XTA: An Architecture for an Evolvable and Trustworthy Internet

Ashok Anand’ Fahad Dogar Dongsu Han Boyan Li Hyeontaek Lim
Michel Machado* Wenfei Wu' Aditya Akella’ David G. Andersen John W. Byers*
Srinivasan Seshan Peter Steenkiste
ABSTRACT 1. INTRODUCTION

Motivated by limitations in today’s host-based IP network
architecture, recent studies have proposed clean-slate network
architectures centered around alternative first-class principals,
such as content, services, or users. However, much like the
host-centric IP design, elevating one principal type above
others hinders communication between other principals and
inhibits the network’s capability to evolve. Our work presents
the eXpressive Internet Architecture (XIA), an architecture
with native support for multiple principals and the ability
to evolve its functionality to accommodate new, as yet un-
foreseen, principals over time. XIA also provides intrinsic
security: communicating entities validate that their underly-
ing intent was satisfied correctly without relying on external
databases or configuration.

In this paper, we focus on core architectural issues in the
XIA data plane. We outline key design requirements relating
to native support for multiple principals and intrinsic security.
We then use case studies to demonstrate how the XIA design
facilitates evolvability and flexibility.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design

Keywords

Internet Architecture, Evolution, Multiple Communication
Styles, Intrinsic Security

Carnegie Mellon University, Pittsburgh, PA, USA.
*Boston University, Boston, MA, USA.
TUniversity of Wisconsin-Madison, Madison, WI, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Hotnets ’11, November 14-15, 2011, Cambridge, MA, USA.

Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

The “narrow waist” design of the Internet has been tremen-
dously successful, helping to create a flourishing ecosystem
of applications and protocols above the waist, and supporting
diverse media, physical layers, and access technologies below.
However, the Internet, almost by design, does not facilitate
a clean, incremental path for the adoption of new capabili-
ties. This shortcoming is clearly illustrated by the 15+ year
deployment history of IPv6 and the difficulty of deploying
primitives needed to secure the Internet.

We argue that these problems are fundamentally tied to
the difficulty of changing the “contract” between hosts and
routers: it is nearly impossible to modify in any deep way
the information shared between end-points and routers that
informs routers how to act upon packets. We make the case
for a new Internet architecture, called the eXpressive Internet
Architecture or XIA, to address these problems from the
ground up. XIA maintains several key features of the current
Internet such as a narrow waist that networks must support
and default-on communication, but it differs from today’s
Internet in three key areas.

First, while the Internet architecture and protocols are opti-
mized for host-to-host communication, XIA supports multiple
communication styles. XIA is centered on the abstraction of a
principal: a named originator or recipient of a packet, such as
a host, a service, or a piece of content. Each type of principal
(e.g., host, service or content) is associated with a different
contract with the network and, therefore, enables a different
communication style. This provides expressiveness in the
sense that applications can more precisely specify their intent
by choosing the appropriate principal types for communica-
tion. It also allows the network to more aggressively optimize
communication operations for a particular communication
style through, e.g., caching and replication.

Second, whereas the current Internet’s narrow waist is fixed,
the set of principal types supported in XIA can be extended
over time. This provides evolvability in two ways. First, new
application paradigms and usage models can be supported
more effectively by adding native support for the appropriate
principals. However, ubiquitous support for a new principal
type is unlikely to occur overnight. As a result, the XIA ar-
chitecture provides support for incremental deployment of
new principal types, allowing applications to benefit from

even partial deployment of router support for the principal.
Second, advances in computing and storage technology can
be leveraged to enhance network support for a given princi-
pal (e.g., allow incremental deployment of principal-specific
optimizations) in a clean, transparent fashion.

Taken together, these two aspects enable XIA to provide
many, if not all, of the goals of alternative architectures such
as, content-centric [11, 24] networks that better support var-
ious forms of content retrieval, and service-centric [9, 20]
networks that provide powerful primitives such as service-
level anycast. The XIA architecture enables each of these
important communication styles—and those that will emerge
in the future—to be supported natively to the degree that it
makes sense to do so at a given point in time.

Finally, XIA guarantees principal-specific intrinsic security
properties with each communication. This allows an entity to
validate that it is communicating with the correct counterpart
without needing access to external databases, information, or
configuration. Intrinsic security is central to reliable sharing
of information between hosts and routers and to ensuring
correct fulfillment of the contract between them. Also, it can
be used to bootstrap higher level security mechanisms.

In the rest of the paper, we present the design of the XIA
architecture, which addresses the above three requirements:
expressiveness, evolvability, and intrinsic security. In addition
to the details of our key design features, we also present case
studies of interesting usage scenarios enabled by XIA.

2. XIA DESIGN

Below, we outline the three key pillars that XIA uses to meet
the requirements outlined in the previous section. We then
use a simple Web browsing example to illustrate how these
design pillars play out in practice.

2.1 Three Pillars of XIA

1. Principals. In contrast with an IP-based Internet, XIA
enables a richer “contract” between applications and the net-
work through the use of principal types. Applications can
use different principal types to directly express their intent
to use specific functionality to the network. Each principal
type defines its own contract, instructing routers to process
the packet in a principal type-specific way, e.g., by employing
appropriate per-hop behavior such as unicast for host-to-host
communication and anycast for services. It also gives the
network significant flexibility for in-network optimizations to
satisfy that intent by allowing network elements to observe
and act upon it directly.

XIA supports an open-ended set of principal types, from
the familiar (“hosts”), to those popular in current research
(“‘content” or “services”), to those that we have yet to under-
stand; we illustrate some possibilities in §3. New applications
or protocols may choose to define a new principal type at will,
and use this new principal type for the destination or source
of their packets at any time, even before the network has been
modified to natively support the new function. This allows
incremental deployment of native network support without

further change to the network endpoints, as we will explore
through examples in §5.

2. Fallback. A key goal in XIA is to make it possible to
seamlessly introduce new functionality while avoiding the
“bootstrapping problem”. Experience has shown that deploy-
ing new functionality in a way that requires applications to
use new data formats, has host stacks handle it appropriately,
and asks all network routers to act upon this new information
to forward packets, all at the same time, is untenable. In XIA,
we require that the architecture have a clean, built-in mecha-
nism for enabling new functions to be deployed in a piecewise
fashion, e.g., starting from the applications and hosts, then, if
popular enough, providing gradual network support. The key
challenge is how a legacy router in the middle of the network
should handle a new principal type that it does not recognize.
To address this, we introduce the important architectural no-
tion of a fallback. Fallbacks allow communicating parties to
specify alternative action(s) if routers cannot operate upon
the primary intent. We provide details in §4.

3. Intrinsically secure identifiers. One of the main rea-
sons why IP is notoriously hard to secure is that security was
not a first-order design consideration. A key goal in XIA is to
build security into the core architecture as much as possible,
without impacting expressiveness. In particular, we require
that the semantics of a communication’s security correspond
to the specific functionalities being exercised.

To meet these requirements, we require source and destina-
tion identifiers in XIA to be intrinsically secure, i.e., crypto-
graphically derived from the associated communicating enti-
ties in a principal type-specific fashion. This allows commu-
nicating entities to more accurately ascertain the security and
integrity of their transfers. For example, the key requirement
in host-based communication is to authenticate the respective
hosts, whereas in content retrieval it is to ensure integrity and
validity of the data obtained. As result, host identifiers in XIA
are a hash of host’s public key, as in AIP [1], while content
identifiers are a hash of the content. This also helps ensure
fulfillment of the contract between end-points and routers; for
example, routers can attest that they delivered specific bytes
to the intended recipients. We do not require the architecture
to specify how these identifiers are obtained, but it should
support many options for doing so (e.g., root of trust, social
relations, etc.), and these options should have well-defined
semantics and interoperable interfaces.

2.2 Illustrative Example

We highlight the role of the above design pillars by showing
how a simple webpage retrieval scenario can be supported in
XIA. Note that this application involves communication with
multiple principal types. The process of fetching a web page
begins as a user interaction with a service, such as the Web
server for http://site.com. This service identifies or
creates the content that should be provided to the user, and

the browser must then obtain the content. We provide the
detailed steps of the web browsing interaction below:

(1) The browser sends a request to the site.com service
by sending a packet with the (intrinsically secure) identifier
of site.com as the destination. One advantage of using
a service identifier, rather than a host identifier, is that the
network may be able to locate a nearby server if the service
is replicated on multiple hosts, in the spirit of anycast.

(2) The http://site.com service returns a response
addressed to the requesting host’s secure host ID with a list
of intrinsically secure content IDs for the chunks of data
that make up the web page. Responses are signed, allowing
the browser to verify that the response was generated by the
intended service using the service’s public key.

(3) The browser retrieves the content using a sequence of
request packets that use the content identifiers as the destina-
tion, expressing the primary intent of the application (namely,
to reach any source of the identified content). The network
could route the requests to the nearest source of valid content,
and upon retrieval, the browser can verify the correctness of
the content by verifying that the hash of the content matches
the secure content identifier.

(4) Of course, not all content will be cacheable, and not all
routers are expected to support the content principal type, or
to maintain routes to arbitrary content IDs. To account for
this, each content request also includes a “fallback” option. In
the case of our web retrieval example, the fallback option is
the service identifier of site.com, which acts as the origin
server for the requested content. This is an example of how
XIA supports evolution: an application can still get some
benefits even if not all routers and hosts support the new
principal type. In a similar fashion, service access requests
also include a fallback, for example to a host.

Note that the above description leaves out many details,
but it does illustrate the value of an architecture that supports
multiple principal types, fallbacks and intrinsic security. We
discuss a number of additional case studies in §5. In what
follows, we describe the foundations of the XIA design in
more detail.

3. EXPRESSIVENESS WITH MULTIPLE
PRINCIPAL TYPES

In the XIA architecture, the network provides concurrent
support for different communication styles through the use of
principal types. Multiple principal types enable applications
or end-hosts to express the nature of their diverse intent. Note
that even a single application may use different principal types
for different tasks. For example, the Web browser in §2.2 uses
content principals when it is fetching static content.

To define its unique “contract” with the network, each type
of principal must define:

1. The semantics of communicating with a principal of that
type.

2. A unique XIA identifier (XID) type and a method for
generating XIDs and mapping these XIDs to intrinsic
security properties of any communication.

3. Any principal type-specific per-hop processing and rout-
ing of packets that must be coordinated or made consis-
tent in a distributed fashion.

The semantics (definition 1) help define the communication
intent associated with a particular principal type (i.e., define
what it means to send or receive a packet from an XID of that
type). Examples of these intents might include fetching partic-
ular content or communicating with a particular host. In gen-
eral, it makes sense to consider adding a new principal type
when a new communication style or mode is not expressed
efficiently with the existing types. For example, neither the
host nor content principals may be well-suited to expressing
a desire to communicate with all nodes in a geographic area.
Later research could, therefore, define a “GeoCast” principal
type [16] to meet this (hypothetical) need.

The second definition is used to generate intrinsically se-
cure addresses that the network operates upon. We define
intrinsic security as the capability to verify type-specific secu-
rity properties without relying on external information. XIDs
are therefore typically derived from their associated princi-
pal in some cryptographic type-specific manner, e.g., using
a hash of the principal’s public key or a hash of the content.
This enables verification of each operation that a principal
type supports. For example, when using a content XID, an
application can verify that it received the right content, or
when using a host XID, an application can authenticate that
the host it is conversing with.

The third definition sets forth correctness requirements for
in-network optimization for handling specific principal types.
Many in-network optimizations can be handled locally at each
router. In such cases, each router can handle packets as it
desires, as long as it meets the semantics associated with the
principal type. Examples of this type of processing are in-
network content caching and support for anycast. Other type-
specific support requires more coordination. For example, a
group communication principal type would require that router
implementations (for routers within a domain) agree upon
routing or tree-construction protocols.

When a new principal type is introduced we can’t expect
complete and immediate network support. We explore how
the new functions is gradually introduced into the network.

4. SUPPORTING EVOLUTION

The architecture must pave a seamless path for an incremental
deployment of new functionalities. Otherwise, the network
cannot readily evolve, and the expressiveness would be lim-
ited to the legacy principal types.

Our approach to supporting incremental deployment of
new principal types is through the notion of a fallback. Ap-
plications expressing an intent that may not be universally
recognized are requested to specify alternative, fallback ways
to achieve the intent. When a network element does not under-

Local

Local .
Domain

Domain)

Remote
Domain

Content-Enabled
Router
A Sy (2!
Q.)

(3") | Content
Cache

Content
Server

(a) Partially deployed (host only)

(b) Fully deployed (with in-
network support)

Figure 1: An example of incremental deployment of
content-centric networking. Solid arrows and dotted ar-
rows respectively represent per-hop processing of host
and content principals.

stand how to satisfy an expressed intent, it fails over to inspect
the fallback options, at least one of which legacy systems are
capable of handling. For example, when retrieving content
(Figure 1 (a)) using a content identifier, a host identifier can
be used as a fallback. Routers that receive this packet will first
try to operate on the primary intent (the content identifier),
but would fall back to forwarding based on the host identifier
either if they do not support the content principal type or if
they do not know a route to the requested content identifier.

When the local domain natively supports the content prin-
cipal type, it can potentially provide in-network optimization
for content delivery. In Figure 1 (b), by understanding the
content request at the router level (step 2), it can serve the
request directly from a local in-network cache (step 3).

In general, only the end-hosts involved in a communica-
tion using a given principal need to support that principal
type for correctness, and consequently, incremental deploy-
ment is straight-forward. This property is beneficial from
several perspectives: 1) introduction of a new principal type
is easy — one does not have to rely on a global deployment
of principal-specific components; 2) each network operator
can decide for itself, based on economic, technological, or
other considerations, which set of principal types it wants to
support natively and which set of principals of a given type to
support without affecting the inter-operability of the network;
and 3) endpoints and operators can flexibly adjust these deci-
sions without any external coordination. By requiring that all
routers support host-based communication, one’s intent can
always be satisfied by an end-host fallback who understands
how to process the intent. Thus, fallbacks ensure that the
network can service an intent without disruption, regardless
of the status of network support for a principal type.

We now turn to practical considerations: how XIA end-
hosts and applications obtain fallback information, and how
fallbacks are encoded in XIA packets.

Obtaining fallback information: While obtaining fall-
back information in XIA can be seen as an additional burden
for end-hosts or applications, in practice, it can be done in con-

Intent Y @

Fallback 1 NN
Fallback 2 '-‘
Fallback N '

(2) (b)

Figure 2: The two XIA addressing options show how fall-
backs may be encoded. Option (a) specifies an intent and
fallbacks in an ordered list. Option (b) uses a directed
acyclic graph to represent an intent, a fallback, and a fall-
back to a fallback.

junction with name resolution or other mechanisms through
which applications resolve the XID. For example, a name
server can provide fallback hosts for a service. These fall-
backs are provided by the service provider who had initially
registered the service name. Similarly, Web servers who pro-
vide content identifiers can also provide a fallback host or a
service from which the content can be retrieved. This process
does not involve any further bookkeeping than what is done
today in host-based communication. We, therefore, believe
that the cost of obtaining and maintaining fallback informa-
tion will be minimal in most cases, but further facilitating this
process is open to future research.

Encoding fallback: We list a couple of options for encode
multiple identifiers into XIA packet headers to support fall-
back. One way of representing fallback in a packet header
is to have multiple destination address fields and encode fall-
backs as an alternative destination (Figure 2 (a)). Another
option is to encode a directed acyclic graph which represents
the original intent and fallback identifiers as alternative paths.
The latter generalizes the approach in Slick Packets [17],
and is a more flexible representation. For example, one can
express fallbacks to a fallback as in Figure 2 (b).

S. CASE STUDIES

Previously, we have shown how popular usage models of
today’s Internet can be supported using service and content
principal types, and we discussed how to overcome the chal-
lenge of evolving the set of principal types. In this section,
we present two additional case studies that highlight how XIA
can support more diverse use cases.

5.1 Supporting Mobility and Disruptions

One implication of the best effort service provided by today’s
Internet is that both end-points have to be connected to the In-
ternet simultaneously for effective end-to-end communication
to take place. This is limiting for applications as disruptions
are quite common in typical mobile scenarios. Unlike the
Internet, architectures such as DTNs [8] handle disruptions,
but they are not optimized for the case where both end-points
are connected. Because of the complicated per-hop behavior

such as custody transfer, DTN results in sub-optimal perfor-
mance under good connectivity. Ideally, we would like to
seamlessly switch between a “good performance” mode to a
DTN-like mode, depending on the connectivity of end-points.

In XIA, we can achieve this using a combination of host
and service principal types. We can imagine a DTN “service”
that stores data temporarily when the mobile host is discon-
nected from the network and subsequently delivers the data
when the mobile host connects again [7]. Mobile users can
subscribe to such a service. Using it in a good connectiv-
ity scenario will typically result in sub-optimal performance,
since it may not be in the direct path of communication. More-
over, the DTN service may charge the user based on the traffic
it stores/forwards on behalf of the user. Therefore, the mobile
host will want to use this service only when it is disconnected.

XIA naturally supports such a solution — one that uses
host based communication under a normal scenario and ser-
vice based communication under periods of disconnectivity —
through the notion of intent and fallback. Packets destined for
the mobile host will have the identifier of the mobile host as
the intent and the identifier of the DTN service as a fallback.
If a network element cannot reach the host, then it will use
the fallback and send the packet to the DTN service.! Once
the mobile host is connected again, it can use any mechanism
(push, pull) to retrieve the packet from the DTN service.

The benefit is quite obvious when both end-points are mo-
bile (e.g., a direct chat session between two mobile users).
In today’s Internet, the chat message will only be delivered
if both end-points are connected to the network at the same
time. However, XIA will seamlessly switch from an interac-
tive chat session to an email-like communication if one of the
end-points gets disconnected.

There are advantages even when only one end-point is
mobile and the other end-point is connected—a typical sce-
nario for mobile devices. In such a scenario, the use of a
generic DTN service eliminates the need for servers to bear
the responsibility of supporting disconnections by delegating
the data transfer responsibility to the DTN service, thereby
allowing servers to potentially serve more users.

5.2 Seamless Multicast

Multicast offers an effective mechanism to reduce bandwidth
for single-to-many or many-to-many communications. How-
ever, while native multicast has been deployed in local net-
works and across single domains, wide-area multicast has
not seen broad adoption due to various concerns including
scalability, deployment overhead, and network management
issues. On the other hand, overlay-based solutions such as
end-system multicast [10] have been broadly deployed in
WAN environments by carefully circumventing these issues.
Ultimately, pushing overhead such as membership manage-
ment, overlay construction and maintenance, and multicast
forwarding out of the network core, and onto end systems,

I Typically, the fallback will be used once the packet is inside the access
network to which the mobile host was last connected.

amounts to clever realization of multicast functionality via a
complex amalgam of pairwise host-based communications.

XIA enables multicast applications to easily leverage dif-
ferent implementations and partial deployments of multicast
that may coexist, including native multicast. The first key
is that in XIA, the notion of multicast intent (for simplicity,
we focus on point-to-multipoint intent) can be expressed as a
new principal type with multicast sessions as the principals.
This expressiveness enables us to get the benefits of limited
deployments of multicast, while having the ability to switch
to service-based multicast wherever native multicast is not
supported. This can be achieved by specifying the multicast
address as a primary intent and the service identifier of a
multicast service as the fallback. When native multicast is
present in a domain, those participants within the domain
will be served by native multicast. On the other hand, when
a packet with multicast intent reaches a network that does
not support this principal type, the packet is routed to the
handler for the multicast service, which ensures the delivery
of packets to all of its recipients, and neighboring domains.
XIA also enables us to easily construct a hybrid multicast sys-
tem of service-based multicast and islands of networks with
native multicast support. As before, the applications specify
the multicast address as a primary intent and the identifier of
the multicast service as the fallback address. The multicast
service distributes packets through a tunnel to each of its sub-
trees, some of which may be directed to a rendezvous point
of a multicast enabled network.

6. OUR WORK IN CONTEXT

Substantial prior works [5, 9, 11, 12] have examined the bene-
fits of network architectures tailored for individual principals;
in general, they are complementary to our work and have mo-
tivated the design of our architecture that supports multiple
principal types.

Extensibility through naming and indirection: Prior re-
search has examined solutions that extend network functional-
ity purely through naming or overlay-based indirection. Lay-
ered Naming Architecture (LNA) [4] resolves service and
data identifiers to end-point identifiers (hosts) and end-point
identifiers to IP addresses. Like XIA, this architecture im-
proves support for mobility, anycast, and multicast, but only
at the cost of additional indirection. Similarly, i3 [22] uses
an overlay infrastructure that mediates on sender-receiver
communication to provide enhanced flexibility.

Extensibility through programmability has been pur-
sued through efforts, such as active networks [23]. The
biggest drawback to the extreme flexibility of such approaches
is resource isolation and security. In contrast, XIA does not
make it easier to program new functionality into existing
routers, but creates an architecture in which new functionality
can be incrementally deployed.

Architectures that evolve well: FII [13] shares our goals
of supporting evolution and diversity, but their design focuses

primarily on improved interfaces for inter-domain routing and
applications, whereas XIA targets innovation and evolution of
data plane functionality within or across domains. FII allows
a domain to adopt any architecture, but does not specify how
to do so incrementally, while XIA’s fallback mechanisms
allows incremental adoption of new principal types by design.
Ratnasamy et al. propose modifications to IP to enhance its
evolvability [19]; compared to XIA, this work seems more
easily deployable, but does not admit the flexibility offered
by XIA’s support for multiple principal types. Others have
argued that we should give up and accept that IP and HTTP
atop it are here to stay, and simply build the next networks
atop them [18]. While we politely disagree, we cannot argue
the vast inertia of today’s Internet, but hope that our work
proves useful regardless in the design of future networks.

Substantial work has examined creating virtualizable net-
works in which links can be partitioned to allow many com-
peting Internet protocols to run concurrently [2, 3, 21, 25].
Clark, in particular, presents a compelling argument for the
need to enable competition at an architectural level [6], which
we internalized in our support for multiple principals. We
believe that there are substantial benefits to ensuring that
all applications can communicate with all other applications
using the same “Internet”, but virtualizable networks offer
the potential for stronger isolation properties and to support
deeper-reaching architectural changes.

Borrowed foundations: Self-certifying identifiers were ex-
plored in various other systems [14, 15]. AIP [1] used self-
certifying network and host identifiers to simplify network-
level security mechanisms. Similarly, DONA [12] and SCAF-
FOLD [9] have used self-certifying content and service iden-
tifiers. This prior work demonstrated the substantial power
of these intrinsically secure identifiers, which XIA in turn
generalizes to an architectural requirement.

7. CONCLUSION

The design of the XIA architecture started from the premise
that today’s Internet is limited by the specificity and inflexibil-
ity of the implied contract underlying IP, notably host-based
addressing, open-ended trust assumptions, and little provision
for security. The XIA architecture is founded on the notion
of intrinsically secure principals that allow applications to
formally and expressively state their intent, and verify that
their intent has been satisfied correctly. The key requirement
of evolvability is realized in XIA by virtue of the ability to
introduce new principal types over time, and to do so in an in-
crementally deployable manner using the notion of a fallback.
Secure content retrieval, disruption-tolerant communication,
and multicast provided representative examples of the value
that the XIA architecture can provide.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under awards CNS-1040757, CNS-1040800, and
CNS-1040801. Ashok Anand is supported by a Google PhD

Fellowship. Dongsu Han and Hyeontaek Lim are supported
in part by the Korea Foundation for Advanced Studies.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable Internet Protocol (AIP). In Proc. ACM SIGCOMM,
Aug. 2008.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet

impasse through virtualization. IEEE Computer, 38, Apr. 2005.

[3] M. B. Anwer and N. Feamster. Building a Fast, Virtualized Data Plane with
Programmable Hardware. In Proc. ACM SIGCOMM Workshop on Virtualized
Infrastructure Systems and Architectures, Aug. 2009.

[4

H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the Internet. In Proc. ACM SIG-
COMM, pages 343-352, Aug. 2004.

D. R. Cheriton and M. Gritter. TRIAD: A new next-generation Internet architec-
ture. Technical report, Jan. 2000.

[5

[6

D. Clark, J. Wroclawski, K. Sollins, and B. Braden. Tussle in cyberspace: Defin-
ing tomorrow’s Internet. In Proc. ACM SIGCOMM, pages 347-256, Aug. 2002.

F. R. Dogar and P. Steenkiste. M2: Using Visible Middleboxes to Serve Pro-
active Mobile-Hosts. In Proc. ACM MobiArch, 2008.

[7

[8

K. Fall. A delay-tolerant network architecture for challenged internets. In Proc.
ACM SIGCOMM, pages 27-34, Aug. 2003.

M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom, J. Rexford, and
D. Shue. Service-centric networking with SCAFFOLD. Technical Report TR-
885-10, Princeton University, Sept. 2010.

[9

[10] Y. hua Chu, S. Rao, S. Seshan, and H. Zhang. A case for end system multicast.
Selected Areas in Communications, IEEE Journal on, 20(8), Oct. 2002.

[11] V.Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard. Networking named content. In Proc. CONEXT, Dec. 2009.

[12] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A Data-Oriented (and Beyond) Network Architecture. In Proc.
ACM SIGCOMM, Aug. 2007.

[13] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev, A. Ghodsi,
P. B. Godfrey, N. McKeownh, G. Parulkari, B. Raghavan, J. Rexford, S. Arianfar,
and D. Kuptso. Architecting for Innovation. ACM CCR, 2011.

[14] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key
management from file system security. In Proc. ACM SOSP, Dec. 1999.

[15] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture. Inter-
ent Engineering Task Force, RFC 4423, May 2006.

[16] J. C. Navas and T. Imielinski. GeoCast-geographic addressing and routing. In
Proc. ACM MOBICOM, pages 66-76, Sept. 1997.

[17] G. T. K. Nguyen, R. Agarwal, J. Liu, M. Caesar, B. Godfrey, and S. Shenker.
Slick packets. In Proc. SIGMETRICS, 2011.

[18] L.Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future Internet.
In Proc. ACM Hotnets-IX, Oct. 2010.

[19] S. Ratnasamy, S. Shenker, and S. McCanne. Towards an evolvable Internet ar-
chitecture. In Proc. ACM SIGCOMM, Aug. 2005.

[20] U. Saif and J. Mazzola Paluska. Service-oriented network sockets. In Proc. ACM
MobiSys, May 2003.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar. Can the production network be the testbed? In Proc. 9th
USENIX OSDI, Oct. 2010.

[22] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana. Internet indirection
infrastructure. In Proc. ACM SIGCOMM, pages 73-86, Aug. 2002.

[23] D.L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture.
ACM CCR, 26(2):5-18, Apr. 1996.

[24] D. Trossen, M. Sarela, and K. Sollins. Arguments for an information-centric
internetworking architecture. ACM CCR, 40:26-33, Apr. 2010.

[25] G. Watson, N. McKeown, and M. Casado. NetFPGA: A tool for network research

and education. In Proc. 2nd workshop on Architectural Research using FPGA
Platforms (WARFP), 2006.

	Introduction
	XIA Design
	Three Pillars of XIA
	Illustrative Example

	Expressiveness with Multiple Principal Types
	Supporting Evolution
	Case Studies
	Supporting Mobility and Disruptions
	Seamless Multicast

	Our Work in Context
	Conclusion

