network traffic.

V. RELATED WORK

Several papers have looked at various aspects of redundancy
in network information: for example, repeated requests for
Web objects, repetitions and commonalities in packets header,
as well as repetition at the byte level in network traffic. We
compare these papers with our work next.

Web Caching. Wolman et al. studied the sharing of Web
documents among users at the University of Washington [14].
They showed that users are more likely to request objects that

Fig. 13. General network redundancy elimination.

are shared across departments than objects that are only shared
within a department. In follow-up work, Wolman et al studied
the benefits of cooperative Web caching of Web objects using
traces of Web requests collected both at the University of
Washington and at Microsoft Corporation [13]. They showed
that while sharing of Web objects across departments or divi-
sions in organization can improve Web object hit rates, there is
a strong evidence of diminishing returns when the population
of clients sharing the cache crosses a certain limit. In contrast
with these papers, our work takes a more information centric
view by focusing on the byte level repetition in traffic and its
relationship with the departmental division of clients andsize
of the client pool. Thus, our study answers a more general
question: How much information are Internet users accessing
in common?

Entropy of Headers. Several researchers have studied the
entropy of packet headers, or of the payloads of special types
of traffic (e.g. worm payloads). For example, Xu et al. [15] and
Lakhina et al. [7] independently developed anomaly detection
techniques that look for unusual changes in the entropy of
IP headers in a stream of traffic. Their tools are meant for
performing offline analysis of traffic. Lall et al [8] developed
data streaming algorithms for estimating the entropy of IP
headers in an online fashion for use in anomaly detection.
Singh et al [9] use Rabin’s fingerprint algorithm on packet
payloads to look for common exploit sequences, and flag the
outbreak and spread of malicious content. A subtle difference
between these papers and our work is that while these studies
focus on identifying uncommon or anomalous behavior in
traffic, our goal is to study common usage and access patterns,
and understand how to exploit the resulting traffic redundancy
to improve network efficiency.

Other studies on traffic redundancy. In the past, a few
research studies have developed techniques for estimating
the redundancy in network traffic. For example, Sung et
al [12] developed data streaming algorithms for approximating
the entropy of packet payloads. As mentioned in Section I,
Spring et al. developed a protocol independent approach for
identifying redundant bytes in network traffic [11]. We have
highlighted the key differences between our approach and
Spring et al [11] in Section I. Below, we highlight other key

differences.
Spring et al applied the algorithm described in Section III-

A to analyze the traffic collected on a corporate research
center’s Internet link. They found that, on average, 20% of
the bytes were redundant in the inbound direction, and 50%
were redundant in the outbound direction [11]. We study two
network locations - a university access link, and the network
connection of a data center - both of which are different from
the setting analyzed by Spring et. al. While we find a great
deal of redundancy in the data center traffic, the redundancy
fraction is much lower for the university setting. Several of
the data analyses we perform - e.g. the popularity of chunks
of data and the properties of sharing of bytes across network
links - are quite unique and have not been explored before.

VI. SUMMARY

Internet hosts participate in a wide variety of transfers.
Often, there is a substantial repetition in the content of
different transfers due to factors such as similarities in users’
interests, geographic proximity, application protocol headers
etc.

Our goal was to understand the extent and nature of the
repetition in network data and explore how this understanding
may be leveraged to build mechanisms that eliminate repeated
bytes from network traffic. We analyzed several hours’ worth
of packet level traces collected at two distinct network lo-
cations. Our analyses showed that a significant fraction of
network traffic is redundant, but there are key differences in the
extent of redundancy observed at different network locations.
A deeper evaluation of the redundant information revealed two
important properties of repeated bytes. First, a large number of
data chunks repeat only a few times each, yet they contribute
to a major portion of the overall redundancy. Second, traffic
redundancy increases relatively smoothly with the number of
users that are sharing a particular link.

Using these observations as the foundation, we developed
three techniques that can improve the overall network per-
formance by removing redundant information from network
traffic. The first technique, peak reducer, applies to individual
network links. The second, load-balancer, can manage the load
on multiple links which share a common end-point. The third,

general redundancy eliminator, can be applied in more general
settings to improve the aggregate network capacity.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. W. Yeung. Network information flow.
IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[2] A. Akella, S. Seshan, and A. Shaikh. An Empirical Evaluation of Wide-
Area Internet Bottlenecks. InInternet Measurement Conference, Miami,
FL, Nov. 2003.

[3] P. Chou, Y. Wu, and K. Jain. Practical network coding. In51st Allerton
Conf. Communication, Control and Computing, 2003.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol. InACM SIGCOMM, pages 254–
265, 1998.

[5] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. Locating
internet bottlenecks: algorithms, measurements, and implications. In
ACM SIGCOMM ’04, pages 41–54, 2004.

[6] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft. XORs in the air: practical wireless network coding. In
ACM SIGCOMM, 2006.

[7] A. Lakhina, M. Crovella, and C. Diot. Mining Anomalies Using Traffic
Feature Distributions. InACM SIGCOMM, Aug. 2005.

[8] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming
algorithms for estimating entropy of network traffic. InACM SIGMET-
RICS, pages 145–156, 2006.

[9] S. Singh, C. Estan, G. Varghese, and S. Savage. Automatedworm
fingerprinting, 2004.

[10] N. Spring, R. Mahajan, and T. Anderson. Quantifying thecauses of path
inflation. In ACM SIGCOMM, 2003.

[11] N. T. Spring and D. Wetherall. A protocol-independent technique for
eliminating redundant network traffic. InSIGCOMM ’00: Proceedings
of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 87–95, 2000.

[12] M. Sung, A. Kumar, L. E. Li, J. Wang, and J. J. Xu. Scalableand
Efficient Data Streaming Algorithms for Detecting Common Content
in Internet Traffic. InInternational Conference on Data Engineering
Workshops (ICDEW), 2006.

[13] A. Wolman et al. On the scale and performance of cooperative Web
proxy caching. InACM Symposium on Operating Systems Principles,
1999.

[14] A. Wolman et al. Organization-based Analysis of Web-Object Sharing
and Caching. InProceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems, 1999.

[15] K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling Internet Backbone
Traffic: Behavior Models and Applications. InACM SIGCOMM, Aug.
2005.

[16] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Rr-tcp: A reordering-
robust tcp with dsack. InICNP, 2003.

[17] Y. Zhu, B. Li, and J. Guo. Multicast with network coding in application-
layer overlay networks. volume 22, pages 107–120, Jan. 2004.

