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ABSTRACT

Program verification tools (such as model checkers and static ana-
lyzers) can find many errors in programs. These tools need formal
specifications of correct program behavior, but writing a correct
specification is difficult, just as writing a correct program is diffi-
cult. Thus, just as we need methods for debugging programs, we
need methods for debugging specifications.

This paper describes a novel method for debugging formal, tem-
poral specifications. Our method exploits the short program execu-
tion traces that program verification tools generate from specifica-
tion violations and that specification miners extract from programs.
Manually examining these traces is a straightforward way to de-
bug a specification, but this method is tedious and error-prone be-
cause there may be hundreds or thousands of traces to inspect. Our
method uses concept analysis to automatically group the traces into
highly similar clusters. By examining clusters instead of individual
traces, a person can debug a specification with less work.

To test our method, we implemented a tool, Cable, for debug-
ging specifications. We have used Cable to debug specifications
produced by Strauss, our specification miner. We found that us-
ing Cable to debug these specifications requires, on average, less
than one third as many user decisions as debugging by examining
all traces requires. In one case, using Cable required only 28 deci-
sions, while debugging by examining all traces required 224.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—De-
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1. INTRODUCTION

Program verification tools [3-7, 12, 15, 16, 20, 23] can find
many errors in programs. These tools need formal specifications
of correct program behavior, but writing a correct specification is
difficult, just as writing a correct program is difficult. One partial
solution is specification mining [2], but specification miners can
produce buggy specifications. If program verification tools are
to be more effective and widely used, we need methods for de-
bugging specifications, because without these methods, too few
specifications will be developed.

Very small specifications can be debugged by inspection. A
natural way to debug a more complicated formal specification is
by testing it. Conceptually, to test a specification, the specifica-
tion’s author uses a program verification tool to check the speci-
fication against several programs. The tool finds inconsistencies
between the program and the specification and reports them to
the author. The author is supposed to look at each inconsistency
and decide if the inconsistency is caused by a specification error.
If the cause is a specification error, it should be fixed.

In particular, a temporal specification can be expressed as a fi-
nite automaton (FA) that accepts some program execution traces
and rejects others. A tool that verifies temporal specifications
generates short program execution traces that appear to occur in
the program but are not accepted by the FA. To debug a tempo-
ral specification by testing, the specification author looks at each
trace and decides whether the trace demonstrates an error or not.
If the trace is not erroneous, it should be added to the language
of the FA.

A similar method works for debugging temporal specifications
found by a specification miner. Given data collected during a
few runs of one or more programs, the miner generates a large
number of short scenario traces and infers a specification FA
from them; if some of the runs contain errors (as often happens),
some of the scenario traces are also erroneous, and the miner
learns an FA that accepts erroneous traces. Worse, this FA is
usually more complicated than an FA that accepts only correct
traces, so it is hard to debug by inspection. To debug such a
specification, a specification expert looks at each scenario trace
and decides whether it is erroneous or not. If the scenario trace



is erroneous, then the expert tells the miner to ignore it when
inferring a correct specification.

These debugging methods are tedious and error-prone because
a person must inspect many traces—some program verification
tools and miners generate hundreds or thousands of traces [2, 4,
15]. This paper describes a novel method for debugging formal,
temporal specifications that allows a person to take all of the
traces into consideration without individually inspecting every
trace.

In our method, an automatic tool finds similarities within a
set of program execution traces and uses concept analysis [24]
to cluster similar traces together. The user inspects clusters of
traces—summarized in various ways—instead of individual traces.
Ideally, instead of looking at thousands of individual traces, a
specification author can use our method to look at a few clusters
of similar traces. For each cluster, the author views a summary
of the cluster—such as a finite automaton that recognizes the
cluster’s traces—and decides en masse whether to classify the
cluster’s traces as erroneous or not.

Concept analysis clusters objects hierarchically, producing a
concept lattice of small clusters and big clusters, with small clus-
ters contained within big clusters. Moreover (and this is a key
property), the traces in small clusters are more alike than the
traces in big clusters.

Hierarchical clustering is essential. The ideal clustering tool
would divide the traces into two clusters: a cluster of traces that
the author would classify as erroneous and a cluster of traces that
the author would classify as correct. Unfortunately, this ideal can
not be attained. Any real tool can produce mixed clusters, which
contain both erroneous traces and correct traces. Hierarchical
clustering solves this problem: a specification author who is pre-
sented with a mixed cluster can choose to look at the smaller
clusters within it. These clusters are less likely to be mixed be-
cause they are smaller and because the traces within them are
more similar.

Hierarchical clustering has benefits beyond splitting mixed clus-
ters:

e Small clusters are easier to understand and judge as correct or
incorrect than large clusters, but it takes more small clusters
than large clusters to cover the entire set of traces. Hierar-
chical clustering allows the user to choose to examine small
clusters, large clusters, or a mixture of both.

o Clusters overlap, so the user can check his classification deci-
sions by viewing summaries of the intersections and unions of
clusters. For example, a specification author who believes he
has found a number of erroneous traces can view a summary
of all erroneous traces in a particular cluster: the summary
should be consistent with his belief.

Our method defines the similarity of a set of traces in terms of
the transitions of an FA that recognizes traces. We regard traces
that execute many transitions in common as more similar than
traces that execute fewer transitions in common. This definition
is flexible because the FA can be varied; it is also intuitive, be-
cause the user is debugging a specification that is itself expressed
in terms of an FA. The definition also enables our use of concept
analysis, which clusters objects with discrete attributes. In our
case, objects represent traces and attributes represent FA transi-
tions.

To test our method, we implemented a tool, Cable, for debug-
ging specifications. We have used Cable to debug specifications

produced by Strauss, our specification-miner [2]. The corrected
specifications found 199 bugs in widely distributed X11 pro-
grams, including serious race conditions and performance bugs.
We found that using Cable to debug these specifications requires
less than one-third as many user decisions as debugging by ex-
amining all traces requires. In one case, using Cable required
only 28 decisions, while debugging by examining all traces re-
quired 224. We also found that concept analysis is affordable: it
never took longer than about 22 seconds to compute the concept
lattice.

1.1 Contributions

This paper describes the following contributions:

e A novel method for debugging temporal specifications based
on hierarchical clustering. The method applies not only to
mined specifications—where it fills a large hole left unex-
plored by our previous work [2]—but also to temporal speci-
fications from any source.

e A flexible, intuitive definition of similarity for traces that al-
lows hierarchical clustering via concept analysis.

e A tool, Cable, that helps debug specifications by presenting
users with a simple interface for classifying traces by explor-
ing a cluster hierarchy.

1.2 Organization of the paper

The rest of the paper is organized as follows. Section 2 presents
two examples, which demonstrate how to debug specifications
by examining clusters of traces. Section 3 presents concept anal-
ysis and shows how to apply it to clustering traces. The Cable
tool is described in Section 4, as are strategies for using it ef-
fectively. Section 5 evaluates the usefulness of Cable for debug-
ging specifications mined by Strauss. Section 6 discusses related
work. Section 7 concludes the paper.

2. TWO EXAMPLES

This section presents two examples, which demonstrate how
to debug temporal specifications with concept analysis. The first
example demonstrates debugging with the aid of a verification
tool by testing a specification against a program, while the sec-
ond example demonstrates debugging a mined specification by
inspecting the traces from which the miner inferred the specifi-
cations.

We will refer to several FAs in this section and in the rest of
this paper. Note that, in this paper, the start state of an FA is
always state 0, and double lines indicate an accepting state.

2.1 Debugging by testing

Figure 1 shows a buggy temporal specification. In general, a
temporal specification captures the control and data flow of pro-
gram operations in an FA. This example attempts to formalize a
rule about the C stdio library. In that library, a call to fopen
opens a file and returns a file pointer for reading and writing the
file. The file pointer should eventually be closed with a call to
fclose. By contrast, a call to popen opens a pipe for com-
munication with another process. Like fopen, popen returns a
file pointer. Unlike fopen, the file pointer returned by popen
should be closed with a call to pclose. The specification in
Figure 1 gets this wrong: it allows a call to fclose on any file
pointer, regardless of its source.



For all calls X = fopen() or X = popen():
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Figure 1: An incorrect temporal specification.
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Figure 2: Several violation traces that could be reported by
verification of the specification in Figure 1.

Suppose that a specification author is debugging this specifi-
cation by testing it against a program. The author starts by using
a program verification tool to find inconsistencies between the
specification and the program. The tool analyzes the program
and reports violation traces, which are program execution traces
that demonstrate an apparent violation of the specification. Tra-
ditionally, the author looks at each violation trace, decides why it
was reported, and takes an appropriate action. For the specifica-
tion in Figure 1, the violation traces (see Figure 2 for examples)
might include

e Traces that begin with a call to popen and end with a call
to pclose. These traces are correct, so the author should
change the specification to accept these traces.

e Traces that begin with a call to fopen or with a call to popen
and end without acall to fcloseoracall to pclose. These
traces are erroneous, so the author should not change the spec-
ification.

e Traces that begin with a call to fopen and end with a call
to pclose. Again, these traces are erroneous, so the author
should not change the specification.

Unfortunately, the verification tool does not summarize the vi-
olation traces as neatly as we just did. Instead, the tool lists each
trace with all of the calls it makes (not just the relevant calls we
picked out in the above list), and in no particular order. For a sim-
ple example like the one in Figure 1, it may be easy for the author
to inspect the violation traces and understand them well enough
to decide how to fix the specification. However, if the violation
traces are more complicated, inspecting each trace is both te-
dious and error-prone. If the tool reports hundreds or thousands

X = popen () . X = fopen|()
fread (X) @ fwrite (X)

pclose (X)

Figure 3: A small FA that recognizes violation traces from ver-
ification of the specification in Figure 1.

X = popen ( X = fopen()

fread (X)

pclose (X)

fwrite (X)

Figure 4: A very small FA that recognizes violation traces from
verification of the specification in Figure 1.

of complicated violations (as some do [4, 15]), the problem is
daunting.

Now let us see how the author would debug this specifica-
tion with our method. Our method has three steps. Step 1 auto-
matically builds a concept lattice that summarizes the violation
traces, before the specification author sees them. This step has
three substeps:

Step 1a This step finds a small reference FA that recognizes the
violation traces and will be used to define trace similarity. Al-
gorithms to learn a small FA that recognizes (at least) a set of
strings have been studied extensively—see Murphy [18] for
a good survey. However, an FA learning algorithm that per-
forms well on traditional measures, such as training set accu-
racy, is not needed for concept analysis. We only require that
dissimilar traces execute different transitions in the automa-
ton (see Step 1b). For example, we have had success with
FAs that recognize all possible traces over the APIL.

Figure 3 shows a small FA that recognizes violation traces
from verification of the specification in Figure 1. Figure 4
shows an automaton that recognizes all traces over the API.

Step 1b This step uses a reference FA M to define a measure of
similarity for violation traces. M recognizes a trace o iff there
is an accepting sequence of M -transitions for o, which is a
sequence (ag, - .. ,an) such that each transition a; is labeled
by the ith event in o, the head of a is the start state of M, and
the tail of ay, is an accepting state of M. If an M -transition a
is on an accepting sequence of M -transitions for o, we say that
o executes a. Given a set O of violation traces, the common
M -transitions of O are the M -transitions that are executed by
every violation trace in O. The similarity of O with respect to
M is the number of common M -transitions of O.

Note that we want a reference FA that is useful for classifica-
tion. In particular, erroneous traces and correct traces should
execute different transitions, so that they are not considered
highly similar. It is also helpful, but not necessary, if cor-
rect (erroneous) traces execute many of the same transitions



For all calls X = fopen() or X = popen():
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Figure 6: The result of debugging the specification in Figure 1.
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The author is free to inspect concepts in any order, although
a mostly top-down approach seems to work best in practice.
Section 4 suggest several strategies, which are evaluated in
Section 5.

Figure 5: Part of a concept lattice that might be induced by vi-
olation traces from verification of the specification in Figure 1,
with respect to the FA in Figure 3.

Suppose that the author first looks at the concept that contains
as other correct (erroneous) traces, so that they are considered traces that execute X = popen (). The author asks Cable
highly similar. to display an FA that is inferred from the traces in that con-
cept. Because this automaton contains both erroneous traces
and correct traces, the author decides to look at the concepts
immediately below this concept. Each of these child concepts
contains a proper subset of the traces in the parent concept.
Suppose that the first child concept he looks at contains just
traces that execute both X = popen () and pclose (X).
These traces are correct, so the author labels them as “good”.
Finally, suppose that the author revisits the concept that con-
tains traces that execute X = popen (). He asks Cable to
display an FA that is inferred from the unlabeled traces in
that concept. These traces execute X = popen () but not
pclose (X), so they are erroneous. The author labels these
traces as “bad”. At this point, the author has come to a deci-
sion about all of the traces that execute X = popen (). The
traces that execute X = fopen () remain, and the author la-
bels these in a similar fashion.

Defining similarity with respect to an FA has two benefits.
First, by varying parameters of the FA-learning algorithm, the
author can choose to use a large FA that makes very fine dis-
tinctions among traces or a smaller FA that makes coarser
distinctions. For example, the FA in Figure 3 distinguishes
between traces that call popen before calling pclose and
traces that call pclose before calling popen, since the lat-
ter execute no transitions in the FA. If the order did not matter,
a very small FA, such as the one given in Figure 4, could be
used to induce a simpler concept lattice. On the other hand,
if the order of calls to fread and fwrite also mattered,
then a larger FA could be used to induce a concept lattice that
distinguished different orders.

The second benefit is that, since the specification itself is ex-
pressed as an FA, summarizing violation traces with FAs makes
it easier for the author to see how to fix the specification.

Step 2b In this step, the author checks his labeling. Once all
traces have been labeled, the author views an FA that is in-
ferred from all “good” traces. These traces should be accepted
by the correct specification. If the author made a mistake in
his labeling, it will be revealed as the presence or absence of
certain traces in the FA’s language. Note that if the FA for
all “good” traces is too complicated, the author can choose to
view an FA inferred from the “good” traces within concepts
below the top of the lattice.

Step 1c¢ This step uses concept analysis to build a concept lat-
tice; the nodes of the lattice are called concepts. A concept
pairs a set of violation traces with a set of FA transitions that
are executed by every trace in the set. Concepts at the top of
the concept lattice contain more traces but fewer transitions
than concepts at the bottom of the lattice. That is, according
to our definition of similarity, the sets of traces in concepts get
smaller but more similar as one moves down in the lattice.

Figure 5 shows part of a concept lattice that might be induced
by violation traces from verification of the specification in
Figure 1, with respect to the FA in Figure 3.

If there is a mistake, the author searches through the lattice

for concepts that contain only traces that are incorrectly la-

beled “good”, just as earlier he searched through the lattice
The concept lattice is a neat summary of the violation traces. for traces that should be labeled “good”.

In Step 2 of our method, the specification author uses Cable to

display the lattice and to track his decisions about the traces in

concepts. Step 2 has two substeps:

Once the author is satisfied that his labeling is correct, he fixes
his specification so that it accepts all “good” traces and continues
to reject all “bad” traces:

Step 2a In this step, the author records his decisions about traces

by labeling traces. His goal is to partition the traces into cor- Step 3 In this step, the author fixes his specification. Note that
rect traces, which should be accepted by the correct specifica- although the author has not inspected every violation trace,
tion, and erroneous traces, which should not be accepted. The he has taken every violation trace into consideration. Con-

former he labels “good”, while the latter he labels “bad”. sequently, he can be more confident that he has the right fix
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Figure 7: Architecture of Strauss.

for his specification. Figure 6 shows the result of fixing the
specification in Figure 1.

To summarize, our method has the following benefits:

e The concept lattice neatly summarizes complicated traces that
the verification tool lists in no particular order.

e Defining similarity with respect to an FA is flexible because
the FA can be varied and intuitive because the specification
itself is expressed in terms of an FA.

e The concept lattice allows the author to take every trace into
consideration without inspecting every trace.

e The author can use the lattice to check that he has made the
right decision about every trace.

2.2 Debugging a mined specification

A specification miner is a tool for learning specifications. Fig-
ure 7 shows the architecture of our miner, Strauss. Strauss has a
front end and a back end. The front end extracts scenario traces
from a training set of program execution traces. The details of
how this occurs are discussed in a previous paper [2]. The sce-
nario traces may have bugs, because the training set may have
bugs. The back end uses machine learning techniques to learn a
temporal specification that accepts the scenario traces.

Suppose that Strauss learns the buggy specification in Figure 1
from a set of scenario traces that include

e Traces that begin with a call to popen and end with a call to
fclose. These traces are erroneous, so they should not be
included in the correct specification.

e Traces that begin with a call to fopen and end with a call to
fclose. These traces are correct, and should be included in
the correct specification.

An expert can produce a correct specification by rerunning the
back end of Strauss only on the latter of the two kinds of traces
above. Unfortunately, the traces are not summarized so neatly as
they are above. In general, it is tedious and error-prone for the
expert to inspect every scenario trace.

Our solution is to summarize the scenario traces neatly, before
the expert sees them. The method is very similar to the method
we discussed in Section 2.1. The differences are in Steps 1a and
3.

In Step 1a, the expert does not need to find an FA that rec-
ognizes the traces. He already has one: namely, the FA from
the miner’s buggy specification. On the other hand, if the miner
infers an FA that makes unnecessarily fine distinctions among

X = popen(); fread(X); fwrite(X); pclose (X)
popen (); fread(X); fread(X); pclose (X)
popen(); pclose (X)

<X
[l

; fwrite (X); fclose (X)
fread (X); fclose (X)

X = fopen(); fread(X
fopen(); fread(X
fopen(); fclose(

<X
[l

)

)i
X)
Figure 8: Several scenario traces.

traces, the expert may choose to use a different FA. In our expe-
rience, however, the inferred FA is usually a good starting point.

Steps 1b and 1c are just as in Section 2.1: the expert supplies
a reference FA, which defines a measure of similarity for traces
and a concept lattice. Step 2 is the same, too: the expert uses
Cable to label as “good” the scenario traces that belong in the
correct specification and to label as “bad” the scenario traces that
don’t belong.

The expert fixes the specification in Step 3. In Section 2.1,
the specification author did this manually. In mining, the expert
just runs the back end of the miner on the traces that have been
labeled “good”.

There is a further problem, however. A useful miner also gen-
eralizes: the specification accepts some traces that were not in
its training set, but are similar to traces in the training set. For
example, a miner given the “good” scenario traces in Figure 8
would ideally produce an FA that accepts any number of calls to
freadand fwrite between calls to popen and pclose and
between calls to fopen and fclose. Unfortunately, in gener-
alizing, the miner can make mistakes: in this case, a miner might
produce an FA that allows a call to popen to be followed by a
call to fclose.

To address this problem, the expert can vary parameters on
the miner, but a more frequently fruitful solution is to further
subdivide the training set and apply the miner separately to each
division. In our example, if the expert observes that the miner
overgeneralizes, he would redo Step 2 and assign several differ-
ent kinds of “good” labels. Here, the expert would assign a label
“good_fopen” and another label “good_popen”. Next, the expert
would run the miner’s back end twice, once on the “good_fopen”
traces and once on the “good_popen” traces. Because the miner
sees each class of traces separately, it can not confuse them.
The final specification would be the union of the specification
for “good_fopen” traces with the specification for “good_popen”
traces.

3. APPLYING CONCEPT ANALYSIS

Concept analysis [24] is a hierarchical clustering technique
for objects with discrete attributes. This section reviews concept
analysis and explains how to use it to cluster program execution
traces with respect to a temporal specification. In the process,
we define a natural measure of the similarity of a set of traces
and show that concept analysis builds a hierarchy of clusters of
traces where small clusters are more similar than the large clus-
ters that contain them. This property allows a user of Cable to
choose between labeling many small and highly similar clusters
and labeling a few larger but less similar clusters.

3.1 Concept analysis
The input to concept analysis is a set O of objects, a set A



4-legged | hairy | smart | marine | thumbed
cats yes yes
dogs yes yes
dolphins yes yes
gibbons yes yes yes
humans yes yes
whales yes yes

Figure 9: A context where the objects are animals and the at-
tributes are adjectives that describe animals.

of attributes, and a context R C O x A that relates objects to
attributes. Figure 9 shows an example where the objects are ani-
mals and the attributes are adjectives that describe animals. !

Given O, A, and R, concept analysis finds concepts. A con-
cept pairs a set of objects X with a related set of attributes Y: Y’
is exactly the set of attributes enjoyed by all objects in X, and
X is exactly the set of objects that enjoy all of the attributes in
Y. To define concepts formally, the standard formulation defines
two mappings o : 20 — 24 and TR : 24 — 29, For any
X CQOandY C A,

or(X) ={a € AlVz € X.(z,a) € R}
Tr(Y)={0o€ O|Vy € Y.(0,y) € R}

The formal definition of a concept is as follows: (X,Y) is a
concept iff og(X) =Y and 7r(Y) = X. X is called the extent
of the concept and Y is called the intent of the concept.

c0 = ({cats, dogs, dolphins, gibbons, humans, whales}, {})

cl = ({cats, dogs, gibbons}, {hairy})

¢2 = ({dolphins, gibbons, humans, whales}, {smart})
c3 = ({gibbons, humans}, {smart, thumbed})

c4 = ({cats, dogs}, {4-legged, hairy})

¢5 = ({gibbons}, {hairy, smart, thumbed})

¢6 = ({dolphins, whales}, {smart, marine})

c7 =({}, {4-legged, hairy, smart, marine, thumbed})

Figure 10: Concept lattice for Figure 9. The top concept is c0,
and the bottom concept is c7.

The choice of O, A, and R uniquely defines a set of concepts.
Concepts are partially ordered under the ordering <p, defined
as follows: (Xo,Yp) <gr (X1,Y7) iff Xg C X;. This partial
order induces a complete lattice on concepts, called the concept
lattice. Figure 10 shows the concept lattice for the example in
Figure 9. In general, the top concept of a concept lattice is the
concept with all objects and the bottom concept is the concept
with all attributes. In the example, the top concept is c0, and the
bottom concept is c7.

"'We took this example from Michael Siff’s thesis [22].

By definition, the concept lattice is a subset lattice on objects.
In fact, the concept lattice is also a superset lattice on attributes.
That is, (X, Yo) <g (X1, Y7) iff Yy O Y7. This fact allows the
definition of a measure of similarity that increases as one moves
down in the concept lattice.

Define the similarity of X C O by sim(X) = |og(X)|. That
is, the similarity of X is simply the number of attributes shared
by all objects in X. Because the concept lattice is a superset
lattice on attributes, if (Xo, Yp) and (X1, Y7) are concepts with
Xo C X1, then sim(XO) > sim(Xl).

3.1.1 Efficiency of concept analysis

There are several algorithms for building concept lattices. The
algorithm we use is due to Godin and others [13] (we use their
Algorithm 1). Let k be an upper bound on |or({o})|, where
o € O. That is, k is an upper bound on the number of attributes
enjoyed by any object in O. Then, their algorithm runs in time

0(2°%|0))

In our applications, k is typically less than ten, while |O| ranged
up to the hundreds. Our measurements (see Section 5) show that
the algorithm is practical, terminating in less than 22 seconds on
our largest data set, which contained 496 traces.

3.2 Clustering traces

To cluster traces with concept analysis, we need to define O,
A, and R:

O The objects are the traces themselves.

A We either have in hand or can infer an FA M that recognizes
the traces. The attributes are the transitions of M.

R Let AS(o) be the set of all accepting sequences of M -transitions
for the trace 0. We define R by

R ={(0o,a) €O x A|3s € AS(0).s =(...,a,...)}

That is, (0,a) € R iff o executes a. R can be computed by
simulating each trace on the finite automaton.

This is a natural choice of R, which matches the intuition
that traces with many common transitions are more alike than
traces with few common transitions. Also, R provides a direct
connection between traces and the specification that the user
is debugging. This connection is useful for answering ques-
tions such as “Which parts of the specification matter for these
traces?” and “Which traces would be affected by a change to
this part of the specification?”.

Our definition of similarity with respect to an FA ignores the
order in which transitions are executed. There are two good rea-
sons to ignore the order of transitions. First, the number of pos-
sible orders grows exponentially with the amount of history that
is tracked.

Second, by changing the FA, our definition of similarity can
simulate definitions that track the order of transitions. The FA
already constrains the order in which transitions may execute.
Thus, by distinguishing traces that execute different sets of tran-
sitions, the FA also makes some distinctions among traces that
execute transitions in different orders. If more ordering informa-
tion is desired, the FA can be modified to make finer distinctions
(see the discussion in Section 2.1, Step 1b).



4. CABLE

The section describes Cable, our tool for debugging specifica-
tions. Cable displays the concept lattices defined in Section 3.2
and enables a specification author or other expert to view sum-
maries of concepts and to decide en masse whether the traces in
a concept are erroneous or not. The rest of this section explains
Cable’s interface, discusses strategies for using Cable effectively,
and explains on which lattices Cable works best.

4.1 The Cable interface

Cable, which is based on the Dotty [11] and Grappa [17] graph
visualization tools, displays the concept lattice and allows the

user to view summaries of concepts and to decide en masse whether

the traces in a concept are erroneous or not.

The user records his decision about a set of traces by labeling
the traces in the set. His goal is to partition the traces into a set
of erroneous traces, labeled “bad”, and a set of correct traces,
labeled “good”.

For example, if a specification author decides that certain vio-
lation traces do not demonstrate a program error, he gives those
traces the label “good”. On the other hand, the author gives vio-
lation traces that do demonstrate program errors the label “bad”.
The author’s goal is to label every trace; when he is done, he uses
Cable to view the traces labeled “good” and fixes his specifica-
tion accordingly.

An expert uses Cable to debug a miner’s specification in a sim-
ilar fashion. If the expert decides that certain scenario traces are
not erroneous, he labels them “good”. Scenario traces that are
erroneous are labeled “bad”. After the expert has labeled ev-
ery trace, he uses Cable to view the traces labeled “good” and
reruns the miner on those traces. Labels are a flexible mecha-
nism: as Section 2.2 discussed, the expert can avoid problems
with overgeneralization by assigning several different kinds of
“good” labels and running the miner several times.

A user of Cable can label all of a concept’s traces at once. Be-
cause concepts belong to a lattice, labeling the traces in one con-
cept affects the labels on traces in other concepts. Labeling all of
the traces in a descendant concept also labels some of the traces
in an ancestor concept, labeling all of the traces in an ancestor
concept also labels all of the traces in a descendant concept, and
labeling all of the traces in a cousin or sibling concept might
label some of the traces in another cousin or sibling concept.

Consequently, Cable keeps track of which traces have been
labeled, ensures that each trace receives no more than one label,
and gives the user visual feedback that makes it obvious which
concepts still have unlabeled traces. At any time, each concept
in the lattice is in one of three states:

Unlabeled The concept has unlabeled traces, and no traces that
are labeled. Cable displays Unlabeled concepts in green.

PartlyLabeled The concept has some unlabeled traces and some
labeled traces. Cable displays PartlyLabeled concepts in yel-
low.

FullyLabeled The concept has no unlabeled traces. Cable dis-
plays FullyLabeled concepts in red.

Note that the empty concept (the concept with no traces) is
always FullyLabeled.

Cable’s “Label traces” command allows the user to assign la-
bels to selected traces in a concept:

Label traces If some traces already have labels, then Cable asks
the user which traces to label: the user may choose to label all
of the traces, only the unlabeled traces, or only the traces with
a given label. Then, Cable prompts the user for a label and
gives that label to the selected traces. Because no trace may
have more than one label, the new label replaces any existing
labels.

If no traces have labels, then Cable prompts the user for a
label and gives that label to all of the concept’s traces.

A Cable user bases his labeling decisions on concept views.
Cable supports the following views of a concept:

FA Cable uses an FA learner (Raman and Patrick’s sk-strings
learner [21]) to construct a summary FA that accepts concept
traces and then displays this FA. In our experience with Cable,
this was the most frequently used concept view. Cable uses
Raman and Patrick’s sk-strings learner to construct FAs.

If the concept is PartlyLabeled or FullyLabeled, then the user
can choose which concept traces to include in the view: the
user can choose to include all traces, only unlabeled traces, or
only traces with a given label. Cable constructs the summary
FA only from included traces (we say that these traces are in
the view). This feature is particularly useful once all concepts
are FullyLabeled: the user can obtain an FA for all traces with
a particular label [ by viewing the FA of [-labeled traces in the
top concept.

The FA view also provides selection by transitions, which en-
ables the user to find traces that execute or do not execute
selected transitions in the summary FA. By clicking on transi-
tions in the FA view, the user selects a set of included transi-
tions and a set of excluded transitions. These selections corre-
spond to a selection of traces: a trace is selected iff it is in the
view and it executes all included transitions and no excluded
transitions.

Selection by transitions enables navigation by transitions. Af-
ter transitions (and hence traces) are selected, Cable will nav-
igate the user to the smallest concept that contains a superset
of the selected traces. This concept is smaller and more simi-
lar than the current concept (unless the lattice forces Cable to
select the current concept). Transition selection thus equips
the user with control over which of the smaller, more similar
concepts he would like to examine next.

Transitions This view displays the transitions in the reference
FA that belong to the concept. In our experience, this has
been the second most frequently used view because we often
know that the label for a trace depends on whether the trace
executes a certain set of transitions in the reference FA or not.

As with the FA view, if the concept is PartlyLabeled or Fully-
Labeled, the user can choose which concept traces to include
in the view.

Traces This view displays the traces in the concept. We do not
use this view very often because it usually generates more
output than we can understand.

As with the FA view, if the concept is PartlyLabeled or Fully-
Labeled, the user can choose which concept traces to include
in the view.

Finally, the user can choose a new FA and use it to cluster
concept traces:



Focus Cable starts a sub-session, which focuses on a single con-
cept’s traces. Cable prompts the user for a reference FA to use
for the session, and clusters the traces in the focused session
with that FA. The user can end a focused session at any time,
at which time any labels that he assigned are automatically
merged into the original session.

In our experiments, we always started Cable with a cluster de-
termined by our miner’s inferred FA. If this cluster appeared
complicated, we sometimes started a focused session. The
reference FAs that we used for focusing followed one of the
following three templates:

Unordered FAs that follow this template distinguish among
traces based on which events appear in traces, while com-
pletely ignoring the order in which events appear:

(event0 | eventl | ... | eventN) *

where event 0 through eventN are the events that oc-
cur on transitions in the inferred FA. FAs that follow the
unordered template work well when correct traces and
erroneous traces often contain different events.

Name projection FAs that follow this template distinguish
traces based on a single name, say X, that occurs in the

inferred FA:
(eventO (... X ...)
| eventl (... X ...)
[
| eventN(... X ...)
| wildcard) *

where event 0 through eventN are events that occur
on transitions in the inferred FA, and wildcard matches
any event. Name projections work well when the in-
ferred FA mentions several names, because they allow
the user to check correctness with respect to one name
at a time.

The template above pays no attention to the order of
events; more generally, name projections can be any FA
(that accepts the traces) whose transitions are all labeled
by wildcard or by an event that refers to X.

Seed order FAs that follow this template distinguish among

traces based on which events appear before a distinguished

“seed” event and which events appear after the seed event:

(event0 | eventl | ... | eventN) *;
event [seed];
(eventO | eventl | ... | eventN) *

where event 0 through eventN are the events that oc-
cur on transitions in the inferred FA. Because FAs that
follow the seed order template pay attention to ordering,
they can distinguish traces that cannot be distinguished
by an unordered FA. However, the ordering is very lim-
ited, so the concept lattice stays small.

4.2 Strategies for using Cable

Cable allows the user to inspect and label concepts in any or-
der. Some orders are better than others, however. To use Strauss
effectively, a user should have some strategy for selecting con-
cepts to inspect and label.

An important question is “how much does the user’s choice of
strategy matter?”. To answer that question, this section defines
several common-sense strategies whose cost can be measured

automatically, given a reference labeling for the traces, and Sec-
tion 5 measures the relative performance of these strategies on
several labelings.

We measure the cost of a strategy by counting the number of
Cable operations—inspecting concepts and labeling traces—that
the strategy performs. We include the cost of inspecting con-
cepts, because otherwise an optimal strategy could inspect every
concept and use that perfect information to minimize the number
of labeling operations. Including the cost of labeling is not as es-
sential, but we include it because otherwise an optimal strategy
could include redundant labeling operations. Note that we do not
allow a strategy to label a concept without inspecting it first.

The strategies are

Top-down This strategy visits Unlabeled and PartiallyLabeled
concepts in a random order, subject to the constraints that no
concept may be visited unless one its parents has already been
visited and that no concept may be visited if carries an “in-
spected” mark. At each visit, the strategy marks the concept
as “inspected” and inspects the concept’s unlabeled traces. If
all unlabeled traces should receive the same label, then the
strategy labels them. Labeling a concept can make it possi-
ble to label the concept’s ancestors, because labeling the con-
cept changes the sets of unlabeled traces in the ancestors. For
this reason, when a concept is labeled, the strategy clears the
marks on the concept’s ancestors..

The advantage of this strategy is that, because it is biased to-
ward visiting concepts near the top of the lattice, it is likely
to exploit opportunities to label many traces at once. The dis-
advantage of this strategy is that it may visit many concepts
that cannot be labeled because they include traces that should
receive different labels.

Bottom-up This strategy loops over the concept lattice until all
concepts are FullyLabeled, visiting concepts in a bottom-up
order. On each iteration, the strategy visits a concept that is
not FullyLabeled but whose children are all FullyLabeled.

The advantage of this strategy is that it never visits concepts
that cannot be labeled because they are too general. The dis-
advantage is that it misses most opportunities to label many
traces at once.

Random This strategy visits concepts in random order, never
visiting FullyLabeled concepts and stopping when all con-
cepts are FullyLabeled.

Optimal This strategy visits concepts in an optimal order. An
optimal order is an order that minimizes the cost.

Real users do not follow any of these strategies exactly. One
reason is that a real user is limited: for example, even when all of
a concept’s traces should receive the same label, the user might
need to inspect the concept’s subconcepts to convince himself
of that fact. Another reason is that a real user makes heuristic
decisions: for example, he may realize that a certain concept
should be visited first because it has an interesting transition in
its attribute set.

4.3 Well-formed lattices

Because Cable only allows the user to label the traces in con-
cepts en masse (with the “Label traces” command), a bad con-
cept lattice can make it impossible for the user to give traces a



desired labeling. We say that such lattices are not well-formed
for the desired labeling.

A well-formed lattice for a labeling is a lattice where every
concept is well-formed for that labeling. We define a well-formed
concept recursively; a concept c is well-formed for a labeling iff
one of the following cases holds:

1. The labeling gives the same label to every trace in c.

2. All of the children of c are well-formed for the labeling, and
the labeling gives the same label to every trace in c that is not
in a child of c.

Intuitively, a concept c is well-formed for a labeling if there is
a sequence of “Label traces” commands that puts c in the Fully-
Labeled state with the desired labeling. The first case says that ¢
can be put in the FullyLabeled state simply by labeling its traces.
The second case says that ¢ can be put in the FullyLabeled state
by putting all of its children in the FullyLabeled state and then
labeling the unlabeled traces of c.

If the concept lattice is not well-formed, it is impossible to
label all of the traces with Cable, without changing the FA. In
particular, none of the above strategies would succeed.

It is easy to see how lattices that are not well-formed could
arise. For example, suppose that it is correct to call a routine
foo an even number of times and incorrect to call foo an odd
number of times. Consider a buggy specification whose FA has
one accepting state and one transition to and from that state on
foo. This specification accepts all sequences of foo calls. The
concept lattice induced by this specification and any set of traces
would put all sequences of calls to foo in the same concept,
since they all exercise the sole FA transition. That concept, and
hence the whole lattice, would not be well-formed for the label-
ing that labels correct traces as “good” and incorrect traces as
“bad”.

The user does have some options when presented with a lattice
that is not well-formed. One option is to change the FA and con-
struct a better concept lattice, using Cable’s “Focus” command.
Another option is to label concepts that are not well-formed as
“mixed”; the user can label the traces in those concepts by hand,
or use our method again, with a different FA and with the set of
traces restricted to the “mixed” traces.

S. EXPERIMENTAL RESULTS

This section evaluates the usefulness of Cable for debugging
specifications mined by Strauss [2].

We analyzed traces from full runs of 72 programs that use the
Xlib and X Toolkit Intrinsics libraries for the X11 windowing
system; in all, we collected 90 traces. The programs came from
the X11 distribution, the X 11 contrib directory, and from the pro-
grams installed for general use at the University of Wisconsin.
Each trace records events for all X library calls and for all call-
backs from the X library to client code.

Measurements of running time were taken on an Ultra Enter-
prise 6000 Server; the machine uses 248 Mhz SPARCV9 proces-
sors (we used one processor only) and runs Solaris 5.8.

5.1 Specifications

We used Cable to debug seventeen Strauss specifications. For
each specification, Table 1 lists the number of states and tran-
sitions in the specification’s FA (after debugging) and translates
the specification into English.

These are important specifications. Using a dynamic checker
(described in earlier work [2] and more completely in a disser-
tation by one of the authors [1]), we searched for violations of
these specifications in program execution traces and found a to-
tal of 199 bugs, including resource leaks, potential races, and
performance bugs.

All of these specifications are fairly simple, and none of them
contain loops. Consequently, the longest trace through each FA
is very short, usually less than ten events long. Debugging spec-
ifications that accept such short traces is actually a worst case
for our method because when Strauss’s front end generates short
scenario traces, it does not generate very many unique scenario
traces. So, it is relatively easy to debug these specifications
simply by looking at a representative from each set of identi-
cal traces. Nonetheless, the results in Section 5.3 show that our
method was better than this brute-force method.

5.2 Cost of concept analysis

The statistics in Table 2 demonstrate that concept analysis is
affordable. The times in the table do not include reading and
parsing the traces, nor do they include writing the final lattice
to disk. The reported time is the shortest time from three runs;
the time for each run did not vary significantly. Since Strauss
extracted many identical scenario traces, we built the lattice from
representatives for classes of identical traces, rather than from all
of the traces.

Although concept lattices are potentially exponentially large
in the number of objects or attributes (whichever is lower), the
size of the lattices generated for our specifications varied roughly
linearly with the number of FA transitions. The times seem to
vary slightly worse than linearly, but it is hard to tell for sure,
since many of the times were so short. These observations agree
with the more thorough empirical evaluation that Godin and oth-
ers did of their algorithm (which we use) in their paper [13].

5.3 Traversal strategies

Table 3 compares the cost of labeling by a variety of meth-
ods, where cost is defined as in Section 4.2. One of the au-
thors (an expert user and developer of the tool) used Cable to
debug each specification and create an accurate labeling. Then,
we measured the cost of obtaining the same labeling with each
method. Because the Top-down, Bottom-up, and Random strate-
gies have non-deterministic costs, Table 3 reports the lowest cost
for Bottom-up and the arithmetic mean and standard deviation of
the cost of 1024 trials for Top-down and Random. We were un-
able to measure the cost of the Optimal strategy for RegionsBig
and XSaveContext, because the program we wrote to evaluate
the strategies on these specifications took too long to run. For
those specifications, we report a lower bound on the cost of Op-
timal.

In addition to the strategies listed in Section 4.2, Table 3 lists
two other methods:

Expert This method measured the actual cost of labeling for the
expert user. The expert used a mostly top-down approach, but
sometimes directed his search based on transitions he found
interesting. On 5 specifications (RegionsBig, XSaveContext,
XGContextFromGC, XtFree, and XtRealizeProc), the expert
also used Cable’s “Focus” command, using reference FAs that
matched the templates described in Section 4.1. This was an
advantage for the expert, since the automatic strategies did not
use this feature of Cable.



Name FA Bugs English description

|Q| |T| | True False

PrsAccelTbl 13 22 0 1 | Accelerator tables must be parsed with XtParseAcceleratorTable before
they are used.

PrsTransTbl 4 5 0 0 | Translation tables must be parsed with XtParseTranslationTable before
they are used.

Quarks 10 13 0 0 | The name and the_class arguments of XrmQGetResource must come
from calls to XrmPermStringToQuark.

RegionsAlloc 30 35 16 0 | Every Region that is created by the program must eventually be destroyed by
the program; every Region that is destroyed by the program must have been
created by the program.

RegionsBig 352 623 12 0 | Every Region that is created by the program must eventually be destroyed by
the program; calls that accept Regions must be passed Regions that were
either created by the program or supplied by the library.

RmvTimeOut 5 6 0 0 | XtRemoveTimeOut can only remove time-outs added with Xt AddTimeOut.

XFreeGC 10 13 44 0 | Every GC that is created by the program must eventually be destroyed by the
program; every GC that is destroyed by the program must have been created by
the program.

XGContextFromGC 38 48 44 1 | XGContextFromGC must be passed a valid GC; every GC that is created by the
program must eventually be destroyed by the program; every GC that is destroyed
by the program must have been created by the program.

XGetSelOwner 5 5 9 0 | After calling XSetSelectionOwner, selection ownership must be verified
by calling XGetSelectionOwner.

XInternAtom 7 15 42 0 | For good performance, XInternAtom should not be called in the event loop.

XPutlmage 7 9 2 2 | The image and graphics context passed to XPut Image must have been created
on the same display.

XSaveContext 66 86 33 0 | An association installed with XSaveContext must eventually be deleted with
XDeleteContext; also, the association must be used by a call to XFind—
Context at some point.

XSetFont 30 40 44 1 | XSetFont must be passed a valid GC; every GC that is created by the program
must eventually be destroyed by the program; every GC that is destroyed by the
program must have been created by the program.

XSetSelOwner 5 9 7 0 | The timestamp passed to XSetSelectionOwner must come from an event
received from the X server.

XtFree 29 35 45 0 | Memory allocated with XtCalloc or XtMalloc must be deallocated with
XtFree; memory deallocated with XtFree must have been allocated with
XtCalloc or XtMalloc; memory must not be deallocated twice.

XtOwnSel 5 10 1 0 | The timestamp passed to Xt OwnSelection must come from an event received
from the X server.

XtRealizeProc 57 64 0 0 | If a XtRealizeProc callback calls XtCreateWindow, the call must pass

the callback’s widget and attributes arguments to XtCreateWindow.
Also, XtCreateWindow must not be called except by a XtRealizeProc
callback.

Table 1: Seventeen Strauss specifications, which we debugged with Cable. FA reports the number of states and transitions in each

specification’s debugged FA and Bugs reports the number of true bugs and false positives that each specification found.




Spec. Traces FA Lattice Time (ms)
Ql Tl | Ic|  [E]
PrsAccelTbl 9 3 10 12 19 32
PrsTransTbl 3 3 4 6 7 1.6
Quarks 8 10 13 21 37 5.5
RegionsAlloc 10 14 15 18 24 4.2
RegionsBig 270 | 375 611 | 680 1377 | 2.67 x 10°
RmvTimeOut 2 3 3 4 4 1.3
XFreeGC 10 10 13 23 38 5.7
XGContextFromGC 25 22 36 73 151 32.0
XGetSelOwner 2 5 5 4 4 1.2
XlInternAtom 10 3 11 13 21 4.1
XPutlmage 6 3 7 10 14 2.6
XSaveContext 92 | 150 224 | 302 639 477
XSetFont 28 30 40 66 129 25.0
XSetSelOwner 6 3 7 9 13 2.3
XtFree 112 95 171 | 380 869 | 1.51 x 103
XtOwnSel 7 3 8 10 15 2.7
XtRealizeProc 38 57 64 | 104 207 37.4

Table 2: Running time of concept analysis with respect to 17 mined specifications. Traces reports the number of scenario traces in
the lattice (none of which are identical), FA reports the number of states and transitions in the reference FA that defined similarity,
Lattice reports the number of concepts and edges in the concept lattice, and Time (ms) reports the running time of the analysis, in

milliseconds.

Baseline As mentioned above, many of the traces were identi-
cal. Instead of using Cable, this method simply divides the
traces into classes of identical traces and then counts the cost
of inspecting and labeling each class separately. That is, the
cost of Baseline is two times the number of classes of identi-
cal traces.

Comparing the cost of Expert with the cost of Baseline indi-
cates the value of Cable in practice. By this measure, the advan-
tage of using Cable increases as the number of different scenario
traces increases.

Cable does not appear to have a large advantage for specifi-
cations built from less than 10 unique scenario traces. For three
of these specifications (XGetSelOwner, PrsTransTbl, and Rmv-
TimeOut), the cost of Baseline was very low. For these spec-
ifications the cost for the Expert was also very low. For five
other specifications (Quarks, XSetSelOwner, XtOwnSel, XInter-
nAtom, and PrsAccelTbl), the cost of Baseline was a bit higher,
while the cost of Expert remained very low. Cable shows an ad-
vantage here. Finally, for RegionsAlloc, XFreeGC, and XPutIm-
age, the cost of both methods was a bit higher, although the cost
of Baseline was still slightly higher than the cost of Expert.

Cable was more useful for debugging specifications built from
many tens or hundreds of scenario traces. The improvement was
sometimes dramatic, as in the case of XtFree. Two specifications
were hard to debug, even with Cable: RegionsBig was much
easier to debug with Cable than by hand, but still required 149
Cable operations; and XSetFont was just barely easier to debug
with Cable than by hand.

Some other observations:

e Expert never did much worse than Baseline, and sometimes
did significantly better.

e Because Baseline labels each class of identical traces sep-
arately, it does not take into account generalization by the
learner. The cost for Expert includes choosing labels to ensure
good generalization and verifying that the learner generalized

well. The cost for Baseline does not include these actions, so
it is an underestimate.

e Top-down and Random beat Baseline on every specification
except XGetSelOwner, XPutImage, and XSaveContext. Only
XPutImage and XSaveContext are significant, since the cost
of labeling XGetSelOwner is very low for all strategies. The
fact that these blind strategies do well indicates that the con-
cept lattice clusters traces appropriately.

XSaveContext is a special case. This specification’s FA was
large: 150 states and 224 transitions. In fact, we discovered
while debugging this specification that most of these states
and transitions are irrelevant. These irrelevant transitions hurt
the performance of Top-down and Random, because concept
analysis found many spurious concepts. On the other hand,
these transitions did not hurt Expert very much, because the
expert used the “Focus” command to choose a better reference
FA.

e Top-down outperforms Random, which implies that Top-down
was often able to label concepts near the top of the lattice.
Top-down beat Random on all but four specifications (XGet-
SelOwner, XPutlmage, XSaveContext, and XSetFont). Top-
down beats Random handily when no traces are erroneous
(PrsTransTbl, Quarks, and RmvTimeOut). This is not sur-
prising, since the top concept can be labeled immediately in
this case. Top-down also beats Random significantly on more
interesting specifications, particularly XtRealizeProc and Re-
gionsBig. By contrast, Random beat Top-down significantly
on just one specification: XSaveContext, which contained
many irrelevant transitions.

e Finally, note that Bottom-up labeling is equivalent to Base-
line labeling on these specifications, but not in general. These
specifications have no loops, so each class of identical traces
has a characteristic set of FA transitions. These sets appear as
concepts near the bottom of the concept lattice.



Spec. Cost of labeling

Opt Exp Top-down Btm-up Rand Base

Mean Std. Dev. Mean Std. Dev.

PrsAccelTbl 4 8 14.0 1.9 16 14.1 2.8 18
PrsTransTbl 2 2 2.0 0.0 4 34 0.9 6
Quarks 2 2 2.0 0.0 16 8.6 3.2 16
RegionsAlloc 8 16 15.7 1.4 20 16.2 2.8 20
RegionsBig >7 149 121 9.2 540 231 29.2 540
RmvTimeOut 2 2 2.0 0.0 4 3.4 0.9 4
XFreeGC 6 12 12.9 2.3 20 14.4 34 20
XGContextFromGC 14 24 39.0 4.3 50 39.5 5.9 50
XGetSelOwner 4 5 5.0 0.0 4 4.5 0.9 4
XlInternAtom 4 5 5.0 0.0 20 12.5 5.6 20
XPutImage 6 10 21.0 3.9 12 15.6 3.9 12
XSaveContext >5 42 267 21.8 184 188 18.9 184
XSetFont 16 53 52.0 54 56 50.3 4.8 56
XSetSelOwner 4 5 5.0 0.0 12 8.7 34 12
XtFree 24 28 124 10.9 224 149 134 224
XtOwnSel 4 5 5.0 0.0 14 9.8 3.9 14
XtRealizeProc 12 13 20.1 2.1 76 51.0 7.4 76

Table 3: The cost of labeling with various Cable strategies: Optimal (Opt), Expert (Exp), Top-down (Top-down), Bottom-up (Btm-
up), and Random (Rand). These costs are compared to the Baseline method (Base), which does not use Cable.

5.4 Navigation by transitions

In another set of experiments, we studied how long it took
a second author (also an expert user and developer of the tool)
to debug a specification using Cable. For 11 of the 17 speci-
fications, we measured the actual time elapsed during a Cable
debugging session. We compared the session’s time to the time
that the expert needed to debug the specification without Cable,
by examining and classifying individual scenario traces.

This experiment used Cable’s navigation by transitions feature
(see Section 4.1). The idea was to replace a traversal strategy
(see Section 4.2) with navigation to concepts that contain only
correct or incorrect traces. The expert’s strategy was as follows.
Starting at the top concept, the expert examined the summary
FA. If the FA described only correct behavior or only erroneous
behavior, the expert labeled the concept accordingly. Otherwise,
the expert selected transitions that were either clearly executed
by all correct traces, or clearly executed only by erroneous traces.
Then, the expert asked Cable to find the smallest concept that
contained all traces that execute all of the selected transitions
and applied this procedure recursively at the new concept. After
labeling a concept, the expert returned to the concept above it.
If this concept still contained unlabeled traces, the expert started
over at this concept, but only with the unlabeled traces.

For this experiment, we used a modified set of attributes for
concept analysis. As in previous experiments, the attributes of
a trace included the transitions executed by the trace in the ref-
erence FA. Our modification added “negative” attributes: each
trace had a negative attribute for each transition not executed by
the trace. That is, a trace that executed transition ¢ but did not ex-
ecute transition j would have attributes a; and a;. The rationale
for creating more attributes was to create a lattice with more con-
cepts. Specifically, we wanted to ensure that Cable was always
able to navigate to a concept closely matching the transitions se-
lected by the expert. See Section 5.5 (below) for a discussion of
how to define suitable attributes.

Table 4 shows the time to debug each specification, together
with the cost of labeling, as defined in Section 4.2. For four spec-

Name Time Cost of labeling
Cable Baseline | Cable Baseline
PrsAccelTbl 136 42 5 18
PrsTransTbl 9 11 2 6
RmvTimeOut 9 6 2 4
XGContextFromGC 158 107 12 50
XGetSelOwner 32 9 5 4
XlInternAtom 100 37 8 20
XPutlmage 148 31 14 12
XSetFont 117 133 12 56
XSetSelOwner 27 33 5 12
XtFree 251 254 42 224
XtOwnSel 98 21 10 14

Table 4: Time to debug specifications. Time reports the time to
debug a specification using either Cable or the baseline method
of classifying individual traces. Cost of labeling reports the cost
of labeling as defined in Section 4.2.

ifications (PrsTransTbl, XSetFont, XSetSelOwner, and XtFree),
using Cable with the navigation strategy was faster than the base-
line method of classifying individual traces, but in general Cable
was slower. However, Cable was often significantly better in
terms of labeling cost, which reflects the number of concepts
that the expert examined.

Comparison with Table 3 reveals three cases where one expert
beat the other by a large margin: on XtFree, the expert who used
the traversal strategy beat the expert who used navigation (28 to
42); on XGContextFromGC and XSetFont, the expert who used
navigation won (12 to 24 and 12 to 53). On XGContextFromGC,
the navigation expert even beat Optimal, which was possible be-
cause the navigation expert was working with a larger concept
lattice. The fact that neither expert dominated the other indicates
that both traversal and navigation are valuable, although more
study is needed to settle this question.

A natural question is why the sometimes dramatic reductions
in labeling cost from Baseline to Cable did not always translate



into shorter classification times. In our experience, using Cable
with navigation was slower than Baseline in those cases when the
summary FA for the top concept was hard to understand. If the
summary FA lacked salient features, such as an obviously erro-
neous loop, the expert had to study all paths through the FA. The
understanding of the top summary FA thus became even harder
than the baseline method because the FA presented potentially
confusing overlapping paths. A possible solution is for the expert
to start by traversing the lattice, using navigation by transitions
only when he finds a summary FA with a salient feature.

5.5 Discussion

We presented and evaluated two approaches to debugging spec-
ifications using concept analysis. In traversal strategies, the user
visits concepts in some order and attempts to label them (Sec-
tion 5.3). In navigation strategies, the user selects features of
a concept in order to navigate to a concept with those features
(Section 5.4). These two strategies have complementary benefits
but also conflicting requirements.

In a traversal strategy, the user searches the lattice for classi-
fiable concepts. The search is undirected in that the user can-
not influence the traversal order by indicating which traces from
the current concept he would prefer to visit next. For example,
in a top-down strategy, when the user encounters a concept that
cannot be classified, he moves to a subconcept that represents a
smaller, simpler subset of the traces. The traversal is thus based
only on the structure of the lattice, not on user-selected features
of concepts.

As a result, the traversal strategy works best on a small lat-
tice because, otherwise, its undirected search often visits many
ancestors (or descendants) of the classifiable concepts.

In a navigation strategy, the user skips over many concepts by
navigating directly to a subconcept that focuses on an interesting
feature of a larger concept. For example, in our experiments, the
user selected salient transitions in a summary FA and navigated
to a concept containing matching traces.

The navigation strategy works best when concepts have salient
features and there is a closely matching concept for any user se-
lection of salient features. We call such a lattice navigable. A
simple way to get a navigable lattice is to use a complete subset
lattice.

Traversal and navigation have complementary benefits. Nav-
igation is very effective when concepts have salient features.
However, in practice, concepts do not always have salient fea-
tures, in which case traversal is needed. Thus, we would like to
combine traversal and navigation into a single strategy with the
benefits of both.

Combining traversal and navigation is, however, difficult be-
cause they have conflicting requirements. While traversal re-
quires a small lattice, navigation requires a navigable lattice.
Therefore, a combined strategy would work best on a small,
navigable lattice. As noted, a complete lattice is navigable, but
not small. Conversely, while designing our experiments, we ob-
served that small lattices are often not navigable.

One solution to the problems with combining navigation and
traversal is to use a single lattice, but with a different view for
each approach. The lattice would be complete, or nearly so, to
support navigation. However, the user would only see a coarse
subset of the lattice, which could be traversed effectively. The
research question is how to select the subset of attributes that
will define the coarser lattice used in the traversal.

Another solution is to select attributes judiciously to produce a
lattice that is both small and navigable. If there were an attribute
for each salient feature, the lattice would be navigable, and not
too large. Since the salient features are not known when the lat-
tice is computed, we would have to alter the lattice in response to
user input. An interesting question is how to infer good attributes
from user input. For example, with navigation by transitions, a
tool could add attributes as necessary to distinguish selected tran-
sitions. As another example, a tool could infer useful attributes
according to labels previously assigned by the user.

6. RELATED WORK

This paper fills a large hole left unexplored by our previous
work on specification mining [2]. That paper explained how to
extract specifications from program execution traces, but only
offered a naive mechanism—coring, or dropping low frequency
transitions—for removing errors from those specifications. This
paper gives a general method for debugging specifications, which
applies not only to our miner’s specifications but also to temporal
specifications from any source.

Previous work on helping users work through the large num-
bers of bug reports that can be produced by verification tools has
focused on ranking the bug reports, so that the user sees likely
bugs before likely false positives, and severe bugs before minor
bugs. An example is the Xgcc system [15], which uses statistical
and other heuristics to rank likely bugs and severe, hard-to-find
bugs above other bug reports. Xgcc also does some simple clus-
tering based on which functions appear in bug reports. Another
tool, PREfix [4], uses a number of filtering and ranking heuris-
tics to reduce what they call “noise”. In our opinion, ranking and
clustering are complementary: ranking tells the user what reports
to inspect first, while clustering helps the user avoid inspecting
redundant reports.

Daikon [8], a tool for dynamically discovering arithmetic in-
variants, uses statistical confidence checks to suppress invariants
that appear to have occurred by chance. In our case, we found
that some buggy traces occurred so frequently that suppressing
them similarly would also suppress valid traces.

One way to debug specifications is to assume that any part
of a specification that can not be verified by a program veri-
fication tool is, in fact, wrong. This approach is used by the
Houdini tool [9], which guesses many invariants and then uses
ESC/Java [10] to prune out those that do not always hold. A
similar approach was used to integrate the Daikon and ESC/Java
tools [19]. Both tools still rely on a user to help debug specifica-
tions, because programs are buggy: an invariant that should be
true (and so should be checked) may be unverifiable because of
an error in the program.

This paper concentrates on debugging temporal specifications.
Many program verification tools rely on Hoare-style invariants,
preconditions, and postconditions [14]. It would be interesting
to see if clustering techniques such as ours apply to such specifi-
cations.

The concept lattice that we build is sensitive to the particular
FA used to recognize traces. Strauss uses Raman and Patrick’s
sk-string algorithm [21] to infer the FAs in its specifications.
There are many other algorithms in the literature; Murphy has
written a good survey [18]. For Cable, it would be particularly
interesting to explore interactive algorithms, which would allow
the user to fine-tune the concept lattice as he uses it for labeling.



7. CONCLUSION

This paper described a method for debugging temporal spec-
ifications. Our method uses concept analysis to cluster the vio-
lation traces from a program verification tool or scenario traces
of a specification miner, so that users can label them quickly.
‘We found that our method is efficient, both in terms of machine
resources and in terms of human resources. We also found a
trade-off between small concept lattices, which are easier to tra-
verse, and large concept lattices, which are more likely to con-
tain a desired concept. Future work should explore this trade-off,
probably by changing the lattice interactively.
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