
Validating Library Usage Interactively?

William R. Harris, Guoliang Jin, Shan Lu, and Somesh Jha

University of Wisconsin, Madison, WI, USA
{ wrharris, aliang, shanlu, jha }@cs.wisc.edu

Abstract. Programmers who develop large, mature applications often
want to optimize the performance of their program without changing
its semantics. They often do so by changing how their program invokes
a library function or a function implemented in another module of the
program. Unfortunately, once a programmer makes such an optimization,
it is difficult for him to validate that the optimization does not change
the semantics of the original program, because the original and optimized
programs are equivalent only due to subtle, implicit assumptions about
library functions called by the programs.

In this work, we present an interactive program analysis that a pro-
grammer can apply to validate that his optimization does not change
his program’s semantics. Our analysis casts the problem of validating an
optimization as an abductive inference problem in the context of check-
ing program equivalence. Our analysis solves the abductive equivalence
problem by interacting with the programmer so that the programmer
implements a solver for a logical theory that models library functions
invoked by the program. We have used our analysis to validate optimiza-
tions of real-world, mature applications: the Apache software suite, the
Mozilla Suite, and the MySQL database.

Keywords: abductive reasoning, program equivalence

1 Introduction

Application developers often modify a program to produce a new program that
executes faster than, but is semantically equivalent to, the original program.
After a developer modifies his program, he can determine with high confidence
whether the modified program executes faster than the original program by
measuring the performance of the original and modified program on a set of
performance benchmarks. Unfortunately, it is significantly harder for the devel-
oper to determine that the modified program is semantically equivalent to the
original program.

? Supported, in part, by DARPA and AFRL under contract FA8650-10-C-7088. The
views, opinions, and/or findings contained herein are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or
implied, of DARPA or the Department of Defense. Also supported by NSF under
grants CCF-1054616, CCF-1217582, and by a Clare Boothe Luce faculty fellowship.

Much previous work in developing correct compiler optimizations has focused
on developing fully-automatic analyses that determine if two programs are equiv-
alent [23, 25]. Unfortunately, such analyses usually require that the two programs
call the same procedures with the same argument values. However, many practi-
cal optimizations modify a program to call a library function on different values,
or call a different library function entirely. Such analyses cannot prove that such
an optimization preserves the semantics of a program. Other analyses attempt
to determine if two programs are equivalent by analyzing the programs inter-
procedurally [10, 17]. Unfortunately, many practical optimizations modify calls
to complex, heavily optimized library functions. Such functions may be difficult
to analyze, or their source code may be unavailable.

In this work, we propose a new interactive analysis for determining under
what conditions two programs are equivalent. Unlike previous work, the analysis
that we propose is not fully automatic. Instead, the analysis takes as input from
a programmer an original program and an optimized program, and suggests a
candidate specification of the functions defined in libraries and other program
modules (in this paper, we refer to all such functions as “library” functions
for simplicity) called by the program that implies that the original and opti-
mized programs are equivalent. The programmer either validates or refutes the
candidate specification, and the analysis uses this validation or refutation to it-
eratively suggest a new sufficient specification, until the analysis finds a sufficient
specification that is validated by the programmer. If a programmer accepts an
invalid specification of library functions, then the analysis may incorrectly deter-
mine that the programs are equivalent. However, even if a programmer accepts
an invalid specification, the analysis still generates an explicit representation
of the key assumptions made by the programmer to justify the optimization.
The assumptions can potentially be validated by other programmers or known
techniques for verifying safety properties of programs [4, 6, 13].

There are two key challenges to developing an interactive equivalence checker.
The first key challenge is to develop a checker that can construct candidate spec-
ifications about functions whose implementations may not be available, or that
manipulate complex abstract datatypes, such as strings, that are difficult to rea-
son about symbolically. The equivalence checker must find specifications describ-
ing such functions that it can soundly determine to be consistent and sufficient
to prove that the original program is equivalent to the optimized program.

The second key challenge is to develop an interactive checker that queries
its user with simple, non-redundant candidate specifications about the library
functions that a program calls. To prove equivalence between an original and
optimized program, the interactive checker must work with the user to construct
a simulation relation from the state space of the original program to the state
space of the optimized program. However, the checker should largely hide from
the user the complexity of constructing such a simulation relation, so that the
user must only ever make simple Boolean decisions determining the validity of
a candidate specification of library functions.

string srch strm(string s) {
L0: string sb := "";

L1: while(!find(sb, s)) {
char c := get();

sb := append(sb, c);

}
L2: return sb;

}

string srch strm’(string s) {
L0’: str sb := "";

int pos := - len(s);

L1’: while(pos < 0

|| !find(sub(sb, pos), s)) {
char c := get();

sb := append(sb, c);

pos := len(sb) - len(s);

}
L2’: return sb;

}

Fig. 1. An example original program srch strm and its optimization srch strm’, sim-
plifications of the original and optimized programs submitted in Apache Bug #34464.

Our key insight to address the above challenges is to design the checker so
that it treats the user as a solver for a theory that describes the library functions.
The equivalence checker reduces the problem of checking equivalence to proving
the validity of a set of formulas, using known techniques for checking equiva-
lence [23]. To prove validity of the required formulas, the equivalence checker
applies an abductive theorem prover, which generates an assumption over the
library functions, restricted to logical combinations of equalities, that are suffi-
cient for each formula to be valid. To generate such an assumption, the theorem
prover uses an optimistic solver for the theory of program libraries. If the op-
timistic solver finds consistent assumptions sufficient to prove validity, then the
equivalence checker presents the assumptions for the user to validate or refute.
In other words, the optimistic solver interacts with the user to implement a
“guess-and-check” solver for the theory of the libraries.

The rest of this paper is organized as follows: §2 illustrates our equivalence
problem and analysis on a function and its optimization submitted in a bug
report for the Apache Ant build tool. §3 presents our abductive equivalence
problem and analysis in detail. §4 presents an experimental evaluation of our
analysis on a set of benchmarks taken from bug reports to fix performance issues
in applications. §5 discusses related work.

2 Overview

In this section, we motivate the abductive equivalence problem and algorithm
introduced in this paper using an optimization submitted in a bug report for
the Apache Ant build tool [3]. Fig. 1 contains a program function srch strm

and an optimization of the function srch strm’ submitted in Apache Bug Re-
port #34464 [2]. The actual original and optimized programs submitted in Bug
Report #34464 use additional variables and control structure, and were written
in Java, but have been simplified to srch strm and srch strm’ in Fig. 1 to
simplify the discussion. However, we have implemented our algorithm as a tool

that checks the equivalence of the actual programs (we translated the programs
to C++ by hand so that we could apply our checker, which uses the LLVM
compiler framework [19]).

srch strm and srch strm’ implement an equivalent search for a substring
in an input stream. Both functions take a string s, and read characters from
a stream until they have read a string that contains s. srch strm implements
the search by constructing an empty string sb and iteratively checking if sb

contains s as a subsequence. In each iteration, srch strm calls find(sb, s),
which returns True if and only sb constrains s as a subsequence. If find(sb, s) =
True, then srch strm returns sb. Otherwise, srch strm gets a character c from
the stream, appends c to sb, and iterates again.

An Apache developer observed that while srch strm outputs the correct
value for each input string, it is inefficient due to how it uses the string li-
brary functions find and append. In Apache Bug Report #34464, the developer
submitted a patch to srch strm, called srch strm’, that is functionally equiv-
alent to srch strm, but which the developer measured to be more efficient than
srch strm. srch strm’ is structured similarly to srch strm, but executes more
efficiently by only searching for s in a sufficiently long suffix of sb. In particular,
srch strm’ maintains an integer variable pos that stores the position in sb from
which srch strm’ searches for s. In each iteration, srch strm’ constructs the
substring of sb starting at pos, sub(sb, pos), tries to find s in sub(sb, pos),
and if it fails, gets a new character c from the stream, appends c to sb, and
iterates again.

An Apache developer submitted srch strm’ with an informal argument that
it is semantically equivalent to srch strm, but ideally, the developer would sub-
mit srch strm’ accompanied by a proof that could be checked automatically
to determine that srch strm is equivalent to srch strm’. Existing analyses for
constructing automatically-checkable proofs of equivalence construct a simula-
tion relation from P to P ′, which shows that every execution of P corresponds to
an execution of P ′ that returns the same value [20, 23, 25]. A simulation relation
∼ from P to P ′ is a binary relation from the states of P to the states of P ′ such
that: (1) ∼ relates each initial state of P to the state in P ′ with equal values
in each variable; (2) ∼ relates each return state of P to a state of P ′ with the
same return value; and (3) if ∼ relates a state q0 of P to a state q′0 of P ′ and q0
transitions to a state q1 of P , then q′0 transitions, possibly over multiple steps,
to some state q′1 of P ′ such that ∼ relates q1 to q′1.

One simulation relation from srch strm to srch strm’, under an intuitive
semantics of the library functions append, find, sub, and len, is:

(L0, L
′
0) : s = s′ (1)

(L1, L
′
1) : s = s′ ∧ sb = sb′ (2)

(L2, L
′
2) : sb = sb′ (3)

The simulation relation ∼ex of Formulas (1)–(3) is represented as a map from
a pair of program labels to a formula that describes pairs of program states. A
state q of srch strm at label L is related to a state q′ of srch strm’ at label L’

if the values of the variables in q and q′ satisfy the formula mapped from (L,L′)
(where the variables of q′ are primed). ∼ex relates all initial states of srch strm

to initial states of srch strm’ with equal values for s (Formula (1)), all return
states of srch strm to return states of srch strm’ that return the same value
(Formula (3)), and states at the loop head of srch strm to states at the loop
head of srch strm’ with equal values for s and sb (Formula (2)).
∼ex is a straightforward instance of the definition of a simulation relation for

srch strm and srch strm’. However, the fact that ∼ex satisfies condition (2)
of a simulation relies on the semantics of the library functions append, find,
and sub called by srch strm and srch strm’. Unfortunately, in practice it is
difficult to automatically infer accurate specifications for library functions, as
such functions may be unavailable or difficult to analyze.

Fortunately, while a programmer may not be able to give a complete for-
mal specification of a library, they often understand a weaker, partial specifi-
cation that implies the equivalence of a particular optimization. For example,
srch strm and srch strm’ are equivalent under the assumptions that (1) if the
length of string sb is less than the length of string s, then find(sb, s) = False
and (2) if find(sb, s) = False, then s is a subsequence of the concatenation of
s with a character c if and only if s is a subsequence of the suffix of s and c of
length equal to the length of s:

∀sb, s. len(sb)− len(s) < 0 =⇒ ¬find(sb, s) (4)

∀sb, s, c. ¬find(sb, s) =⇒ (find(append(sb, c), s) (5)

⇐⇒ find(sub(sb, len(sb)− len(s)), s))

Based on the insight that programmers can often reliably validate partial
specifications of libraries, in this work we introduce the abductive equivalence
problem AEQ (§3.2). An abductive equivalence problem is defined by an original
program P , optimized program P ′, and an oracle, which models a programmer,
that takes a formula ϕ describing the library functions called by P and P ′ and
accepts ϕ if the oracle’s model of the library functions satisfies ϕ. A solution to
the problem is a simulation relation from P to P ′ under the oracle’s model of
the library functions.

We present a sound algorithm for AEQ, called ChkAEQ (§3.3), that extends
existing algorithms for checking program equivalence [23]. Like algorithms for
checking equivalence, ChkAEQ first asserts that the return values of input pro-
grams P and P ′ are equal, and then reasons backwards over the executions of P
and P ′ to construct a simulation relation from P to P ′ represented as a map from
pairs of program control labels to formulas in a logic that describes the states
of the program. The key feature of ChkAEQ is that as it constructs a relation ∼
from the states of P to P ′, it applies an abductive theorem prover to construct a
condition on the library functions (i.e., a library condition) that implies that ∼ is
a simulation relation. If ChkAEQ finds a simulation relation and sufficient library
condition, it queries the input oracle on the library condition to determine if the
oracle’s model satisfies the library condition. If the library oracle validates the
condition, then ChkAEQ returns the simulation relation. Otherwise, if the oracle

block := L : instr; term L ∈ Labels

instr := x0 := f(x1, . . . , xn) | x0 := g(x1, . . . , xn) {xi}i ⊆ Vars; f ∈ Ops; g ∈ LibOps

term := return x | br x ? Lt : Lf Lt, Lf ∈ Labels; x ∈ Vars

Fig. 2. Syntax of the programming language Imp, described in §3.1. An Imp program
is a set of blocks.

refutes the condition, then ChkAEQ uses the refutation to continue to search for
a simulation relation.

For srch strm and srch strm’ (Fig. 1), ChkAEQ could infer that if each
string s can be found in each string sb (i.e., ∀sb, s. find(sb, s) (6) is valid), then
∼ex is a simulation relation. However, a programmer serving as a library oracle
would refute Formula (6). ChkAEQ would then use the refutation to search for
a condition consistent with the negation of Formula (6), and would eventually
find the library conditions of Formulas (4) and (5).

3 Abductive Equivalence

In this section, we formally define the abductive equivalence problem and al-
gorithm. In §3.1, we define the syntax and semantics of a simple imperative
language Imp. In §3.2, we define the abductive equivalence problem for Imp
programs. In §3.3, we present a sound algorithm for solving the abductive equiv-
alence problem.

3.1 IMP: a Simple Imperative Language

IMP Syntax. An Imp program updates its state by executing a sequence of
program and library operations. The Imp language (Fig. 2) is defined over a set
of variable symbols Vars, a set of control labels Labels, a set of language function
symbols Ops, and a set of library function symbols LibOps, where Vars, Labels,
Ops, and LibOps are mutually disjoint. Labels contains a label RET that does not
label any block of an Imp program (RET is used to define the semantics of a
return instruction; see “IMP Semantics”).

An Imp program is a set of basic blocks. Each Imp program P contains
one initial block labeled with a ι(P) ∈ Labels. Each basic block block is a label
followed by an instruction and block terminator. An instruction is an assignment
of either a language operation or a library operation. A block terminator is either
a return instruction or a conditional branch.

IMP Semantics. The operational semantics of Imp (Fig. 3) defines how a
basic block transforms a given state under a given model of library operations.
An Imp state is a label paired with a valuation, which is a map from each

σm
b JL : instr; termK(L0, V) ≡ if L0 = L then σtJtermK(σm

i JinstrK(V)) else ⊥ (6)

σm
i Jx0 := f(x1)K(V) ≡ V [x0 7→ langmodel(f)(V (x1), . . . , V (xn)))] (7)

σm
i Jx0 := g(x1)K(V) ≡ V [x0 7→ m(g)(V (x1), . . . , V (xn))] (8)

σtJreturn xK(V) ≡ (RET, V [rv 7→ V (x)]) (9)

σtJbr x ? Lt : LfK(V) ≡ ((if V (x) 6= 0 then Lt else Lf), V) (10)

Fig. 3. Operational semantics of Imp. σm
b is the operational semantics of a block and

σm
i is the operational semantics of an instruction under library model m. σt is the

operational semantics of a block terminator. In σm
b , ⊥ denotes the undefined value. In

σm
i and σt, for a, b ∈ Z, V [a 7→ b] maps a to b, and maps c 6= a to V (c). In σt, rv ∈ Vars

stores the return value of the program.

program variable to an integer value: Valuations = Vars → Z and States =
Labels× Valuations. A library model m : LibOps → (Z∗ → Z) maps each library
function to a function from a vector of integers to an integer.

The semantic function of a block σm
b (Fig. 3, Eqn. (6)) defines how a basic

block transforms a state under m. The semantic function of an instruction σm
i

(Fig. 3, Eqns. (7) and (8)) defines how an instruction updates a valuation. If
an instruction assigns the result of a language operation, then the value of the
operation is defined by a fixed language model langmodel : Ops → (Z∗ → Z)
(Fig. 3, Eqn. (7)). If an instruction assigns the result of a library operation, then
the value of the operations is defined by m (Fig. 3, Eqn. (8)). The semantic
function of a block terminator σt defines how a block terminator transforms a
state (Fig. 3, Eqns. (9) and (10)).

3.2 The Abductive Equivalence Problem

To define the abductive equivalence problem, we adopt the definition of a sim-
ulation relation [20], which has been used to define the classical equivalence
problem [23, 25]. A simulation relation from an Imp program P to an Imp pro-
gram P ′ is a relation from states of P to states in P ′ that implies that if from
inputs I, P has an execution that returns value v, then from I, P ′ also has an
execution that returns v.

Defn. 1 Let Imp program P be compatible with Imp program P ′ if every vari-
able of P corresponds to a variable of P ′: Vars(P) ⊆ Vars(P ′). A simulation
relation from P to a compatible program P ′ under library model m : LibOps →
(Z∗ → Z) is a relation ∼⊆ States × States from the states of P to the states of
P ′ such that:

1. Initial states: ∼ relates each initial state of P to its analogous state in P ′.
For valuations V, V ′ ∈ Valuations, if for each x ∈ Vars(P), V (x) = V ′(x),
then ∼ ((ι(P), V), (ι(P ′), V ′)).

2. Return states: ∼ relates each return state of P to a return state of P ′ that
returns an equal value. For the distinguished variable rv ∈ Vars holding the

Algorithm 1 An abductive equivalence algorithm ChkAEQ. Takes as input a
Tlib oracle Om and two Imp programs P and P ′, and constructs a solution to
AEQ(m,P, P ′) (Defn. 2). Interact(A) returns a simulation relation under a library
condition that implies A and is validated by Om. ChkAEQ is discussed in §3.3.

1: function ChkAEQ(Om, P , P ′)
2: function Interact(A)
3: (C,∼) := SimRel(P , P ′, A)
4: if Om(C) then return ∼
5: else return Interact(A ∧ ¬C)
6: end if
7: end function
8: return Interact(True)
9: end function

return value of the fucntion, and for each V ∈ Valuations, there is some
V ′ ∈ Valuations such that V (rv) = V ′(rv) and ∼ ((RET, V), (RET, V ′)).

3. Consecution: if ∼ relates a state s0 of P to a state s′0 of P ′ and s0 transitions
to a state s1 of P , then s′0 eventually transitions to a state s′1 of P ′ such
that ∼ relates s1 to s′1. For program P , let the transition relation →P⊆
States × States relate states connected by the transition function of P : for
states s0, s1 ∈ States, →P (s0, s1) if and only if there is some block B ∈ P
such that s1 = σm

b JBK(s0). Let→∗P⊆ States×States be the reflexive transitive
closure of →P . For s0, s

′
0, s1 ∈ States, if ∼ (s0, s

′
0) and →P (s0, s1), then

there is some s′1 ∈ States such that →∗P ′ (s′0, s
′
1) and ∼ (s1, s

′
1).

The abductive equivalence problem for programs P and P ′ and library model
m is to find a simulation relation from P to P ′ under m using P , P ′, and an
oracle for m that answers Boolean queries about properties of m. Intuitively,
the oracle formalizes the role of a programmer who can answer queries about
the specification of a library. The oracle answers queries on properties expressed
as formulas of a logical theory Tlib whose models describe Imp’s library opera-
tions. For each library operation g ∈ LibOps, there is an uninterpreted function
symbol g in Tlib. The only predicate of Tlib is the equality relation =. The set of
library conditions Forms(Tlib) are the first-order formulas of Tlib, and for library
condition ϕ ∈ Forms(Tlib), m |= ϕ denotes that m is a model of ϕ. For library
model m, the oracle Om ⊆ Forms(Tlib) accepts a Tlib formula if and only if m
satisfies the formula: for ϕ ∈ Forms(Tlib), Om(ϕ) if and only if m |= ϕ.

Defn. 2 For library model m and Imp programs P and P ′, the abductive equiv-
alence problem AEQ(m,P, P ′) is, given Om, P , and P ′, to find a simulation
relation ∼ from P to P ′ under m.

3.3 A Sound Algorithm for Abductive Equivalence

Interacting with an Oracle to Solve AEQ. In this section, we present an al-
gorithm that soundly tries to solve the abductive equivalence problem (Defn. 2),

Algorithm 2 SimRel: takes an original program P , optimized program P ′, and
library condition A, and constructs a library condition C such that C =⇒
A and a simulation relation from P to P ′ under C. symret, ConsLocRel, and
ConsecSimRel are discussed in §3.3.

1: function SimRel(P , P ′, A)
2: lr← ConsLocRel(P, P ′)
3: function ConsecSimRel(C, sym,W)
4: if W = ∅ then return (C, sym)
5: else
6: (L,L′)← RemElt(W)

7: cs :=
∨
{wpP ′

P J(L,L′), (L1, L
′
1)K(sym(L1, L

′
1)) | (L1, L

′
1) ∈ succlr(L,L

′)}
8: suff := ATP(sym(L,L′) =⇒ cs)
9: if IsTConsistent(suff) then C := C ∧ suff

10: else
11: sym(L,L′) := cs
12: W := W ∪ predslr(L,L

′)
13: end if
14: return ConsecSimRel(C, sym,W)
15: end if
16: end function
17: (Acs, symcs) := ConsecSimRel(A, symret, dom(lr) ∪ img(lr))
18: if IsTValid(initeq =⇒ symcs(ι(P), ι(P ′))) then return (Acs, symcs)
19: else abort
20: end if
21: end function

called ChkAEQ (Alg. 1). ChkAEQ tries to solve an abductive equivalence prob-
lem AEQ(m,P, P ′) as follows. ChkAEQ first defines a function Interact (Alg. 1,
lines [2]–[6]) that takes a library condition A, and constructs a simulation rela-
tion from P to P ′ under m if m |= A. When ChkAEQ is successful, it returns
the simulation relation constructed by applying Interact to True (Alg. 1, line [8]).
However, ChkAEQ may fail or not terminate.

Interact constructs a simulation relation by applying a function SimRel (Alg. 1,
line [3]) that takes an original program P , optimized program P ′, and a library
condition A, and constructs (1) a library condition C such that C =⇒ A and
(2) a simulation relation from P to P ′ under each library model that satisfies
C (in which case, we say that ∼ is a simulation from P to P ′ under C). If Om

accepts C (Alg. 1, line [4]), then Interact returns ∼ (Alg. 1, line [4]). Otherwise,
Interact calls itself with a stronger library condition that asserts that C is not
valid (Alg. 1, line [5]).

Constructing a Simulation Relation. SimRel constructs a simulation rela-
tion represented as a symbolic state relation, which is a function from pairs of
labels to a formula of a theory T for which each model defines a library model, a
state of P , and a state of P ′. The theory TImp describes states of fixed programs
P and P ′. For each f ∈ Ops, let there be a unary function f in the logical theory

TImp. For each program variable x ∈ Vars(P), let there be a TImp constant x, and
for each x ∈ Vars(P ′), let there be a TImp constant x′ that does not correspond
to any variable in Vars(P). Let the only predicate of TImp be the equality predi-
cate, which TImp shares with Tlib (§3.2). Let the combination of Tlib and TImp be
T = Tlib+TImp [24]. A symbolic state relation sym : (Labels×Labels)→ Forms(T)
relates states (L, v), (L′, v′) ∈ States under library condition C if for each library
model m |= C, m ∪ v ∪ v′ |= sym(L,L′).

SimRel constructs a library condition Acs such that Acs =⇒ A, and a sym-
bolic state relation symcs that satisfies the consecution condition of a simulation
relation (Defn. 1, item 3) under Acs. SimRel defines a label transition relation
lr ⊆ (Labels× Labels)× (Labels× Labels), which defines the domain of symcs, by
applying a function ConsLocRel (Alg. 2, line [2]). ConsLocRel can be implemented
using known techniques and heuristics from classical equivalence checking [23].
SimRel then defines a function ConsecSimRel (Alg. 2, lines [3]–[16]) that takes
as input (1) a library condition C, (2) a symbolic state relation sym, and (3) a
workset W of label pairs on which sym may not satisfy Defn. 1, item 3 under C,
and constructs a library condition Acs and a state relation symcs that satisfy the
consecution condition, and such that Acs implies C. To construct symcs and Acs,
SimRel applies ConsecSimRel to A, a simulation relation symret, and all pairs of
labels in the domain and image of lr (Alg. 2, line [17]). symret satisfies the return
condition of a simulation relation, defined in Defn. 1, item 1.

SimRel then checks that symcs satisfies the condition for a simulation relation
on initial blocks (Defn. 1, item 1) by checking that initeq ≡

∧
x∈Vars(P) x = x′

implies the relation of states at the initial blocks of P and P ′ (Alg. 2, line [18]).
If so, then SimRel returns (Acs, symcs) as a simulation relation (Alg. 2, line [18]).
Otherwise, SimRel fails (Alg. 2, line [19]).

ConsecSimRel (Alg. 2, lines [3]–[16]) first checks if its workset of labels W
is empty (Alg. 2, line [4]), and if so, returns its input library condition C and
input state relation sym (Alg. 2, line [4]). Otherwise, ConsecSimRel chooses a
pair of a labels (L,L′) from W (Alg. 2, line [6]) on which it will update sym.
For ϕ ∈ Forms(T), let wpP ′

P J(L0, L
′
0), (L1, L

′
1)K(ϕ) be the formula whose models

define states that transition to states in ϕ over steps of execution in P from L0 to
L1 and steps of execution in P ′ from L′0 to L′1 (wpP ′

P is defined from the semantics
of Imp (Fig. 3) using well-known techniques [11]). ConsecSimRel constructs cs,
the disjunction of the weakest precondition of each formula to which sym maps
each successor of L and L′ under lr (Alg. 2, line [7]). ConsecSimRel then tries
to construct a library condition suff ∈ Forms(Tlib) that is consistent and implies
that sym(L,L′) implies cs. To construct suff, ConsecSimRel applies an abductive
theorem prover ATP (Alg. 2, line [8]; ATP is discussed in [12], App. A). If suff
is consistent, then ConsecSimRel conjoins suff to C (Alg. 2, line [9]). Otherwise,
ConsecSimRel updates sym to map L and L′ to cs, and adds each predecessor
of L and L′ under lr to W (Alg. 2, lines [11]–[12]). ConsecSimRel then calls
itself recursively on its updated library condition, symbolic state relation, and
workset.

Correctness of ChkAEQ. AEQ is at least as hard as determining if two Imp
programs are equivalent. Imp is Turing-complete, and thus AEQ is undecidable.
However, ChkAEQ is sound, but not complete, for AEQ. ChkAEQ also does not
pose redundant queries to its oracle. These claims are formalized in an extended
version of this paper ([12], Sec. 3).

Suppose that programs P and P ′ are not equivalent under library model m.
Then for AEQ(mP,P ′), ChkAEQ either will not terminate, or will abort when
it fails to find a simulation relation that relates the program points guessed by
ConsLocRel. It would be interesting to extend ChkAEQ so that it simultaneously
searches for sufficient library conditions under which programs are equivalent,
or sufficient library conditions that prove that the programs are definitely not
equivalent. If a programmer submits a patch that is not equivalent to their origi-
nal program, then ChkAEQ extended in this way could explain to the programmer
why their patch is incorrect.

4 Experiments

We carried out a set of experiments to determine if programmers can apply
ChkAEQ (§3) to validate practical optimizations. The experiments were designed
to answer the following questions:

1. Given a function from a real-world program and its optimization, can ChkAEQ
quickly find a library condition that is sufficient to prove that the programs
are equivalent?

2. Can ChkAEQ find library conditions that are small and easy for a program-
mer to validate?

To answer these questions, we implemented ChkAEQ as a tool, chklibs, and
applied chklibs to a set of program functions and their optimizations. Each
function was taken from a mature, heavily-used program, namely the Apache
software suite, Mozilla Suite, or MySQL database. Each original program func-
tion was the subject of a bug report reporting that the function’s behavior was
correct, but that its performance was inefficient. Each corresponding optimized
function was the patched, optimized function provided in the bug report. We
interacted with chklibs to find library conditions that were sufficient to prove
that the optimization was correct, and were valid according to our understanding
of the libraries.

The results of the experiments indicate that ChkAEQ can be applied to vali-
date practical optimizations. In particular:

1. chklibs quickly inferred library conditions that were sufficient to prove
equivalence. chklibs usually found validated sufficient library conditions in
less than a second, and always found validated sufficient library conditions
in less than 30 seconds (see Table 1).

2. chklibs often inferred syntactically compact sufficient library conditions.
chklibs usually needed to suggest less than 10 disjunctive clauses until it

Benchmark Data chklibs Performance

Program Bug LoC Analysis Num. Avg. Query Size
Name ID Org. Opt. Diff. Time (s) Clauses Clause Size Num. Preds

Apache

19101 27 28 5 0.325 2 9.5 6.0
34464 23 20 34 18.188 5 9.0 6.4
44408 51 52 6 0.050 1 8.0 6.0
45464 569 570 6 0.165 1 8.0 6.0
48778 30 28 16 0.534 7 11.4 6.0

Mozilla

103330 217 216 5 0.064 2 18.0 6.0
124686 198 198 4 0.096 1 278.0 6.0
267506 182 184 9 0.507 5 8.0 6.0
409961 54 57 12 0.795 3 47.0 6.0

MySQL
38769 223 227 4 0.169 2 11.0 6.0
38824 346 321 18 29.894 13 179.2 6.0

Table 1. Experimental data from using chklibs. The data given for each benchmarks
program includes the name and of the source program, the bug report that presented
the optimization, the number of lines of code of the original and optimized program
functions, and the number of lines output by diff on the original and optimized pro-
grams. The data measuring chklibs’s performance includes the time taken by chklibs

to construct a simulation relation (in seconds), the number of clauses on which chklibs

queried the user, the average size of (i.e, number of logical symbols in) the clause, and
the average number of predicates in each clause.

suggested a sufficient set of clauses. The clauses always contained less than
10 predicates (and usually contained less than 5 predicates), and with some
exceptions discussed below, were small enough that a programmer should be
able to reason about their validity.

In §4.1, we describe in detail our procedure for evaluating ChkAEQ. In §4.2,
we present and analyze the results of applying ChkAEQ.

4.1 Experimental Procedure

Implementation. chklibs solves the abductive equivalence problem for the
LLVM [19] intermediate language. To implement chklibs, we extended the op-
erational semantics of Imp (§3.1) to an operational semantics for the LLVM
intermediate language, which included describing various language features such
as structs and pointers. Such an extension is standard, and we omit its details.
chklibs is implemented in about 5,000 lines of OCaml code, and uses the Z3
theorem prover [7] to implement the abductive theorem prover ATP ([12], App.
A). chklibs simplifies each query and presents the query to the user as a con-
junction of disjunctive clauses. We discuss simplifications that chklibs applies
to queries in an extended version of this paper ([12], App. B).

Evaluation. To evaluate chklibs, we used it to validate a set of optimizations
submitted to improve the performance of real-world applications. In particular,

we collected a set of bug reports from the public bug databases of Apache soft-
ware suite [1], Mozilla Suite [21], and MySQL database [22] that each reported a
performance issue and included a patch to fix the issue. We compiled each origi-
nal program and its patch to the LLVM intermediate language. If a program and
patch were originally implemented in a language supported by LLVM, such as
C or C++, then we compiled the programs by applying the appropriate LLVM
compiler front-end (clang or clang++, respectively). Otherwise, we rewrote the
program functions by hand in C source code and compiled the source to the
LLVM intermediate language by applying clang.

We applied chklibs to each original and optimized program, and interacted
with chklibs to find library conditions that chklibs determined to be sufficient,
and which were valid under our understanding of the libraries and program
functions described informally in the bug report. In other words, we served as
the library oracle introduced in §3.3. For each benchmark, we observed whether
or not chklibs found library conditions that we believed to be valid, measured
the total time spent by chklibs to infer sufficient specifications, measured the
number of queries issued by chklibs, and measured the size of each query.

4.2 Results and Analysis

Results. Table 1 contains the results of applying chklibs. Each row in Table 1
contains data for a benchmark original and optimized program. In particular,
Table 1 contains the name of the program from which the benchmark was taken,
the ID of the bug report in which the optimization was submitted, the number
of lines of code of the original and optimized program functions, the number of
lines output by diff on the original and optimized programs, the time spent
by chklibs to construct a validated simulation relation (not including the time
spent by us to validate or refute a query posed by chklibs), the number of
clauses on which chklibs queried the user, and average size of (i.e., the number
of all logical symbols in) the clauses, and the average number of predicates in
each clause. The size of the clause is the number of logical symbols in the clause.

Analysis. The data presented in Table 1 indicates that chklibs can be applied
to suggest sufficient library conditions for equivalence that can often be easily
validated by a programmer. In benchmarks where chklibs took an unusually
long time to find validated sufficient conditions (Apache Bug 34464 and MySQL
Bug 38824), chklibs posed a proportionally large number of queries that we
refuted. In benchmarks where chklibs queried the user on an unusually large
set of clauses (Apache Bug 48778 and MySQL Bug 38824), the original and
optimized programs called different library functions at a proportionately large
set of callsites. In benchmarks where chklibs queried the user on unusually large
formulas (Mozilla Bug 124686 and MySQL Bug 38824), the formulas typically
were constructed from equality conditions over addresses in the program that
seem unlikely to alias. We believe that the size of these queries could be reduced
drastically by combining chklibs with a more sophisticated alias analysis, or

a programmer with a more detailed understanding of the calling conventions of
the original and optimized function.

We have provided a website1 that contains, for each benchmark, the list
of all queries generated by chklibs that we answered. Apache Bug #19101
and Mozilla Bug #409961 illustrate a common kind of optimization in which
a programmer performs an interprocedural version of a classic compiler opti-
mization: in Apache Bug #19101 and Mozilla Bug #409961, the optimization
is loop-invariant code motion. To validate the optimizations, chklibs generates
queries that determine sufficient library conditions to support the optimization.
For Apache Bug #19101, chklibs queries if a method called within a loop does
not change the values stored at particular fields of the calling object. For Mozilla
Bug #409961, chklibs must determine that the final values returned by the pro-
grams are equivalent, even though some intermediate values computed within a
loop may be different as a result of the optimization.

Apache Bug #48778 illustrates that in practical optimizations, there may
be multiple consistent conditions on library that are sufficient to support an
optimization. In Apache Bug #48778, the values returned by library functions
determine the values of control-flow guards. chklibs correctly determines that
if the guard values are constant, then the programs are equivalent. We refuted
the corresponding library condition, which caused chklibs to eventually find a
valid library condition equating the return values of particular library functions.

MySQL Bug #38769 illustrates how chklibs can make explicit supporting
conditions that may be non-obvious to the developers. MySQL Bug #38769
optimizes a loop over an array by replacing a constant loop bound in the original
program with the result of a method call, which may be a lower value. chklibs
first determines that if the result of the method call is equal to the replaced
constant, then the programs are equal. We refuted this condition, at which point
chklibs determined that if all entries after the bound returned by the call are
null, then the programs are equivalent, and we accepted this condition. For the
report in which the patch was submitted, a developer notes that this condition
did not hold for older versions of MySQL.

5 Related Work

Previous work [15] identified performance bugs, i.e., functionally correct but in-
efficient code, as a serious problem in commonly-used applications. In that work,
the authors studied a set of performance bugs for five software suites, namely
Apache, Chrome, GCC, Mozilla, and MySQL, derived a set of rules for identi-
fying performance bugs manually from performance-bug reports, and statically
checked programs to find new performance bugs that satisfy the rules. We have
presented a technique and tool that allows a developer who submits a patch
of a performance bug to validate conditions under which the patch preserves
functionality of the program. We have applied to the tool to patches of bugs
identified in the previous work on performance bugs.

1 http://pages.cs.wisc.edu/~wrharris/chklibs/

Much existing work has focused on determining the equivalence of programs.
Translation validation [23, 25] is the problem of determining if a source pro-
gram is equivalent to an optimized program, and is often applied to validate the
correctness of the phases of an optimizing compiler. Regression verification [10]
determines if a program and a similar revision of the program are equivalent.
Semantic differencing [14] summarizes the different behaviors of two programs.
Symbolic execution has been applied to determine the equivalence of loop-free
programs [5]. In this work, we address the problem of taking an original and
optimized program and inferring conditions on the libraries invoked by the pro-
grams that are sufficient to prove that the programs are equivalent, and that
are validated by an oracle who understands the libraries. To solve the problem,
we have extended an existing analysis for checking the equivalence of imperative
programs with loops [23] to use the results of an abductive theorem prover.

The SymDiff project [16–18] shares our goal of determining under what con-
ditions two programs are correct. Existing work in SymDiff takes a concurrent
program, constructs a sequential version of the program, and treats the sequen-
tial version as a reference implementation, searching the concurrent program only
for bugs triggered by inputs that cause no error in the sequential program [16].
Existing work on conditional equivalence [17] takes an original and optimized
program and infers sufficient conditions on the inputs of a program under which
the original and optimized programs are equivalent, where the space of condi-
tions forms a lattice. In contrast, our work interacts with a user to infer sufficient
conditions on the libraries invoked by an original and optimized program, and
represents conditions as logical formulas. Given that the spaces of conditions
described in techniques based on conditional equivalence must form a lattice, it
is not immediately clear how to extend such a technique to interact with a user
who may refute an initial condition suggested by the technique.

Recent work has extended the problem of deciding if a program always sat-
isfies an assertion to an abductive setting, in which the problem is to find as-
sumptions on the state of a program that imply that the program satisfies an
assertion, and are validated by an oracle that answers queries about program
states [8]. That work presents an algorithm that constructs sufficient assump-
tions by finding a minimum satisfying assignment of variables in a given for-
mula [9], universally quantifying all unassigned variables, and eliminating the
quantified variables using symbolic reasoning. Our work extends a different tra-
ditional problem in program analysis, that of checking program equivalence,
to an abductive setting. While work on abductive assertion checking assumes
that the theories for describing states of a program support quantifier elimina-
tion (e.g., linear arithmetic), we consider inferring assumptions for theories that
may describe arbitrary library functions. Accordingly, our analysis applies an
abductive theorem prover that does not assume that the theories modeling the
semantics of a program support quantifier elimination, and instead generates
assumptions as Boolean combinations of equality predicates.

Our approach to the abductive equivalence problem collects information from
a programmer about the libraries that a program uses by querying the program-

mer for the validity of purely equational formulas over the library functions, and
propagates the logical consequence of the equalities to the rest of the analysis.
Our approach is inspired by equality propagation [24], which is a technique for
combining solvers for theories whose only shared predicate is equality to solve a
formula defined in the combination of the theories. Essentially, our approach uses
the programmer as a theory solver for the theory modeling library functions.

References

1. Apache, Jan. 2013. http://apache.org.
2. Apache bug #34464, Jan. 2013. http://issues.apache.org/bugzilla/show_bug.

cgi?id=34464.
3. Apache Ant, May 2012. http://ant.apache.org.
4. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via

static analysis. In POPL, 2002.
5. E. M. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog

programs using bounded model checking. In DAC, 2003.
6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
7. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
8. I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using abductive

inference. In PLDI, 2012.
9. I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum satisfying assignments

for SMT. In CAV, 2012.
10. B. Godlin and O. Strichman. Regression verification. In DAC, 2009.
11. D. Gries. The Science of Programming. Springer, 1981.
12. W. R. Harris, G. Jin, S. Lu, and S. Jha. Validating library usage interactively, Jan.

2013. http://pages.cs.wisc.edu/~wrharris/validating_library_usage.pdf.
13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

POPL, 2002.
14. D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the effects of

modifications. In ICSM, 1994.
15. G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting

real-world performance bugs. In PLDI, 2012.
16. S. Joshi, S. K. Lahiri, and A. Lal. Underspecified harnesses and interleaved bugs.

In POPL, 2012.
17. M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Conditional equivalence. Technical

Report MSR-TR-2010-119, Microsoft Research, Oct 2010.
18. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SymDiff: A language-

agnostic semantic diff tool for imperative programs. In CAV, 2012.
19. The LLVM compiler infrastructure.
20. R. Milner. Communication and concurrency. PHI Series in computer science.

Prentice Hall, 1989.
21. Mozilla – home of the Mozilla Project, 2011. http://www.mozilla.org/.
22. MySQL: The world’s most popular open source database, 2012. http://www.

mysql.com/.
23. G. C. Necula. Translation validation for an optimizing compiler. In PLDI, 2000.
24. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.
25. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS, 1998.

