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ABSTRACT

Many systems have leveraged the broadcast nature of waredes
dios to improve wireless capacity and performance. While-co
ventional approaches have focused on overhearing entikefs
recent designs have argued that focusingweerheard conterthay
be more effective. Unfortunately, key design choices irs¢hap-
proaches limit them from fully leveraging the benefits of dhesar-
ing content. We propose a cleaner refactoring of functionalhere-
in overhearing is realized at the sub-packet payload Idweligh
the use of IP-layer redundancy elimination. We show that dina-
matically improves the effectiveness of prior overheatiaged ap-
proaches and enables new designs, e.g., enhanced netwiimg,co
where content overhearing can be more effectively integrdab
improve performance. Realizing the benefits of IP-layerteon
overhearing requires us to overcome challenges arising tiwe
probabilistic nature of wireless reception (which coulddeo in-
consistent state) and the limited resources on wirelessee\We
overcome these challenges through careful data structgrevae-
less redundancy elimination designs. We evaluate theteffeess
of our system using experimentation on real traces. We fiatdhr
design is highly effective: e.g., it can improve goodput l@arty
25% and air time utilization by nearly 20%.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

General Terms
Algorithms, Design, Performance

Keywords
Wireless Networks, Redundancy Elimination, Throughput

1. INTRODUCTION

A common issue in wireless networks is severely constrained
throughput performance, especially when link quality ispor
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node density is high. An important class of techniques tirat a
to improve wireless performance are those based on wireless
hearing. These techniques use the fact that wireless radiosp-
portunistically overhear packet transmissions, which loarever-
aged in a variety of ways: e.g., nodes can suppress unnegessa
transmissions (e.g., RTS-id [3]), make better forwardiegisions
(e.g., ExOR [10]) or perform network coding (e.g., COPE J20]

Conventional overhearing based approaches all rely orheagr
ing packets (both headers and payloads) in full. In contraste
recent overhearing approaches argue thedraent-centriadesign
can lead to even better capacity improvements. Focusindgen t
content being overheard can facilitate, for example, seggion of
duplicate data across different transfers, which is nosipbs in the
packet-centric approaches. Ditto, the first such conteathmar-
ing system [13], leverages overhearing at the granulaffitgada
chunks roughly 8 to 32KB long and offers nearly an order of mag
nitude better throughput in multi-hop mesh networks coragdo
traditional forwarding.

Unfortunately, existing approaches do not go far enougbnar-
aging the full benefits of content overhearing. The maingaagor
this are: {) the granularity at which content overhearing operates
and (i) how content overhearing is implemented. For instance, in
Ditto, content overhearing is implemented at the grantylaf 8-
32KB chunks, using an unconventional pull-based transdris
prevents Ditto from being applicable to short flows and flovithw
dynamic content, which make up a significant fraction of Web a
enterprise flows [8, 15] and are typical of request-resp@mg@i-
cations. Additionally, Ditto caches content only at meste® not
wireless clients, providing no benefits over the last hopeless
link. We discuss these and other drawbacks in greater detgH.

We argue that a re-factoring of content overhearing is resogs
to realize the full benefits. In this paper, we present a systaled
REfactor that pushes content overhearing lower down theksta
to enable fine-grained overhearing, specifically througaliigent
use of recentP-layer redundancy eliminatio(RE) [7] technology.

In traditional RE, a wired transmitter removes duplicatings of
data (as small as 32-64B) from individual packets by conmggri
them against prior packets; the receiver reconstructspladkets
from a local cache of prior packets. REfactor shows how tési
can be generalized to a wide range of wireless settings dim
infrastructure-based, mesh, and ad-hoc networks.

IP-layer RE has recently been leveraged in the context afcel
lar wireless networks, providing up to 60% bandwidth sasiog
last hop cellular links [22]. However, REfactor takes RE apst
further by adding the benefits of content overhearing, aifeatot
currently available in commercial cellular networks. Ré&a is
able to exploit the inherent fine-grained redundancy knanexist
at the sub-packet (or “packet chunk) level, not onithin a single



client, but als@acrossmultiple clients [8]. Additionally, we address
many of the challenges introduced by the wireless domaisy, di
cussed below, in a manner that provides additional beneditiser
than seeking solely to minimize overhead [22].

Enabling RE-based content overhearing in a range of wseles
settings introduces many key challenges. Whereas in ctionah
wired RE approaches the sender and receiver caches arby tight
synchronized, the probabilistic nature of wireless ovarimgy and
the possibility of a receiver overhearing from multiplertsaitters
mean that sender and receiver caches are almost guaraotbed t
out of sync, which significantly impacts the correctness pardior-
mance of RE. Furthermore, wireless nodes are often mematy an
CPU constrained; hence we need new light-weight RE designs.

We develop novel data structures to overcome these chalieng
We present the notion afelf-addressing packet chunkshich al-
lows us to track cache residence in a consistent and low eadrh
way across an entire wireless deployment and vastly siraplif-
dundancy encoding and decoding. We also design simple agipes
for estimating reception probabilities, which we then eoyph a
model-driverfashion to decide whether it is worth removing dupli-
cate bytes. We find that the model-driven approach, coupiéd w
the fact that our design leverages many possible oppoiggrior
overhearing content, make REfactor reasonably robustrémsein
reception probability estimation, which is a notoriousbrth prob-
lem. This makes REfactor easy to use in practice.

We find that our refactoring has the obvious effect of signif-
icantly improving and broadening the effectiveness andiegp
bility of content overhearing and redundancy eliminatiomwiire-
less settings. Emulation experiments using our prototyptiem
in Click [21], show that REfactor can improve goodput in asf
tructure wireless networks by nearly 25% and utilization20@6.
REfactor's goodput improvements are not just the resultimf s
ply removing repeated chunks from packets: REfactor’s $oon
packet chunks provides more opportunities for overheararg
the smaller packets REfactor creates have much lower packet
ror probability—imposing 7-27% fewer packet losses. We fhreat
model-driven RE is quite beneficial, whereas blindly appdyRE
on all packets can resultin a drop in goodput. REfactor clamate
up to 20% error in overhearing probability estimation. Alh-
ally, our self-addressing chunks approach offers high coger-
ation (our prototype, e.g., offers up to 0.8Gbps in softyavhile
requiring modest sized caches (64-256MB) and ensuringtafée
duplicate removal (75% of optimal). Detailed results ar€%n

REfactor has important architectural implications as welpar-
ticular, it substantially enriches various existing owveahing-based
approaches and enables new ones. For instance, REfactbecan
easily combined with COPE [20] and mesh routing techniqi&} [
to improve network capacity (see 82 for detailed examplésm-
bining our REfactor prototype with COPE [20] improves wtion
by 3-14% compared to using just COPE.

2. BACKGROUND AND MOTIVATION

Traditional overhearing-based approaches to improvingless
network capacity and throughput have relied on packetgjomier-
heard in full. For example, RTS-id [3] adds a special ID field
to an RTS packet to allow receivers to determine if they régen
overheard a packet, thereby avoiding transmission of tlokgta
In contrast, some recent approaches have argued thanghtfte
focus from packets tgontentcan result in substantial throughput
and capacity improvements. Ditto [13] was the first systeseda
on this notion ofcontent overhearingas opposed to the conven-
tional packet overhearing ideas). Ditto functions on nardath
chunks that are independent of packets. Wireless meshrsoute

in Ditto cache directly received chunks and chunks recantsd
from overheard packets. When a client requests a partichlamk,
Ditto attempts to serve the request from a upstream wiretessh
router, avoiding the need to transfer a chunk all the way ftben
mesh gateway to the client.

2.1 Limitations of the State-of-the-art

In what follows, we argue that Ditto’s approach does notiieve
age all redundancy opportunities, and its narrow focustsnis
applicability to a variety of practical scenarios.

Limitations due to large chunks. Ditto names data chunks of
size 8KB or larger. This leads to two problems: First, Ditadd
to identify finer-granularity content overlap across natwiiows.

In fact, recent studies have shown that a major portion ofimed
dancy in Internet traffic arises from overlapping chunks msls

as 64B in size [8]. Second, many nodes may not overhear a large
chunk in full and may fail to reconstruct it. Indeed, expegins
using Ditto show that, on average, 75% of the potential looat
for overhearing in a campus testbed could not completelyheae,
and failed to reconstruct, almost 50% of chunks [13]. A récen
RE framework for cellular networks operates on chunks asllsma
as 8B, enabling redundancy removal within a client’s tradtifine
granularities [22]. However, applying this system to othére-
less scenarios (such as those in 82.2.2) misses out on avieie
opportunities to remove redundancy between clients.

Limitations due to pull-based transport. Ditto’s reliance on
named data chunks, each of which spans several packetssfiorc
to use an alternate transport protocol instead of using T&R e
to-end. Specifically, Ditto uses a pull-based transportqua,
DOT [27], where remote servers send chunk IDs to clients, who
then request them one after the other; requests may be opstit
cally served by a local cache. This leads to several probl&inst,
it requires chunk identifiers to be known beforehand. Thiskso
for static content but not for dynamically generated coptelients
are forced to use default transport designs for dynamicectdnte-
moving the opportunity for performance improvements. 3eco
applications with with short messages—e.g., gaming flows; t
ter feeds, several request-response applications, sAdPHows,
etc.—may actually observe a degradation in performandeamat-
erage case (because the pull-based approach invariatdyaaldic
tional RTTs). Lastly, no performance benefits are offeredash
hop wireless links. Chunks must be transferred in full asribe
last link from mesh router to client.

Another set of popular approaches for improving wireless ca
pacity are those based on network coding [11, 20]. As theoasith
of Ditto mention, it may be possible to use opportunisticteoi
overhearing to augment coding and improve its overall ¢ffee
ness. However, given the mismatch in the granularities earst
port models used in Ditto and prior coding approaches, ihidear
if the synergy between overhearing and coding can be exploit

2.2 REfactor

Our paper shows that a careful re-factoring of content aearh
ing can address the problems above optimally and dramigtioa
prove wireless capacity and performance. We argue for pgshi
content-awareness “lower down the stack” through the ud@-of
layer packet caches that perform redundancy eliminatRB) [7].
Packet caches can be used to suppress byte strings thatfrave a
peared in earlier overheard packets both within and betwkents.
We refer to our approach as REfactor. The cleaner re-fawjari
REfactor offers many benefits:

e |P layer RE can remove duplicates as small as 64B in an app-
lication-agnostic fashion, even from dynamically genedat



content. REfactor benefits applications with short flows—
even those lasting a single packet—which are common in
enterprise settings [15]. Thus REfactor leads to more effec
tive overhearing-based designs.

REfactor requires small IP-layer modifications and retains
the conventional push based model of content dissemination
that is prevalent today.

Because REfactor leverages all possible opportunitiesver-
hearing, it's performance is reasonably robust to errors in
some aspects of the design (in particular, reception piitbab
ity estimation, which is a notoriously hard problem). Thus,
it is easy to use in practice.

REfactor leads to smaller packets which consume less band-
width and suffer lower loss rates. Operating on packets also
allows REfactor to run at very high speeds: As we show in
85, our prototype offers 0.6-0.9Gbps.

REfactor can be applied transparently in a variety of sce-
narios, including wireless infrastructure-based and peer
peer communications, and opportunistic routing in muttph
mesh networks. In particular, REfactor is more directlgaéd
with packet-based coding approaches. Hence it provides pra
tically viable opportunities to enhance network codingue f
ther improve network capacity.

2.2.1 REfactor Overview

We start with a common scenario where REfactor can be used:
an AP operating in infrastructure mode with some number sbas
ciated clients. The AP and clients can overhear and cachefzac

When the AP receives a packet from the wired network, it scans .

the content for duplicate strings of bytes that appearedaitiez
packets. The AP then calculates the expected benefit foetsir

ing client from performing RE on the packet, which depends on
the AP’s estimate of whether the receiving client is likedyhiave
cached the relevant earlier packets, either from transamsgo the
client or from overheard transmissions to some other cliéfrthe
likely benefit is high, the AP “encodes” this packet, i.emoves
the duplicate bytes and inserts a shim instead. The shinaicent

a pointer to a memory location in the client and allows therdli

to reconstruct the original packet using its local cacheusThf
the receiving client has the content pointed to by the shiren fit
can decode the packet. However, if the content is not caahed i
the client, the client needs to request the missing conitesrring
additional transmissions. This penalty is imposed whenAtR&s
estimate of whether the client has the content is incorrect.

In Figure 1a, we illustrate the benefit REfactor offers irsthie-
nario. The transmission of the packet payladit to C1is over-
heard byC2, and the chunlab is added to all caches. The data
abd is sent taC2via a packet with a shim headet™plus the non-
redundant datd. Becausé&C2 overheard and cached the chuatk,
it as able to reconstruct the full packet using the cacheyesqte-
cific in the shim header. The reduction in the size of the sécon
packet transmission improves overall network throughput.

2.2.2 REfactor in Other Scenarios
REfactor also helps in other diverse scenarios.

Multiple AP infrastructure. We start with multiple APs operating
in infrastructure mode. As shown in Figure 1b, a client mapbie
to overhear transmissions from both it's associated AP dhdro

|

(a) AP with clients

(b) Multiple AP infrastructure

Y] Relay
1 EEI\ dxouw)(l)(Z .

(c) Ad hoc mesh (d) With network codlng

Figure 1: REfactor applied to diverse scenarios

Ad hoc meshesREfactor can also be applied to transmissions be-
tween clients via a mesh or ad hoc network. Figure 1c shows the
use of REfactor to achieve transmission reduction andespond-
ingly, capacity improvement, in a small mesh network; thas c
be easily extrapolated to a larger mesh. Using normal fatimgy
based on metrics such as ETX [12], 4 transmissions are ejuir
for two clients to send a packet to each other via a relay. Byyap
ing REfactor to the situation, we can reduce the size of thettio
transmission, resulting i — ¢ transmissions, wher& is propor-
tional to the amount of redundancy removétlt's transmission of
abc to R1is overheard byrR2 which cacheab. C2transmitsabd

to R2, followed byR1transmittingabc to C2. Lastly, R2removes
the redundancy frombd, sendingld to C1, since it knowsC1's
cache containab.

Opportunistic routing in multi-hop meshes. In a similar fash-
ion, REfactor can also be applied to opportunistic routicigesnes
in mesh networks (not shown in Figure). In approaches such as
EXOR [10], the transmitter orders relays on the basis of {hetket
overhearing probability, before sending a batch of packesing
REfactor, ExOR can be modified in two ways: First, the effecti
batch size can be reduced by removing strings that are duiptic
either within the batch, or across prior batches sent byrthrestnit-
ter. Second, the ordering of relays could take into accouretier
or not a relay has portions of content in the batch alreadiiexdica
relay with high overhearing probability could be given ahhijgyi-
ority for forwarding if it has a significant fraction of bytés the
batch cached as it could prove invaluable in speeding cdiople
time of the batch.

Networking coding. Network coding systems, such as COPE [20]
have traditionally relied on coding full packets withoutypay at-
tention to packet contents. REfactor can be combined withar&
coding to leverage duplication in packet payloads to helgirg
improve network capacity even further. We present the cambi
tion REfactor + COPE in Figure 1d. In this scenan®] has a
packet destined foE4 andC2 has a packet destined f@3, both

of which must be sent via the relay. COPE imposes only 3 packet
transmissions compared to 4 in the regular case;&san over-
hear C1's transmission andC4 can overhealC2s transmission,

nearby APs. An AP can remove redundancy based on any chunksproviding a coding opportunity. REfactor + COPE leverades t

a client may have overheard, regardless of which AP they were
overheard fromC2, which is associated witAP2, overhear®\P1s
transmission ofbc to C1. AP2can therefore remove redundancy
from its transmission cébd to C2.

overhearing even further by removing chunks known to exist i
the destination client’s caches: Assumi@g overheard an earlier
transmissiorabc andC4 overheardkyz, the relay can remove the
redundancydb andxy) from the current packets and code the re-



mainder of the current packetd, ® w. The coded packet, plus
small shims to “encode” the removed redundancy, is broadoas
C3andC4 simultaneously. COPE, in contrast would broadcast the
much largeabd & xyw. C3andC4 are able to obtain their pack-
ets by reversing the network coding and filling in removedritsu

[23] for each 32B region of a packet and selects a subset séthe
based on hash values, to serve as packet fingerprints. Thar-fing
prints are stored in a hash table, with each fingerprint jrojnto
the corresponding packet, which is stored in a packet cacRH-O
fashion. Fingerprints computed for an incoming packet hexked

from their caches. Thus, REfactor + COPE reduces the number against the fingerprint table; a matching packet, if foursdra-

of transmissions t8 — 4, whereé is the relative difference in the
size of a full un-encoded packet (e.ghd) and the above coded

trieved and compared byte-by-byte around the 32B matctomegi
to identify the region of maximum overlap. The overlap regie

packet along with the shims. Assuming chunks are all the same removed and replaced with a shim, which carries the memdry of

size,§ < % in the example above, resulting in neag)better ca-

pacity than COPE.
2.3 Design Challenges

Although REfactor can offer substantial advantages ashibeea
examples show, a careful design is needed to realize thditsene
in practice. First, since overhearing is probabilistic eture and
caches are fixed size (hence, old content is evicted ovel) time
sender may not have an accurate view of whether the intereded r
ceiver has a certain content chunk already cached. In this, t
could lead to incorrect encodings and the resulting retréssions
negate the overall benefit of duplicate suppression in R&faEn-
forcing explicit synchronization of caches—which is a calate
solution for this problem—can add excessive overhead. 18kco
wireless nodes may be processing and memory constrained (fo
example, the clients in the above scenario could be smargs)p
so REfactor mechanisms should require minimal resouraas fr
them. Designing REfactor to maximally leverage IP-Layerteat
overhearing while accounting for the above issues is chailey.

3. REfactor DESIGN

In this section, we describe the design of REfactor. For Banp
ity, we focus on the setting outlined in §2.2.1, namely, miiting
the downlink traffic performance of a wireless AP with a colle
tion of clients. However, our basic building blocks, alonghna
few extensions described at the end of this section, appbgher
scenarios as well.

REfactor applied to the single AP scenario involves thefeihg
steps: (i) When the AP receives a packet from the wired batken
we “chunk” it and compute a “fingerprint” per chunk. (ii) Foaeh
chunk, the corresponding fingerprint is used to refer to aemn
cache data structure that helps determine the probabflitiyecin-
tended receiver having cached the chunk. (iii) The AP coeptite
expected throughput benefit from removing chunks in the @gack
If this exceeds a certain threshold, the AP removes the chanid
replaces them with the fingerprints instead. (iv) If the ARaftves
a hash collision for a chunk, it does not encode the packet,tan
invalidates the chunk stored in its content cache for thédsal
hash. (v) If a client is unable to decode a packet using a fiomger
supplied by the AP, it requests a chunk retransmission framAP.
(vi) The AP updates the cache-residence probabilitiescétsal
with each chunk of the packet. We describe each of these ateps
the underlying design issues next.

3.1 Chunking

Prior works have considered several different approactiesef
moving packet-level redundancy, which trade-off memorgges
processing time, and redundancy opportunities.The sarbg San-
tos and Wetherall [25], supports redundancy eliminatio& )&t
the full packet level. While simple, this approach sevelety
its RE opportunities. Support for partially redundant pegs is
provided by two different classes of approaches: Max-Matct
Chunk-Match [5].

In Max-Match, the encoder computes a rolling Rabin-Karghhas

set of the packet in the downstream decoder’s FIFO-ordeaekig
cache from which the missing bytes can be constructed. Tiva-do
stream cache is maintained in a similar fashion.

Chunk-Match computes and selects Rabin hashes in a similar
fashion, but the chosen 32B regions form the boundaries @f th
chunks into which the packet is divided. A SHA-1 hash, which
forms a fingerprint, is computed for each chunk and insentéal i
a chunk hash table. Each unique chunk is cached in FIFO order.
When an incoming packet has a chunk matching against thekchun
hash table, the matched region is replaced with the churtk Has
both cases, the MAXP aIgoritHrrhas been found to be effective
at selecting hashes offering a uniform distribution acrasside
variety of packet payloads [7, 8]. We employ this in our dasig

Chunk-Match'’s focus on chunks means it is less effectivéet-
tifying redundancy than Max-Match. As a result, packeeldRE
systems have traditionally preferred Max-Match [5, 7, Z&it we
choose Chunk-Match in designing REfactor due to the folhgwi
benefits:

1. Effective memory usageés specific chunk only needs to be
stored once, while Max-Match’s packet-based approach re-
quires storing full packet payloads, even if part of the pay-
load already exists in another payldad.

. Better at accommodating overhearings we argue below,
Chunk-Match can be used to design simple techniques to
handle wireless overhearing, without requiring complex op
erations at clients or APs or imposing too much overhead.
In contrast, Max-Match requires clients to employ addigiion
data structures and meta data to track overheard conteiah wh
imposes additional memory and computing overhead.

. More overhearing opportunitie®verheard packets that have
duplicate bytes suppressed can be more effectively leedrag
in Chunk-Match, because Chunk-Match can cache whatever
chunks remain in those packets. In contrast, Max-Match
would discard such packets because it needs full payloads.

. Ability to leverage partial packetsAlthough not discussed
in this paper, Chunk-Match can be effectively combined with
partial packet recovery schemes [17] to further leverage pa
tially overheard payloads. It is difficult to do so with Max-
Match.

Chunk-Match still has key limitations due to which it canbet
applied directly in REfactor. First, the large size of the/SH hash
means the effectiveness of redundancy removal is limitdsb Ahe
decoder (i.e., the client) has to compute and store SHA-fidsafor
cached chunks, which is expensive from both an energy and-mem
ory view-point. As an improvement, the encoder can only t@m
the chunk hashes in a hash table, while the decoder mairttaips
the chunks in a FIFO cache: the encoder looks up chunk hashes
for a match and replaces each match with a memory address in th

IMAXP selects hashes that are the maximum over all hashes com-
puted over a-byte region.

2The optimizations to Max-Match suggested by EndRE [5] to ad-
dress high resource costs are not feasible for REfactor.
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decoder’s FIFO cache [5]. However, this approach is onliable

for point-to-point deterministic RE, e.g., across a wir@kl In
wireless, probabilistic overhearing causes the encodesmtrack

of the decoder’s chunk cache. One alternative, of havingAfhe
compute chunk hashes and transmit them along with packets an
maintaining a chunk hash table at the client impose high coeyp
network and memory overhead, as we show in 85.1.

3.1.1 Our Modifications

We modify and extend prior Chunk-Match designs in important
ways to to address these drawbacks and to better tailor CGhunk
Match to wireless overhearing.

Self-addressing chunks.In REfactor, we need to carefully man-
age the location of chunks within AP and client caches. Chunk
must be cached such that the AP can provide a fingerprint oepla
of a redundant chunk that allows a client to locate a chunkiwit
its cache, or identify a cache miss. As shown in FigureC2,
only overhears the second packet transmitte@10A FIFO cache
would be insufficient because the AP a@d would store the re-
dundant chunk in the second cache slot, whilewould store the
chunk in the first slot because it is the first chudR overheard.
A proposed RE system for cellular networks suffers from ailsim
issue in the presence of packet loss [22].

The key innovation in our approach is that we select a sldtén t
cache (encoding or decoding) based on the content of a plartic
chunk (Figure 2). Thus, a chunk $elf-addressingi.e., the chunk
itself identifies its location in the cache, and a removech&htan
be identified by the cache location. In particular, we userapart
n-bit hash (we usex = 20) of a chunk as the memory address
where it is stored. The encoder simply sendsriHat hash instead
of the chunk to the downstream decoder.

This approach avoids the pitfalls of employing FIFO-basathes
without relying on tightly synchronized caches; namely,offiset
into the cache refers to the same chunk regardless of what oth
chunks a client may have overheard. It avoids the high coaput
tional cost of SHA-1 hashes and the overhead of maintairfieg t
corresponding metadata. Furthermore, it is easy to identithe

of the chunk-hash and the method used to compute it also ispac
the likelihood of collisions. We evaluate the trade-offhash-size
in 85 and discuss how to deal with collisions in §3.3.

Overhearing estimation. Our second modification accounts for
the facts that different clients overhear packets withedéht prob-
abilities and that overhearing probabilities change oiuet In
our example (Figure 2), it is possible tHa8 (not shown) may not
overhear either transmission @1 becauseC3 s farther away and
can only receive transmissions at a lower rate. Howe&vis able
to hear half of the transmissions @1 To maximize the removal
opportunities we want to be able to estimate how likely it [sa&
ticular client has a particular chunk. We addezeption proba-
bility vectorto each chunk entry at the AP to aid the decision of
whether or not to remove redundancy. §3.2 discusses howehis
tor is computed/updated and how it is used to guide the aecd
whether or not to remove redundancy.

Handling cache misses.Lastly, we need to account for the fact
that the AP’s estimation of the contents of a client’s caclag nmot
be completely correct. In our example, we remove the redunda
from the transmission t€2, but it is possibleC2's cache may not
have contained the removed chunk. We addressddithie miss
by providing a content chunk request mechanism. Since time sh
header contains all the necessary information to identgpexific
block of redundant content, the client uses the shim header f
the original packet in its request for missing data. The Afties
to the missing content request with the shim header and thteicb
of the chunk, allowing the client to properly reconstruc ffacket
and pass the packet to the network stack for normal proagsam

a result of this recovery mechanism, our Chunk-Match apgroa
requires the AP to store the contents of chunks in its cachsrary

to what recent optimizations suggest [5].

3.2 Removing Redundancy

In prior RE systems, a redundant chunk is either always reahov
[26] or a removal decision is based on network-wide optimiza
tion [9]. Furthermore, these systems assume packet cathies a
sender and receiver are tightly synchronized, so a churdepten
the sender’s cache is guaranteed to be in the receiver'scadtis
synchrony assumption does not hold in REfactor becausepafrop
tunistic overhearing. Potential differences in the cottsef sender
and receiver caches requires REfactor to make a removagidaci
based on estimates of the receiver’s cache contents.

A naive approach that always removes redundancy imposés hig
cost: Every chunk missing from a client's cache requires ade
ditional packet transmissions to receive the missing data the
AP. Figure 3 shows the expected transmission time saviras fr
removing a single 64B chunk from a packet (details in §3.2.2)
There is no expected benefit when the probability of the vecsi
cache containing the chunks90%, due to the high cost of cache
misses. Therefore, we want to minimize cache misses by makin
wise decision on whether or not to remove a redundant chunk.

3.2.1 Reception Probability Vectors
Our insight is to include eeception probability vectowith each

misses: a lookup at a fixed-offset given by a chunk-hash can be chunk stored in the AP’s cache. A vectdf, contains an entry for

used to determine whether or not a chunk is located in theecach
The size of the chunk-hash represents a trade-off between th
amount of memory required and the potential for redundasey.
n-bit hash allows a cache to sta28& chunks but require8™ x m
bytes of memory, where: is the maximum chunk size (based on
parameters of the MAXP algorithm). A larger hash allows more
unique chunks to be stored but requires more memory in elient
which may already be resource poor, e.g., smartphones. iZée s

each client currently connected to the AP, indicating tkelihood
of a client having the chunk in its cache.

We know a client’s cache will be guaranteed to contain a chiunk
it existed within packets successfully sent to that cliarthie past.
Hence, for the destination cliedt we setV; = 1 after the packet
containing the chunk has been ACKed. If the chunk was removed
from a packet sent to the client, we 9ét = 1 either: @) after
a request for the chunk has been received (83.1.1) and theteep



Rate | Fraction of nodes who overhear
6-24Mbps 0.15
36Mbps 0.12
48Mbps 0.08
54Mbps 0.06

Table 1: Median fraction of nodes in the Jigsaw testbed whes-ov
hear transmissions at various 802.11g rates [4]

the client has been ACKed, indicating the client has nowedthe
chunk it was missing; o)) a few seconds after the original packet
was ACKed, indicating the client already had the chunk bseao
request for a missing chunk was received.

All other clients could only have received a chunk via ovarhe
ing. We show in 85.3 that a highly accurate reception prdtigbi
estimate is not necessary to realize the benefits of REfastane
take a low-overhead approach to estimating overheariegjhiod:
reception probability is based on the rateused to communicate
with the destination cliend and the rate; the AP uses to commu-
nicate with the overhearing clientMeasurements by Afanasyev et
al. on an indoor 802.11g testbed [4] show that the chanceaf ov
hearing is relatively consistent for all 802.11b rates {Mbps) and
the five lowest 802.11g rates (6-24Mbps); noticeable difiees
in overhearing probability only exist for the three high862.11g
rates (36, 48, and 54Mbps). The median fraction of nodesatege
to overhear a transmission at a given rate is shown in Table 1.

Based on these findings, reception probabilities for a giviee-
less deployment can be calculated using a simple heuristinfia:

If ri > rq, Vi = 0.99. A client which normally receives transmis-
sions at a higher rate is very likely to receive transmissiaha
lower rate, but we still want to be able to discern betweeentt
which are guaranteed to have the chublk & 1) and clients which
are highly likely to overhear the chunk{ = 0.99). If r; < rq,
Vi = 24, wheree; is the recipient fraction when sending at raje
such as those shown above in Table 1.

More complex mechanisms, e.g., CHARM [18], may be able to
provide better estimates of reception probability. In gaheac-
curate estimation is hard, in part because overhearingapibities
can change at fine timescales [6]. However, as shown in §Blyhig
accurate predictions are unnecessary. In particular, wk tfiat
directly usingthe measurements in Table 1 may be good enough
and estimating reception fractions for each deployment nuaype
needed. This is a highly desirable property of REfactor.

Reception probability vectors for chunks are updated etierg
the chunk is transmitted. For each client we store the maxirofi
an existing probability and the probability for the currér@nsmis-
sion. When new clients join the network, reception prohtéed are
recorded for the clients for any chunks transmitegter they con-
nect. When clients leave the network, reception probéadslifor
the clients are not stored for any newly transmitted packenks,
and probabilities for the clients are invalidated in exigtvectors.

3.2.2 Deciding to Remove: Model-Driven RE

100
7z 90 R
= e S
S .50 Lo : —
[} & P
m  -100 o
o o
2 -150 .
g K=64B o
g -200 K=128B" ==g==
W _250 ‘ Pt K=256B. A
K=512B - x--
-300 <
0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

Figure 3: Expected benefit from removing a single 64B chuakfr
a packet withK total redundancy

setting with a client and AP separated by 2m, and= 0.885us
for a transmission rate of 11Mbps. For simplicity, we ass\aiie
packets are MTU (1500B) in size, making the total transroissi
time for a normal packet;, + 1500¢,. Removing & byte chunk
of redundant content from a packet and replacing it with layte
header makes the transmission titpet- (1500 — & + h)ty, a sav-
ings in air time of(k — h)t,. If the load due to other nearby APs
is p, then only(1 — p)(k — h)t, of the savings can be used toward
improving the throughput of the current AP’s own transnassi

A removed chunk which does not exist in a client’s cache re-
quires two extra packet transmissions to obtain the misslinmk.
The additional transmission time &, + (2h + k)t,, reducing
the savings by this amount. Recall thatis the probability client
d's cache contains the chunk. The expected benefit of removing
a chunk in terms of free airtime (ips) that could be used toward
additional transmissions of the AP is:

ECCp[B] = Vd(l — p)(k — h)tb — (1 — Vd)(2th + (2h + k)tb)

This equation is a worst case estimate of expected benefitabn
tice, the fixed header transmission tidg, associated with ob-
taining missing chunks only needs to be incurred once foheac
packet with> 1 missing chunks. Applying the equation to multiple
chunks in a packet will take into account the fixed headestras-
sion time for missing chunks multiple times. We adjastp|B] by
taking into account the total number of redundant bykéss > &,

in a packet, setting the fixed header transmission time ftaioing
missing chunks té’%th for eachk byte chunk. This change allows
REfactor to be more optimistic in removing redundancy.

Figure 3 shows the expected benefit from removing a single 64B
chunk from a packet witl total redundancy for varying reception
probabilities, assuming = 0. As the graph shows, expected ben-
efits increase with reception probability. Furthermore,daiven
reception probability, higher amounts of total redundai€yin-
crease the expected benefit from removing a siaghgte (in this
case 64B) chunk. Similar graphs can be plotted for othesrate

The AP uses the expected benefit model to encode redundant
chunks if Ezp[B] exceeds some threshold.

REfactor decides whether or not to remove a redundant chunk 3.3 Collisions

based on the reception probability and a simple model of expe
benefits. Benefit is measured as the reduction in transmisisiee
resulting from the removal of a redundant chunk. We refehts t
approach asodel-driverRE.

The transmission time for a packet is a combination of wire-
less header transmission tireand per-byte payload transmission
time ¢, which depends on the data rate to the client in question.
Our experiments show a typical valuetaf = 290 for an indoor

We say that a hash collision happens whemait hash of a
chunk for a new packet indexes to an already occupied cache sl
Collisions should be handled carefully as they impact trdasion
correctness. In REfactor, the AP checks the new and alressahed
chunks for collisions by performing a byte-by-byte compari of
their contents. If they do not match exactly, the cache eistry
marked as a collision. No chunks which hash to a collidedyentr
are ever removed from a packet by the AP. All clients will ateo



able to detect the collision because they will never recaipacket Min chunk size | REfactor | SHA hash based scheme

with a collided chunk removed, so they will recognize thdismn 2‘21 84118 mggz ffS'Y\'Abtfss
in their byte-by-byte comparison. This approach reducespibr 128 1203 Mbps 152 Mbps

tential redundancy removal opportunities, but it ensureslient
application will receive an incorrectly reconstructed lgetc
To avoid the entire cache filling with collision entries, thae- Table 2: Comparison of encoding throughput for REfactor and
less AP will periodically initiate @ache flushA cache flush clears SHA hash scheme for different minimum chunk sizes.
all entries from the AP’s and client’s caches using a threasph
process: (1) the AP broadcasts a cache flush request toaaltsli

(2) the clients clear all the entries in their cache and sendGK, with high likelihood thatC1 overheard the chunk. In this manner,

(3) when the AP has received ACKs from most of the clients, it cache contents are communicated implicitly. A similar idpalies
clears its cache. The AP does not cache chunks from new [sacket 4 the network coding approach shown in Figure 1d.

while a cache flush is in progress. In the event a client doés no
acknowledge the flush request, due to lost packets or clisoon-
nect, the AP will not encode any packets sent to the clierit ant 4. IMPLEMENTATION

retransmitted flush request has been acknowledge. Our REfactor prototype is implemented as a pair of Click [21]
Whenever a client associates with the network, the cliemitiEs modules. Thesncodermodule is used at the AP to cache chunks,

its local cache. An AP uses the association as a signal toaléa identify and remove redundancy and respond to requestsifs-m

reception probability entries for the client. ing chunks. Thelecodemodule is used at clients to cache chunks,

. reconstruct packets and request missing chunks. Each mélul
3.4 Other Scenarios and Issues ) about 400 lines of code. Both use kernel-level Click to emabl
REfactor uses the same caching and model-driven RE mecha-REfactor to work at the max 802.11g transmission rate of 5g84b

nisms to improve throughput in the scenarios presented in.32 We chose to implement REfactor in Click because of the ease of
but requires a few design extensions to fully function irsthece- deployment and flexibility this approach provides. Clieras eas-
narios. Namely, the ability to estimate reception probted and ily run our Click decoder module to obtain the benefits of REfa
communicate cache contents famassociated clients.e. clients tor without operating system or application modificatioRarther-

not directly communicating with an AP or via a specific relay. more, the encoder module can easily be deployed on an upstrea

Unassociated client reception.Clients may be able to overhear network middlebox to serve multiple wireless APs. This dedhe
transmissions from other APs (as in Figure 1b) or nearby mesh need to modify AP firmware, which is often proprietary, aneéslo
nodes, or relays (as in Figure 1c). However, the relay hasay w  Nnot constrain REfactor due to the limited memory and prdogss
of knowing the client can overhear without explicit knowdedof power in many APs [1, 2]

the client’s presence. Furthermore, the relay cannot estirthe

reception probabilities for the client without knowing trete the 5 EVALUATION

relay would use to communicate with the client. ’ ) ) )

We extend clients to notify a relay when they can overhe#fidra We conduct an evaluation of the various benefits of REfactor.
from that relay. In infrastructure mode, a client can deiegrthe Our default settings is an AP operating in infrastructurelwith
AP it can overhear fromAP1) based on its beacons and send a WO associated clients. We also show the benefit of using ®éifa
message via its associated ARPQ) to notify AP1its transmissions N Some of the other scenarios discussed in §2.2.2. Ouratiaiu
can be overheard by the clienP2 includes the rate it uses to  Utilizes traffic from real-world traces containing realtspacket

communicate with the client, which provides an upper boumthe chunk redundancy patterns. We focus on the following sets-of
rateAP1would be able to use to communicate with the client. Ina Sues:(i) How does our scheme, which uses self-addressing chunks,
mesh network, a client can send a list of all relays it canloser ~ COMpare against SHA hash based alternatives (83.1) in tefms
from to each of the relays in the list. speed and effective RE#) What is the trade-off between cache-
Overhearing notifications only need to be sent periodically iz and collision likelihood imposed by the self addregsinunks
relay will maintain reception probability vector entriesrfunasso- ~ a@pproachii) What is the overall benefit of REfactor under var-
ciated clients for all chunks sent after an overhearingficationis ~ i0us realistic redundancy patterns and varying levels @frlosar-
received. ing? What aspects of REfactor's design contribute mosttbeén-

efits? Can and should REfactor’s operation be adapted towazse
traffic patterns¥iv) How does REfactor perform in an actual infra-
structure-based wireless setu¥) How does REfactor help in the
other scenarios in §2.2.2?

Unassociated client cacheKnowing a client can overhear trans-
missions from another APAPY) is insufficient for the client’s as-

sociated AP AP2 to be able to leverage overhearing opportuni-
ties. PeriodicallyAP2must request cache information for the client

from AP1 AP1sends a bit vector to indicate which cache slots the 5.1 Speed and Redundancy Removal
client likely overheard. AP2 can update its reception probability ) ] )
We evaluate the effectiveness of self-addressing chunks co

vectors for these slots to account for chunks it may not haosvia ;
the client overheard. As shown in Figure 1B2 overheard the pared to a scheme where the encoder (AP) transmits SHA hashes
to the client in encoded packet shims (83.1).

chunkab, allowing AP2to potentially remove the chunk from a
future transmission t&€2. AP2 uses the bit vector frorAP1to Speed.We benchmark the encoding speed on a desktop with a 2.4
update its cache to reflect this. GHz CPU and 8GB DRAM, mimicking a middlebox (co-located

In a mesh network, cache contents can be updated using tlee samwith the AP) which can perform encoding on behalf of the AR. Ta
mechanism, or a relay can update its cache based on its kigsvle  ble 2 compares the encoding speeds for REfactor and a SHA hash
of the path taken by a packet. Consider the example scerrevas based scheme. With a 1GB chunk cache and a minimum chunk
in Figure 1c: ifabc was received br2from R1andR2knowsC1 length of 64B, our unoptimized Click module can encode atate
can overheaR1, R2can add the chunéb to its cache and indicate of 910Mbps. This rate is sufficient for an AP to serve 30 ckent



Min REfactor SHA hash based scheme
chunk [ Redundancy Effective | Redundancy Effective| Effect. RE w/

size detected RE detected RE | hash shipping

32 0.31 0.27 0.41 0.22 0.03

64 0.28 0.26 0.38 0.29 0.19

128 0.23 0.22 0.31 0.27 0.22

Table 3: Comparison of effective redundancy removal for&dr
and a SHA hash scheme

each at the rate of 18Mbps. In contrast, SHA hash based encod-

ing is 8x slower (118Mbps); SHA1 hash computation is a major
performance bottleneck in this scheme. Our lightweighbdéaty

operations impose low overheads on clients, as well. We ased
low-end laptop with 1.66 GHz CPU and 2GB DRAM to measure
the decoding throughput. The measured decoding througkput
160 Mbps (for chunk size=32B). In contrast, the decoder through-

put for a SHA hash based scheme is only 50 Mbps, even with 128B
chunks, because clients have to compute SHAL hashes for ea(:hl

cached chunk.
Redundancy removal. We compare the effectiveness of redun-

dancy removal for REfactor and the SHA hash scheme in Table 3.

We use a real trace with high overall redundancy (45%) and a
1GB chunk cache for both schemes. With small chunks (32-64B)
REfactor (0.31) detects 75% of the redundancy detected &y th
SHA hashing scheme (0.41), the gap being due to collisions-H

ever, the shim overhead of the SHA hashing scheme is quite hig

as a shim must carry a 20B hash. As a result, REfactor's redun-

64MB Cache --—e--
256MB Cache —=—
512MB Cache - 1
1GB Cache +wsty y bbby,

#+

0.8
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redundancy removed
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0.4 r
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Flush Rate (MB)

Figure 4: Impact of cache flush rate and cache size

most large cache sizes. For example, flushing a 512MB catére af
every 500MB of traffic allows 10% more redundancy to be rendove
than flushing every 100 MB, and 16% more compared to flushing
every 1.5GB. This is because a rapid rate of flushing (e.@ryev
00MB) controls collisions better but reduces opportesitior re-
moving redundancy; on the other hand, too slow a rate of figshi
(e.g., every 1.5GB) does not eliminate collided entriesdasugh.

In general, flushing after every 200-300MB of traffic workslwve

5.3 Goodput

We now evaluate the improvements REfactor provides. We use
a simple emulated two-client setup with a single AP opegaiin
infrastructure mode, as described in §2.2.1. In our se@js
located close to the AP, with perfect overhearing and a fixig h

dancy removal (0.27) is 25% better than the SHA hash scheme transmission rate (54Mbps), while we vaB2's location relative

(0.22). Using larger chunks (64-128B), the effectivenekshe
SHA hash scheme improves, despite a decrease in detected red
dancy, since the relative shim cost drops. However, degooler-
head on clients is still high.

to the AP. Depending 082 location, its ability to overhear trans-
missions taC1varies.

We experiment with five different overhearing scenariosnais
overhearing probabilities &2 of 90%, 70%, 50%, 30% and 10%.

One way to overcome SHA hash computation overhead at the An ogverhearing probability of 90%, for example, means theebi

decoder is for the encoder to ship SHA hashesédeery chunk
contained in a packet, as opposed to just sending SHA hashes f
encoded regions. Unfortunately, the additional overhefaship-
ping SHA hashes reduces the effectiveness of RE by 25% (Bable
last column). Using larger chunks (256B), the shipping eost
encoding overhead would go down, but the detected redugdanc
itself significantly drops to 0.2 (not shown).

To summarize, REfactor’s design, in particular, the useetff s
addressing chunks, gives the right trade-off in terms oédpever-
head and effectiveness of RE.

5.2 Caching

We now study the effectiveness of our self-addressing chunk
storage and provide guidelines on how to configure cachgsarn
ticular, we vary the hash-size from 14-bits to 22-bits in size, re-
sulting in 1MB to 256MB sized caches, and we compute how much
redundancy we are able to remove from network traffic retatos
an ideal infinite cache, which identifies 50% of bytes as rednh
for the specific trace we study. In all cases the average chizek
is 64B. We show our results in Figure 4.

As expected, larger caches identify greater amounts ofrredu
dancy overall: e.g., a 512MB cache can identify nearly 60%hef
overall ideal redundancy, whereas a 64MB cache can onlytifgien
up to 25%. In practice, caches can be provisioned on the bésis
the average client’s constraints: in an environment wigtdps,
using 256-512MB for caches is reasonable. When handhedds ar
employed, 128MB caches may be used.

We find there appears to be a “sweet spot” for flushing rates for

ror rate is such that full length packe(1400B) is overheard with
90% chance; a smaller packet that REfactor creates could; ob
ously, be overheard at a higher probability. We assume @iat
overhears all transmissions @2.

We use a simple Click [21] configuration to emulate overhear-
ing, where we super-impose packet reception probabilétegar-
ious packet sizes and transmission rates. These are dérorad
real-world measurements we collected in a relatively néise en-
vironment. For the five overhearing scenarios above, we fix th
transmission rate t€2 at 54Mbps, 36Mbps, 24Mbps, 11Mbps and
1Mbps, respectively. In all five cases, we assume the bit este
in transmissions between the AP a@@is 8.8 x 107, resulting
in an 8.5% packet loss rate for full length packets.

The traffic transmitted to each client in our experimentsasedal
on a real-world trace we gathered on an outbound link fromia un
versity web server. We use traffic to destinations in the teale
to construct a traffic mix for the two clients in our simulatiove
pick three sets of traces that offer high (49%), medium (2326
low (4%) inter-client redundancy, i.e., bytes shared ax@®nts,
where redundancy is measured using the Max-Match approgich w
a large cache; the intra-client redundancy is 1%, 24% and, 46%
respectively. Note that the overall redundancy is rougfyilar
(~50%) across the three traces.

We do not claim the traces we study reflect the actual redwydan
we expect to see in traffic sent to, and shared between, wérele
clients; quantifying the redundancy is not a goal of our warkl
this issue has been explored in prior studies [5, 8, 14]. &atur
goal is to use the traces to recreate a variety of realisticrrdancy
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Figure 5: Total air time across both clients (a; left) &is goodput (b; right) for a trace with high overlap.
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Figure 6: Total air time across both clients (a; left) &2is goodput (b; right) for a trace with low overlap.
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Figure 7: Total air time across both clients (a; left) @&is goodput (b; right) for a trace with medium overlap.

patterns, i.e., granularities of redundancy, and spadingdundant

bytes in time and across hosts, to study how they impact thefive

of REfactor given its design choices, and also to understaad
conditions in which REfactor offers the most benefits.

We use three metrics: (Ifotal air time defined as the total
amount of time spent in transmission to either client (idahg
missing chunk requests and responses). This is an indicetithe
medium’s utilization. (2)Goodput of a clientlefined as the total
number of bytes transferred to the client divided by thelttitae
spent by the client in receiving them, which includes timergp
in retransmissions due to packet losses or missing chunkrris-
sions due to cache misses. Bjcket loss ratat the client.

5.3.1 High Inter-client Redundancy

We first study the performance where a lot of content is shared
acrossclients and little overlap existsithin a client’s traffic. The
results in Figure 5 show the overall air time (a) ad@s goodput
(b).

The bar “perfect RE” corresponds to the case where we assume
no collisions occur and all clients can overhear all traffic:‘per-
fect overhearing with collisions”, we assume cache size$imited
to 512MB, resulting in collisions, but nodes can overhektratfic.

The bar “greedy RE” reflects a RE approach which always erscode

packets as opposed to REfactor’s use of model-driven REllZin
“no RE” represents a situation where no content overheanng-
dundancy elimination is applied.

The overall airtime is plotted relative to the total airtime-
der “no RE”, showing the lowering in utilization due to vau®
schemes. The goodput is plotted relativeQ#&s goodput under
“perfect RE” showing how close to ideal the improvement indo
put gets. We make these observations:

1. REfactor offers substantial improvements relative mRE”,
with airtime (Figure 5a) being 20% lower in the highest qual-
ity link case (90% overhearing) and 7% lower in the lowest
quality link case (10% overhearing). REfactor’s airtime is
between 6% and 30% worse than “perfect RE,” the differ-
ence arising due to the need to account for collisions, and
the need to account for and recover from cache migSés.
goodput (Figure 5b) is 24% and 4% better than “no RE” in
the highest quality and lowest quality link cases, respelti

. In the poor quality link case, e.g., 10% overhearing, REfa
tor may overhear as few as 10% of the packets compared to
“perfect overhearing with collisions”; thus, one may expec
that it should only be roughly 10% as effective in improv-
ing goodput (Figure 5b) as “perfect overhearing with colli-
sion”. Instead, we see that REfactor is 4% more effective



Overhearing %age| Loss % (% better than “no RE")

30 6.2 27)
70 6.7 (21)
50 7.1(16)
30 7.6 (11)
10 7.9(7)

Table 4: Loss % with REfactor. The loss rates due to “no RE”
and “perfect RE” are 8.5% and 5.3%, respectively. We show %
lowering of loss rate relative to “no RE” in brackets.

than “no RE”, whereas “perfect overhearing with collision”
is 34% more effective. Thus, REfactor does not seem to

lose as much performance as we might expect under low

quality links. The reason for this is that encoded REfactor

packets are smaller, and hence they experience lower packet

loss rates compared to “no RE”; see Table 4 which shows
that REfactor imposes 7-27% fewer drops than “no RE".
Fewer losses helps improve goodput. More importantly, the

packets that are not lost also carry valuable unique bytes

that contribute to removing redundancy from future packets
This effect is likely to be much more pronounced in situa-

tions where there is a much greater amount of content shared

across clients, e.g., in flash crowds.

3. Comparing REfactor against “greedy RE”, the gap is small
at high quality links, but increases significantly when link
quality falls below 50%. At 50% overhearing, our approach
improves goodput by over 13%, whereas “greedy RE” results
in a 6%drop (Figure 5b). Thus, model-driven RE in REfac-
tor plays a crucial role in ensuring robust performance, es-
pecially under poor overhearing and high inter-client medu
dancy.

4. Consider the performance for the link with 70% overhegrin
probability, where “greedy RE” still offers non-trivial gad-
put benefits (5%; Figure 5b) compared to “no RE”. Compar-
ing this with the results for the 90% link, we can conclude
that if REfactor used 90% as the reception probability esti-
mate for the link in its model driven RE, but the actual prob-
ability was 70%, then REfactor’s overall performance would
still be better than “no RE”. This shows REfactor’'s over-
hearing probability estimation is robust to a certain degre
of error especially when link quality is reasonable. Howeve
at poorer link qualities (50% or below) mistakes can prove
costly. Thus, it helps to be conservative with encoding, i.e
use a high threshold for expected benefit in model driven RE,
when link quality is poor and when inter-client redundancy
is high.

5.3.2 Low Inter-client Redundancy

Next, we look at the traffic mix with very high redundancy visth
client traffic (i.e. high intra-client redundancy) and loadundancy
between clients (i.e. low inter-client redundancy). Wet ptial
airtime and relative goodput achieved 62, both in relative terms
as before, in Figure 6. We note the following:

1. Compared to the high inter-client redundancy case al¥ige (
ure 5a), REfactor offers better airtime goodput improvetaen
relative to “no RE": e.g., at 30% overhearing, REfactor is
22% better than “no RE” in the low inter-client redundancy
case (Figure 6a), whereas in the high inter-client reduoglan

C2's Distance| No RE |REfactor | Percentage
from AP | Goodput‘ Goodput| Improvement
3m 4.0Mbps| 3.4Mbps 20%
6m 3.0Mbps| 2.6Mbps 14%
10m 1.3Mbps| 1.2Mbps 6%

Table 5: Performance improvement provided by REfactor iea r
infrastructure-based wireless setup.

substantial benefits most of which are due to IP-layer RE it-
self.

2. The variation in overhearing rate has a slight effect an th
benefits of REfactor, with benefit dropping as overhearing
becomes poor. While most of REfactor’s benefits with this
trace are from intra-user redundancy, the trace does have a
small amount of inter-client redundancy (4%); at low over-
hearing probability, model-driven RE in REfactor would eon
servatively decide against encoding most, if not all, inter
client redundant packets, resulting in a drop in goodput.

3. The performance of “greedy RE”, which encodes all pagkets
is slightly better than REfactor. Whatever bytes are samed i
this fashion contribute to high goodput and the small number
of cache misses that result (for the inter-client traffia) te
easily recovered through retransmissions. Thus, whea-intr
client redundancy is predominant—the redundancy pattern
can be determined by profiling traffic on the fly—it is best to
turn off model-driven RE and encode all data.

5.3.3 Medium Inter-client Redundancy

In Figure 7 we show a situation where redundancy is roughly
equally inter- and intra-client. Comparing with Figuresril®, the
performance offered by REfactor is intermediate compacethe
prior two cases, as expected. We also note that the perf@enan
of “greedy RE” is almost comparable to that of “no RE” at 30%
and 10% overhearing. Thus, with less redundancy, the impfact
incorrect estimation of link overhearing is even less promed:
more specifically, if REfactor used 90% or 70% as the overhear
ing probability estimate for a link that current has 50% dwesring
(or even lower), the performance of REfactor may still beigest
ably better than not using RE or overhearing. This also méwats
model-driven RE can be somewhat more aggressive, i.e., lase a
threshold for expected benefit, under this kind of trafficgat

5.4 Overall Benefits: Testbed Results

While the results we have discussed so far are derived from an
emulated infrastructure-based scenario, we also measkfacR
tor’s performance using an actual wireless AP and two dieWe
use the high inter-client redundancy trace, and we @2 dis-
tance from the AP from 3 to 10 meters to explore a range of over-
hearing probabilities. Table 5 compares the goodput witlrit
and using REfactor.

Similar to the results in Figure 5b (where REfactor's goddpu
improvement over “no RE” ranges from 24% to 4%), the benefits
from REfactor in a real wireless setup range from 20% to 6%s Th
confirms that our emulated setup provides a reasonablesemtee
tion of REfactor’s performance improvements in practice.

5.5 Extensions

5.5.1 Multi-AP Improvements
We extend our setup to two APs operating in infrastructureeno

case (Figure 5a), itis 8% better than “no RE”. Because REfac-and three clients:C1 and C2 associated wittAP1 and C3 with

tor does not have to deal with overhearing, it is able to @eriv

AP2 Additionally, C2is able to overhear transmissions from both
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Figure 8: Goodput improvements in a multi-AP scenario

Overhearing | Overall Improvement | Relay to C3/C4 Improvement

%age (% better than COPE) (% better than COPE)
90 14 38
70 11 26
50 10 21
30 6 13
10 3 7

Table 6: Air time savings %age with REfactor + COPE.

APs. Figure 8 compares the relative goodput @@ without RE,
when overhearing only from its associated AP, and when @aarh
ing from multiple APs. We observe th&2 realizes up to 10%
more benefit from REfactor when taking advantage of traffierov
heard from other APs. As expected, returns diminish as @arh
ing probabilities decrease.

hearing (e.g., 10%), the overall relative benefit of usingdREr
reduces (to 3%) because there is less content overheard.

6. RELATED WORK

A wide range of techniques have been suggested to improve
wireless network throughput, including rate adaptatiartipl data
recovery, overhearing, and duplicate suppression. Weisésd the
latter two sets of approaches earlier in the paper. We disttigsre-
maining two next.

Rate Adaptation. Rate adaptation focuses on improving wire-
less throughput by reducing the number of unsuccessfunéss
sions [16, 24, 28]. The techniques proposed use estimatdwmof
nel quality to seek a packet transmission rate that redieesum-
ber of required retransmissions. Currently rate adapta@hemes
don't exploit overhearing and require sending all packatsuil.
But REfactor provides interesting opportunities for entement.
REfactor reduces the size of some packets, lowering thecehan
of errors and the volume of retransmissions. This allowslgss
communication to use higher rates.

Partial Data Recovery. Partial data recovery provides network
throughput improvements by enabling nodes to extract @ostdf
data which have been correctly received. PPR [17] uses BY¥ftP
hints to determine which bits of a packet are likely correar|y
corrupted portions are retransmitted. MORE [11] forwaridgdr
combinations of packets in wireless mesh networks, withgibed
that a receiver has heard some of the packets in the conuiretid
can deduce the rest. MIXIT [19] combines PPR and MORE. These
approaches require low-level information from the PHY laye
garding which portions of the data is faulty. Our system autiy
lizes packets correctly received in full. However, we talketial
data recovery to a higher level by removing portions of a pagl

Our multi-AP simulation assumes both APs can overhear each @ receiver already has and only sending data the receiveisis m

other’s transmissions, avoiding collisions. Howeverlismns may
occur in the case of hidden terminals. For exampl&\Rfl trans-
mits to C1 at the same timAP2transmits toC3, the two destina-
tions will receive their respective packets, but the paxkeatl col-
lide atC2, who will be unable to overhear either packet. Such colli-
sions prohibitC2from receiving maximum benefits from REfactor.
However, REfactor may be able to reduce the likelihood ofiol
sions due to decreases in the siz&€dfandC3's packets.

5.5.2 REfactor + Network Coding

We implemented a simplified version of COPE [20] within our
Click prototype and experimented with the scenario in Fégld.
Our simplified version of COPE XORs packets, but we ignore con
founding factors like pseudo-broadcast, retransmissims recep-
tion reports. When theelay is scheduled to send packets, it deter-
mines if it has packets fa€3 and C4 that can be coded, removes
redundancy from them and sends a coded packet along witima shi
For simplicity, we assume the relay has perfect knowledgetait
C3andC4overheard for both COPE and our approach; in practice,
the relay has to rely on feedback from clients [20].

The air time savings of REfactor + COPE, compared to just
COPE, are shown in Table 6 for different overhearing peages
betweenC1-C3and C2—C4 (assuming both links have the same
overhearing probabilities). With 90% overhearing, REdaqiro-
vides 14% air time savings. This savings is purely from reduc
transmission sizes from threlay to C3/C4: the savings forelay—
C3/C4transmissions is 38% with 90% overhearing. Compared to
air time savings with “perfect overhearing with collisidria the
single AP case, this is almost twice as much, a result of testr
mission reductions realized via network coding. At loweenv

ing. Thus, we reduce the number of low-level symbols thatiriee
be forwarded and improve throughput without PHY or linkéay
modifications. However, our technique can be combined woitl |
layer partial data recovery for even more throughput improent.

7. CONCLUSION

In this paper, we described an IP-layer content overheaeicig
nigue called REfactor. In REfactor, wireless nodes maimnpaicket
caches which they use to remove strings of bytes that apgpeare
in packets they received or overheard earlier. We descriloze|
data structures and mechanisms that allow REfactor toteféhe
support IP-layer overhearing based designs even on rescore
strained hosts.

REfactor represents a refactorization of content oveihgadeas,
moving overhearing below the transport layer. Through itaral
tive arguments and quantitative analysis based on exepsper-
iments, we showed that the refactoring provides signifipentor-
mance (goodput) benefits, higher speed operation, and lossr
rates under a variety of situations for infrastructure \eiss net-
works. Itis also easy to adopt, requiring a simple softwargrade
at the IP layer, and various aspects of it (e.g., cache simbswer-
hearing mechanisms) are easy to configure. Finally, we sthowe
examples of how REfactor can augment other overhearingdbase
proposals in interesting ways to significantly enhancer teffec-
tiveness.

We believe that REfactor presents a promising start for eesar
of follow-on studies on applying content overhearing to ioye
wireless performance. Some avenues for future work inctute-
bining REfactor with partial packet recovery schemes ardyépg
REfactor to sensor networks.
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