
Understanding Data Center Traffic Characteristics

Theophilus Benson, Ashok Anand,
Aditya Akella

University of Wisconsin, Madison
Madison, WI, USA

{tbenson, ashok, akella}@cs.wisc.edu

Ming Zhang
Microsoft Research
Redmond, WA, USA

mzh@microsoft.com

ABSTRACT

As data centers become more and more central in Internet
communications, both research and operations communities
have begun to explore how to better design and manage
them. In this paper, we present a preliminary empirical
study of end-to-end traffic patterns in data center networks
that can inform and help evaluate research and operational
approaches. We analyze SNMP logs collected at 19 data cen-
ters to examine temporal and spatial variations in link loads
and losses. We find that while links in the core are heavily
utilized the ones closer to the edge observe a greater degree
of loss. We then study packet traces collected at a small
number of switches in one data center and find evidence of
ON-OFF traffic behavior. Finally, we develop a framework
that derives ON-OFF traffic parameters for data center traf-
fic sources that best explain the SNMP data collected for the
data center. We show that the framework can be used to
evaluate data center traffic engineering approaches. We are
also applying the framework to design network-level traffic
generators for data centers.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements, Modeling and pre-
diction

General Terms

Measurement

Keywords

Data center traffic, traffic modeling

1. INTRODUCTION
In recent years, data centers or large clusters of servers

have been increasingly employed in university, enterprise
and consumer settings to run a variety of applications. These
range from Internet facing applications such as web services,
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instant messaging and gaming, to computation intensive ap-
plications such as indexing Web content, data analysis and
scientific computing.

While there is growing interest both in the research and
the operations communities on data center network design
and management techniques for optimally supporting vari-
ous applications, to the best of our knowledge, very little is
known about traffic characteristics within data center net-
works. For instance, how do traffic volumes and loss rates
vary with time and with the location of a link in a multi-
tier data center? What are the underlying arrival processes
and interarrival times that define data center traffic? How
bursty is the traffic?

Lack of this information impedes both research and opera-
tions. For instance, research proposals for switching fabrics
and load balancing schemes are evaluated using synthetic
workloads such as mixtures of long and short-lived TCP
flows [4, 2]. It is unclear how these proposals perform rela-
tive to each other and to current schemes in face of bursty
traffic. Similarly, anecdotal evidence suggests that opera-
tors largely reuse or tweak traffic engineering mechanisms
designed for enterprises or wide-area networks to manage
limited data center network resources. However, this ap-
proach is suitable only if link-level traffic in data centers
has similar properties as those in enterprises or wide-area
networks.

Today, link-level statistics can be readily obtained via
SNMP polls. Thus, it becomes immediately possible to
study coarse grained characteristics such as average traffic
volumes, loss rates etc. While interesting, this characteri-
zation is of limited value. In particular, SNMP data is too
coarse-grained to study fine-grained traffic properties such as
interarrival times and burstiness that have a significant im-
pact on the effectiveness of switching mechanisms and traffic
engineering schemes. Of course, it is possible to obtain fine-
grained data today by enabling packet logging and Netflow
universally. However, given the size of modern data cen-
ters, instrumenting all the links and switches to collect this
information is simply infeasible.

In this paper, we present a preliminary investigation of
traffic characteristics in data centers, leading up to a new
framework that bridges the gap between the need for fine-
grained information about data center traffic and the avail-
ability of just coarse-grained data.

We start our study by analyzing the SNMP data from 19
production data centers to conduct a macroscopic study of
temporal and spatial variations in traffic volumes and loss
rates in data center switching infrastructures. We find that



the average link loads are high in the core of data center
networks and they fall progressively as one moves toward
the edge. In contrast, average link losses are higher at the
edge and lowest at the core (Section 4).

We then analyze finer-grained packet traces collected from
a small number of edge switches in a data center to do a
microscopic study of traffic behavior in data centers. We
find that traffic at the data center edge can be character-
ized by ON-OFF patterns where the ON and OFF periods,
and packet interarrival times with an ON period follow log-
normal distributions (Section 4).

Finally, we develop a strawman framework for reverse en-
gineering fine-grained characteristics for data center traffic
using coarse grained information (i.e. SNMP counters), cou-
pled with high-level inferences drawn from finer-grained in-
formation collected from a small fraction of network links
(i.e. the fact that traffic is ON-OFF in nature). This frame-
work is particularly useful to simulate the prevalent traffic
characteristics in a data center even though it is not possi-
ble to collect fine-grained data everywhere. Our framework
takes as input the coarse-grained loss rate and traffic vol-
ume distribution at a network link, and outputs parameters
for the traffic arrival process on the link that best explains
the coarse-grained information. This framework combines
ideas from search space exploration with statistical testing
to quickly examine the space of possible ON-OFF traffic
source patterns in order to obtain ones that best explain the
coarse-grained information.

Our framework has two applications: (1) It can be used to
optimize traffic engineering and load balancing mechanisms.
To illustrate this, we apply the framework to SNMP data
from a data center network. We leverage the insights de-
rived from the framework to infer that packet losses on links
close to the edge of the data center occur in bursts. We fur-
ther note that the bursts are too short-lived for traditional
traffic engineering approaches to react to them. Thus, a fine-
grained traffic engineering approach may have to be adopted
by the data center in question. (2) It can be used to design
workload generators for data centers. We are currently de-
veloping such a data center network traffic generator based
on our empirical insights.

2. RELATED WORK
Traffic analysis in ISP backbones faces similar challenges

to data centers in terms of the significant investment in in-
frastructure required to capture fine-grained information.
As with data centers today, ISP backbones collect coarse
grained information using SNMP. In the ISP case, this gran-
ularity proves sufficient for most management tasks such as
traffic engineering [3]. However, as prior work [2] has shown,
such coarse grained information is insufficient for traffic en-
gineering needs in data centers. We develop an algorithm
for deriving fine grained information from the coarse grained
SNMP data, which can then be used in traffic engineering.

Numerous studies [5, 7] have been performed on modeling
wide-area and ethernet traffic. Such models have informed
various approaches for traffic engineering, anomaly detec-
tion, provisioning and synthetic workload generation. How-
ever, no similar models exist for the nature of traffic in data
centers. In that respect, we take the first steps toward an
extensive study and modeling of the traffic behavior in data
centers.

Finally, recent research on data centers utilized toy traffic
models or WAN-based models for evaluation (e.g., constant
traffic in [2]). Our observations can be used to create more
realistic workloads to evaluate current and future proposals
for data center design and management.

3. DATA SETS
In this section, we describe the data sets used in our study.

We collected two sets of measurement data. The first data
set comprised of SNMP data extracted from 19 corporate
and enterprise data centers hosting either intranet and ex-
tranet server farms or internet server farms. These data
centers support a wide range of applications such as search,
video streaming, instant messaging, map-reduce, and web
applications. SNMP data provides aggregate traffic statis-
tics of every network device (switch or router) in five minute
increments and is typically collected because of the infeasi-
ble storage overhead required to continually collect detailed
packet traces from all devices. The second data set is com-
prised of packet traces from five switches in one of the data
centers.

Table 1 summarizes device information about the first
data set and illustrates the size of each data center and the
fractions of devices belonging to each layer. All these data
centers follow a tiered architecture, in which network devices
are organized into two or three layers. The highest and low-
est layers are called the core and the edge layers. Between
the two layers, there may be an aggregation layer when the
number of devices is large. The first eight data centers have
two layers due to their limited size. The remaining eleven
data centers have all the three layers, with the number of
devices ranging from tens of devices to several hundred of
devices. Note that due to security concerns, we do not in-
clude absolute values.

Tens of Gigabytes of SNMP data was collected from all of
the devices in the 19 data centers over a 10-day period. The
SNMP data is collected and stored by a measurement server
which polls each device using the RRDTool [6]. The RRD-
Tool is configured to poll a device every 5 minutes and record
7 data-points for each active interface. These data-points
include: inoctect (the number of bytes received), outoctect
(the number of bytes sent), indiscards (the number of input
packets discarded), inerrors (the number of input error pack-
ets), outerrors (the number of output error packets), and
outdiscards(the number of output packets discarded). The
network devices currently run version 2 of the MIB proto-
col [8], wherein packets can be discarded if an interface runs
out of resources, such as memory for queuing. Packet dis-
cards usually indicate congestion.

The second data set contains packet traces from five
switches in one of data centers included in the first data set.
The traces were collected by attaching a dedicated packet
sniffer to a SPAN port on each of the switches. The sniffer
ran WinDump, which is able to record packets at a granu-
larity of 10 milliseconds. The packet traces were collected
during a 15-day period and provide fine-grained traffic in-
formation such as packet inter-arrival times.

4. EMPIRICAL STUDY
In this section, we identify the most fundamental proper-

ties of data center traffic. We first examine the SNMP data
to study the link utilization and packet loss of core, edge,



Data-Center Fraction Core Frac Aggr Frac Edge

Name Devices Devices Devices

DC1 0.000 0.000 1.000
DC2 0.667 0.000 0.333
DC3 0.500 0.000 0.500
DC4 0.500 0.000 0.500
DC5 0.500 0.000 0.500
DC6 0.222 0.000 0.778
DC7 0.200 0.000 0.800
DC8 0.200 0.000 0.800
DC9 0.000 0.077 0.923
DC10 0.000 0.043 0.957
DC11 0.038 0.026 0.936
DC12 0.024 0.072 0.904
DC13 0.010 0.168 0.822
DC14 0.031 0.018 0.951
DC15 0.013 0.013 0.973
DC16 0.005 0.089 0.906
DC17 0.016 0.073 0.910
DC18 0.007 0.075 0.918
DC19 0.005 0.026 0.969

Table 1: We present information about the devices
in the 19 data centers studied. For each data cen-
ter, we present the total number of devices and the
fraction of devices in each layer.

Core Links Aggr Links Edge Links
% Used 58.88% 73.7% 57.52%
% links 3.78% 2.78% 1.6%

with Loss

Table 2: This table presents statistics for the inter-
faces polled for SNMP data. The information is bro-
ken down according to the layer that the interfaces
belong to. For each layer, we present the percent
of interfaces that were utilized and the percent of
interfaces that experienced losses.

and aggregation devices. We then characterize the tempo-
ral patterns of data center traffic using the packet traces.
The observations we make will help to build a realistic traf-
fic model which can be used to evaluate various schemes for
traffic engineering and data center switching.

4.1 Data Center Traffic: Macroscopic View
The devices in the data center are organized into multiple

layers. Devices in different layers have different physical
capabilities and path diversity. By characterizing the link
utilization and packet loss of each layer, we aim to determine
how the different layers will benefit from traffic engineering.

Table 2 provides a breakdown of the links across all the
data centers. Roughly 60% of the core links and the edge
links are actively being used. Figure 2 shows the CDF of
the 95th percentile utilization of those used links (where the
95th percentile is computed over all the 5 minute intervals
where the link was utilized). We find that the utilization is
significantly higher in the core than in the aggregation and
edge layers. This is expected since a small number of core
links multiplex traffic arising from a large collection of edge
links (Table 2). Link utilization is 4X lower in the aggre-
gation layer than in the core layer, with the 95th percentile
utilization not exceeding 10% for any link. Again this is ex-
pected because in our data center topologies there are nearly
four times as many aggregation links as core links. More-

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent of 10 day period that link is unused

C
D

F

Figure 1: A CDF of the percent of times a link is
unused during the 10 day interval.
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Figure 2: A CDF of the 95th link utilization at the
various layers in the data centers studied.
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Figure 3: CDF of 95th percentile “scaled” loss rates
of links at the various layers in all data center.

over, link capacities of aggregation and core links are the
same in many cases. Edge links have slightly higher utiliza-
tion than aggregate links because of their lower capacities
(1Gbps at the edge vs 10Gbps in the aggregation).

Figure 3 illustrates the CDF of 95th percentile “scaled”
packet loss rates on the core, edge, and aggregation links.
To compute actual link loss rates, we need the number of
bytes discarded and the total number of input bytes. In
contrast, SNMP counters only provide the number of packets
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Figure 4: A CDF of the size of packets observed in
DC10.

discarded and the input bytes. Thus, we compute a “scaled”
loss rate by converting discarded packets into bytes after
scaling by an average packet size of 850B. We derived the
scaling factor of 850B from the observations made about the
size of packets observed in DC10. In Figure 4, we present
a CDF of the packets sizes in DC10. From Figure 4 we
observe a bimodal distribution with peaks around 40B and
1500B. We observe an average packet size of 850B, we use
this average packet size as the scaling factor. The bimodal
distribution is likely due to the usage of layer 2 ethernet
within the data centers. With the widespread deployment
of ethernet switches in all data centers, we expect similar
distributions in other data centers.

Although, the real loss rates are likely to be different,
comparison of loss rate distributions across the three layers
is likely to be the same for real and scaled loss rates. We
note from Figure 3 that all layers experience a certain level
of losses. Surprisingly, in spite of the higher utilization in
the core, core links observe the least loss rates, while links
near the edges of the datacenter observe the greatest degree
of losses. This suggests traffic is more bursty on aggregation
and edge links than on the core links. Another important
observation is that a small fraction of the links experience
much bigger losses than the rest of the links. Thus, it is
possible to route traffic on alternate paths to avoid most of
the losses.

Given the large number of unused links (40% are never
used), an ideal traffic engineering scheme would split traffic
across the over-utilized and the under-utilized links. While
many existing traffic engineering schemes can perform this
type of load balancing, they require a relatively stable traffic
matrix. Digging deeper, we examine the link idleness in one
of the data centers, DC17, and observe that although a large
number of links are unused, the exact set of links that are
unused constantly changed. In Figure 1 we present a CDF
of the fraction of the 10 day period that each unused link
is found to be idle. From Figure 1, we observe that 80%
of the unused links are idle for 0.002% of the 10 days or 30
minutes. We can infer from this that although significant
amounts of links are idle, the set of links that are idle in
any given 5 minute interval is constantly changing. As we
will show next, the traffic in the data center can be quite
bursty, which accounts for the unpredictability of idle links
and makes existing traffic engineering schemes less applica-
ble.

4.2 Data Center Traffic: Microscopic View
The SNMP data only provides a coarse-grained view of

the data center traffic, as each data-point stored represents
an aggregate value over a 5-minute interval. To understand
lower-level details such as the burstiness of traffic and arrival
patterns, more detailed information is necessary. For exam-
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Figure 5: Pictorial proof of ON/OFF characteristics:
Time series of data center traffic (number of packets
per time) binned by two different time scales. Traffic
in figure (a) is binned by 15ms and by 100ms in (b).

ple, although aggregate traffic rate may be below the link
capacity, a momentary traffic burst can lead to short-lived
congestion in the network. To understand the properties
of such a traffic burst, more detailed information is needed.
We obtained packet traces from five edge switches in one of
the data centers and use this data to derive temporal traf-
fic patterns. DC10, the data center studied in this section,
is a 2-tier corporate datacenter containing intranet server
farms. DC10 hosts several line-of-business applications (e.g.
web services).

Our observations are limited by the vantage points we
have, i.e., the five edge switches. As follow-up work, we
plan to investigate whether these observations hold for traf-
fic in the other parts of the network and in other data cen-
ters. The traces were collected the week of December 18,
2008. To reduce storage overhead, only the timestamp and
TCP/IP header fields of each packet was stored. Figure 5
shows a time-series of the number of packets received dur-
ing a short time interval at one of the switches. Clearly, the
packet arrivals exhibit an ON/OFF pattern, irrespective of
the granularity of the time interval. We observed similar
traffic patterns at the remaining four switches as well.

Based on this observation, we use a packet inter-arrival
time threshold to identify the ON/OFF periods in the traces.
Let arrival95 be the 95th percentile value in the inter-arrival
time distribution at a particular switch. We define a periodon

as a longest continual period during which all the packet
inter-arrival times are smaller than arrival95. Accordingly,
a periodoff is a period between two on periods. To char-
acterize this ON/OFF traffic pattern, we focus on three as-
pects: (i) the durations of the ON periods; (ii) the durations
of the OFF periods; and (iii) the packet inter-arrival times
within ON periods.
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Figure 7: CDF of the distribution of OFF period
lengths at one of the switches in DC10. The figure
contains best fit curve for lognormal,weibul, pareto,
and exponential as well as the least mean errors for
each curve. We notice that the lognormal fit pro-
duces the least error

Figure 6 illustrates the distribution of inter-arrival times
within ON periods at one of the switches. We bin the inter-
arrival times according to the clock granularity of 10 us.
Clearly, the distribution has a positive skew and a long tail.
Using Matlab, we attempt to fit the observed distribution
with a number of well-known curves, such as lognormal, ex-
ponential, and Pareto and found that the lognormal curve
produces the best fit with the least mean error. Figure 8
shows the distribution of the durations of ON periods. Sim-
ilar to the inter-arrival time distribution, this ON period
distribution also exhibits a positive skew and fits well with
a lognormal curve. The same observation can be applied to
the OFF period distribution as well, as shown in Figure 7.

To summarize, we find that traffic at the five edge switches
exhibits an ON/OFF pattern. The durations of the ON/OFF
periods and the packet inter-arrival times within ON periods
all follow some lognormal distributions. In the next section,
we will present our techniques for finding the appropriate
lognormal random processes that can generate traffic under
certain volume and loss rate conditions.
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Figure 8: CDF of the distribution of the ON pe-
riod lengths at one of the switches in DC10. The
figure contains best fit curve for lognormal,weibul,
pareto, and exponential as well as the least mean
errors for each curve. We notice that the lognormal
fit produces the least error

5. GENERATINGFINE-GRAINEDOBSER-

VATIONS FROM COARSE-GRAINED

DATA
It is difficult for operators to instrument packet sniffing

and netflow on all the devices in a data center. However,
access to fine-grained data provides insight into traffic char-
acteristics such as time-scales of congestion which can then
be used to inform traffic engineering and switching fabric
design. In this section, we present a framework for gener-
ating fine-grained traffic data from readily available coarse-
grained data such as SNMP polls. This framework utilizes
the observations made earlier in Section 4 that the arrival
processes at the edge switches can be explained by 3 log-
normal distributions. The framework aims to discover a set
of parameters for these distributions such that the traffic
generated by the arrival process explains the coarse-grained
characteristics captured by SNMP.

5.1 Parameter Discovery Algorithm
Finding the appropriate parameters for an arrival process

that matches the SNMP data is a non-trivial task because it
requires searching through a multi-dimensional space, where
each dimension in the space represents possible values of the
parameters for one of the three distributions. Since each
distribution is described by 2 parameters (the mean and the
standard deviation), this results in a 6-dimensional search
space.

Exploring all points in the search space will result in ac-
curate results but is clearly infeasible. In what follows, we
describe a new search space exploration algorithm that is
both tractable and reasonably accurate. Our algorithm is
iterative in nature and is similar to simulated annealing —
in each iteration the algorithm explores the search space by
examining the neighbors of a candidate point and moving
in the direction of the neighbor with the highest “score”.
Here, “score” is a measure of how well the parameters corre-
sponding to the point in question describe the coarse-grained
distributions.

There are four challenges in developing such an algorithm;
(1) developing an accurate scoring function for each point,



DeriveOnOffTrafficParams(µon, σon, µoff , σoff , µarrival , σarrival)

// Calculate the mean on and OFF period lengths
1 meanon ← exp(µon) + σon

2 meanoff ← exp(µoff ) + σoff

// Determine the total on-time in a 5 minute interval
3 totalon = 300 ∗ (meanon/(meanoff + meanon))

// Calculate the average number of ON periods
4 NumOnPeriods = totalon/meanon.

// Calculate the maximum number of bytes
// that can be sent during the ON period

5 linkcapacity = linksspeed ∗meanon/8.
// Determine how much bytes can be absorbed by buffering
// during the OFF period

6 bufcapacity = min(bitsofbuffering, linksspeed ∗meanoff )/8
// Iterate over ON period to calculate net volume and loss rate
// observed over the 5 minute interval

7 for i = 0 to NumOnPeriods
a. ai ∈ A{interarrival time distribution}
b. volon = (meanon/ai) ∗ pktSize
c. voltotal+ = min(volon, linkcapacity + bufcapacity)
d. losstotal+ = max(volon − linkcapacity − bufcapacity , 0)

Figure 9: Pseudocode for TOR parameter discovery.

(2) determining a set of terminating conditions (3) defining a
heuristic to avoid getting stuck in local maxima and selecting
an appropriate starting point and (4) defining the neighbors
of a point and selecting the next move .

Our framework takes as input the distribution of SNMP-
derived volumes (volumeSNMP ), and loss rates
(lossrateSNMP ) for a given link at the edge of the data cen-
ter. To create a distribution of volume and loss, we aggre-
gate several hours worth of data and assume that the target
distributions remain relatively constant during this period.
The approach returns as output, the parameters for the 3
distributions (ontimes, offtimes, arrivaltimes) that provide
fine-grained descriptions of the traffic on the edge link.

5.1.1 Scoring Function

An effective scoring function, for deciding the utility of a
point and the appropriate direction for the search to proceed
in, is not obvious. To score the parameters at a point, we
utilize two techniques: first, we use a heuristic algorithm to
approximate the distributions of loss and volume that the
parameters corresponding to the point in question generate;
we refer to these as volumegenerated and lossrategenerated.
Second, we employ a statistical test to score the parameters
based on the similarity of the generated distributions to the
input distributions volumeSNMP and lossrateSNMP .

Obtaining volumegenerated and lossrategenerated. We
use a simple heuristic approach to obtain the loss rate and
volume distributions generated by the traffic parameters
(µon, σon, µoff , σoff , µarrival, σarrival)
corresponding to a given point in the search space. Our
heuristic relies on the subroutine shown in Figure 9 to derive
a single sample for the volumegenerated and lossrategenerated

distributions:

The above subroutine determines the loss and volume dur-
ing a 5-minute interval as the sum of loss and volume in
each individual ON period. Line 1 calculates the average
length of an ON period and an OFF period. The volume
in an ON period is the sum of the bytes in the packets re-
ceived, where packets are spaced based on the inter-arrival
time distribution (calculated in Line 7.c). The loss in that
ON period is the number of bytes received minus the bytes
successfully transmitted during the on period and the num-

ber of bytes buffered. We assume an average packet size
of 1KB. In Line 7.b, the interarrival time distribution is
used in the generation of ai – each time a new value, ai, is
drawn from the distribution. The distribution A in Line 5.b
is a lognormal distribution with the following parameters,
µarrival, σarrival).

We run the above subroutine several (100) times to obtain
multiple samples for voltotal and losstotal. From these sam-
ples, we derive the distributions volumegenerated and loss-
-rategenerated.

Statistical Test. We use the Wilcoxon similarity test [9]
to compare the distribution of computed volumes volum-
-egenerated (loss rates) against the distribution of empirical
volumes volumeSNMP (loss rates). The Wilcoxon test is a
non-parametric test to check whether two different distri-
butions are equally distributed around a mean – the test
returns the probability that this check holds. The Wilcoxon
test is used because unlike the popular t-test or chi-test, the
wilcoxon does not make any assumptions about the distribu-
tion of the underlying input data-sets. Using a distribution
free statistical test allows for the underlying distribution for
any of the 3 parameters to change.

We compute the score of a point as the minimum of the
two Wilcoxon scores – the confidence measure for similarity
– for volume distribution and loss distribution. We use the
minimum for comparison instead of other functions such as
average, as this forces the search algorithm to favor points
with high scores for both distributions.

5.1.2 Starting Point Selection And Local Optimum
Avoidance

To avoid getting stuck in a local optimum, we run our
search a predefined number of times, Nsub, and vary the
starting points for each search. Our framework then com-
pares the scores returned by each of the search and chooses
the parameters with the best score. Two key challenges are
determining the number of searches to perform and deter-
mining the start point for each search.

To solve both challenges, we partition the search space
into Nsub regions and initiate an independent search at a
randomly chosen point in each sub-region. Our algorithm
performs a parallel search through each of the Nsub regions
and returns the parameters for the regions with the highest
score. The choice of Nsub depends on the trade-off between
the time consumed by the search space exploration algo-
rithm (which deteriorates with Nsub) and the accuracy of
the outcome (which is good for high Nsub). In our evalua-
tion, we find that Nsub = 64 offers a good trade-off between
speed and accuracy.

5.1.3 Neighbor Selection and Choosing The NextMove

Each point is described as a coordinate in the 6 dimension
space. A natural neighbor for such a point, are the points
closest to it in the coordinate space. For each point, we
evaluate 12 neighbors, each of which is adjacent along one
of the 6 dimensions, using the heuristic defined in 5.1.1.

Once all 12 neighbors are evaluated, our algorithm chooses
the neighbor with the best score, or randomly selects a
neighbor if all neighbors have identical scores.
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Figure 10: CDF of the validation score for each
edge link simulated. Each score is a minimum of
the Wilcoxon test on the volume distributions and
the Wilcoxon test on the loss distributions for the
switch

5.1.4 Terminating Condition

A search within a sub-space terminates for one of two
reasons: a point with a good score (> 90%) is discovered in
a search sub-space, or searching in this portion of the space
is futile. We deem a search sub-space futile if after 1000
iterations, the search fails to discover a suitable score (>
10%). When the searches in all the sub-spaces terminate, the
top score discovered across all sub-spaces and the parameters
corresponding to the point in the sub-space that yielded the
top score are both returned.

5.2 Validation by simulation
We claim that the framework introduced in the previous

section discovers parameters for an arrival process that ap-
proximates traffic at the edge switches. To verify this claim,
we implement the arrival process in NS2 [1] and validate the
results against data from a randomly chosen data center,
DCDC17. Verification of the framework consists of three
steps; (a) using the framework to generate parameters that
match the SNMP data for an edge switch (b) running the
NS2 simulator with the parameters as input, and (c) per-
forming a statistical test to compare the original data to the
results of the simulation.

We model an edge link in NS2 as a link with the fol-
lowing properties: 5 MB of input buffering, FIFO queuing
discipline, and a propagation delay of 548 nanoseconds. We
chose these parameters based on conversations with opera-
tors of the data centers studied.

We evaluate the quality of a match by running the Wilcoxon
test to compare data observed from the switch with the data
generated by the simulation. To get the distributions of vol-
ume and loss rate from the simulator, we run the simulator
several (100) times to get a statistically significant number
of data-points for each distribution. We consider a match
successful if the Wilcoxon test passes with over 90% confi-
dence.

In Figure 10, we provide a CDF of the confidence returned
by the Wilcoxon test for the validation runs on over 200 edge
links in DC17. Our algorithm can find appropriate arrival
processes for over 70% of the devices with at least a 90%
confidence according to the Wilcoxon test.

Figure 11: Topology simulated in deriving loss pat-
terns.

6. APPLICATIONS
In the previous section, we presented an approach to de-

rive fine-grained network-wide traffic characteristics from
coarse-grained network-wide performance data. Although,
the traffic characteristics are modeled using inferences drawn
from low-level information collected at a few instrumented
locations, our framework has several important practical ap-
plications. In this section, we present 2 examples of such
practical applications.

6.1 Informing data center traffic engineering
Current approaches to traffic engineering in data centers

borrow heavily from well established traffic engineering tech-
niques in Wide Area Networks. For example, edge devices
are equipped with ECMP and MPLS both of which employ
static, slowly-adapting techniques to map flows to routes.
Our framework can be used to examine the effectiveness of
such techniques on a given data center network. In par-
ticular, an operator could use SNMP data collected in his
network to derive the best-fitting parameters for application
traffic flows. If the derived application level traffic is not
too bursty and hence, reasonably predictable, then slowly-
adapting techniques such as the current ones in use may
be sufficient. If on the other hand the traffic is too bursty,
then our approach can indicate the granularity at which re-
routing decisions must be made in the network.

In what follows, we use inferences regarding traffic sources
in one of the data centers to examine the loss rate patterns
on network links in the data center. We use the NS2 setup
used for the validation step earlier, however instead of fo-
cusing on the traffic at the edge switches, we focus on the
traffic at switches in both the edge and aggregation layer.

We use the simulation to study time-scales of losses at
the aggregation switch. To do this, we define the notion of
“micro-burst losses”. Each microburst is a group of consec-
utive packets with the following three properties: (1) The
group starts and ends with a packet drop (2) There are fewer
than X consecutive packets that are received successfully in
the group, for some constant X. Thus, the instantaneous
packet drop rate within a micro-burst is ≥ 2/(2 + X). And
(3) each microburst should have a certain minimum number
of packets in total – we arbitrarily set this to 100.

We first study how often losses happen in such bursts,
or equivalently, how many losses are isolated or not part of
a microburst. The results are shown in Table 3. We find



X Min loss rate Fractions of drops
during microburst outside microbursts

5 30% 10%
10 16% 3%
15 12% 1.6%

Table 3: Existence of burst losses.

that only a small fraction of losses do not belong to any
microburst. This indicates that, more often that not, when
losses happen at the edge or aggregation links, they happen
in bursts.

We now study the length of microbursts, defined as the
difference in the timestamps of the packet losses at either
boundary. In Figure 12 we show a distribution of the lengths
of the microburst losses at the aggregation switch for X =
5, 10, 15. We see that an overwhelming fraction of microbursts
last less than 10s. Dynamic load balancing and rerouting
could help avoid losses due to microbursts. However, these
initial results indicate that, to be effective, they must take
rerouting/load balancing decisions at the granularity of once
every few seconds.
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Figure 12: A CDF of the length of the microbursts
(in microseconds).

6.2 Traffic generators for data centers
Several recent studies have examined how to design scal-

able data center topologies. To evaluate the proposed topolo-
gies, these studies have relied on experiments that use “toy”
traffic workloads such as mixtures of long and short-lived
flows. It is unclear if these workloads are representative of
network traffic patterns in data centers. Other studies have
employed application-specific workloads such as map-reduce
or scientific computing and used the resulting traffic traces
for evaluating data center network designs and management
approaches. However, network traffic in data centers is com-
posed of traffic from a variety of other applications with
diverse send/receive patterns.

Our empirical observations and the framework we pre-
sented in the previous section could help in the design of
realistic network traffic generators for data centers. As part
of current work, we are developing such a traffic generator.
Our generator has several tuneable parameters such as the
size of the data center, the number of servers and the inter-
connection topology. All servers generate on-off traffic where
the parameters of the traffic are drawn at random from the

traffic models that we have derived from the 19 data centers
examined in this study. Rather than requiring users to sim-
ulate popular data center applications like Map-Reduce and
scientific computing, our simulator directly generates rep-
resentative network traffic that is a result of multiple data
center applications running together.

7. CONCLUSION AND FUTURE WORK
In this paper, we studied traffic patterns in data center

networks at both macroscopic and microscopic scales. Us-
ing network-wide SNMP data collected at 19 data centers,
we found that links in the core of data centers are more
heavily utilized on average, but those closer to the edge ob-
serve higher losses on average. Using a limited set of packet
traces collected at a handful of data center switches we found
preliminary evidence of ON-OFF traffic patterns.

A key contribution of our work is a new framework for de-
riving likely candidates for parameters that define the send-
ing behaviors of data center traffic sources. Interestingly, our
approach relies on network-wide coarse-grained data that is
easily available and combines it with high-level information
derived from fine-grained data that is collected at a small
number of instrumented locations. This general framework
can be used to examine how to design traffic engineering
mechanisms that ideally suit the prevailing traffic patterns
in a data center.

As part of future work, we plan to develop new fine-
grained traffic engineering mechanisms that are more re-
sponsive for data center traffic than traditional wide-area
approaches. We are also developing a traffic workload gener-
ator for datacenter traffic that is motivated by our empirical
observations.
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