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ABSTRACT

Model counting procedures for data structures are crucial for
advancing the field of automated quantitative program analysis.
We present a tool for Model Counting for Bounded Array Theory
(MCBAT). MCBAT works on quantified integer array constraints in
which all arrays have a finite length. We employ reductions from
the theory of arrays to uninterpreted functions and linear integer
arithmetic (LIA). Once reduced to LIA, we leverage Barvinok’s poly-
nomial time integer lattice point enumeration algorithm. Finally,
we present a case study demonstrating applicability to automated
quantitative program analysis. MCBAT is available for immediate
use as a Docker image and the source code is freely available in our
Github repository.

CCS CONCEPTS

- Software and its engineering — Formal methods; - Mathe-
matics of computing — Combinatoric problems.

KEYWORDS
Model Counting, Array Theory, SMT

ACM Reference Format:

Abtin Molavi, Mara Downing, Tommy Schneider, and Lucas Bang. 2020.
MCBAT: A Practical Tool for Model Counting Constraints on Bounded
Integer Arrays. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 20), November 8—13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3368089.3417937

1 INTRODUCTION

Model counting is the enabling technology and theory behind
automated quantitative program analyses. The ability to count the
number of solutions to a constraint allows one to perform reliability
analysis [13], probabilistic symbolic execution [15], quantitative
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information flow analysis [16, 23, 29, 31], Bayesian inference [8, 11,
26], and compiler optimization [25]. Originally stated with respect
to Boolean formulas [5], more recent advances in model counting
have extended counting capabilities to the theories of linear integer
arithmetic [19, 30], non-linear numeric constraints [6], strings [20,
27, 28], word-level counting for bit-vectors applied to the problem
of automatic inference [7], and more recent work has begun to
combine theories of strings and integers [2]. This paper presents
the first tool with the capability of performing model counting
directly on formulas with symbolic arrays.

The current space of exploration in model counting is driven by
the ubiquity of the types found in common programming languages—
Booleans, integers, and strings. In this paper, we expand the space
of model counting tools by introducing MCBAT for counting the
number of models to constraints over the theory of bounded integer
arrays. We hypothesize that MCBAT can be used by quantitative
program analysis researchers as a basis for analyzing other struc-
tures that can be modeled as arrays: vectors, maps, hash tables,
memory caches, and so on. Our tool, MCBAT, is freely available as
a Docker image for immediate use! and the source code of MCBAT
is located in our public Github repository? Typical use cases for
MCBAT are highlighted in the demonstration video®.

Our previous work [22] details the algorithms and theory behind
MCBAT. Namely, that work proves that our sequence of reductions
that are used to convert a formula over the theory of arrays into a
pure linear integer arithmetic formula are model-count preserving
(MCBAT is theoretically correct). In addition, that earlier work em-
pirically verified the correctness of MCBAT by comparing to a naive
model enumeration algorithm using Z3 (MCBAT is experimentally
verified to be correct). This paper presents MCBAT as a practical
tool to be used by researchers in areas that require model counting
software like quantitative information flow, probabilistic symbolic
execution, or expected cost analysis of programs, when the pro-
gram under test is one that operates on arrays. A case study on QIF
demonstrating the applicability of MCBAT is given in Section 5.

Uhttps://hub.docker.com/repository/docker/abtinm/mcbat
Zhttps://github.com/hmc-alpaga/mcbat
3https://www.cs.hmc.edu/ bang/mcbat.html
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Figure 1: Polytope defined by constraint of Example.

2 BACKGROUND

Let’s start with a simple example of an array constraint. Consider
a constraint over integer array a and integer variable k:

LENGTH(A) = 2A (k > —=15) AVi (k < ali] < 10Vk < —ali] < 10)
This constraint is equivalent to a constraint with three variables
ap, ai, keZ:

k>-15A(k<ay<10Vk<—-ag <10)A

(k <lai1l £10Vk < —ay <10)

This constraint over three variables defines a polytope P in R?
(Fig. 1). Observe that integer lattice points in P correspond to integer
triples (k, ag, a1), corresponding to the free variables k and a of the
original constraint. Our procedure counts the number of possible
models for all free variables in a constraint. For this example, the
number of integer lattice points in this polytope, and therefore the
number of models to the original constraint, is 10076.

This example illustrate the main idea of our approach: count
models for an array constraint by transforming it into an instance
of lattice point counting within a polytope. While this example
is easy to visualize, in general, a finite array constraint over inte-
gers is model-count equivalent to a set of lattice points in a multi-
dimensional polytope.

3 ALGORITHM

MCBAT Input. MCBAT takes a formula in the theory of bounded
arrays of the form

(]5((11, ..

where ¢4 is a Boolean combination of quantified array formulas.
Here, we’ve explicitly denoted the n free array-variables and the w
free integer-variables. Throughout our algorithm some steps may
introduce new free variables, but we ensure that the model count
is preserved.

.sanski,...,kyw) = LENGTH(ay, £1)A- - - LENGTH(ap, fn) Apa

MCBAT Output. We output the number of models there are for
$lar,....ansk1,... . kw).

High-Level Overview. MCBAT (Algorithm 1) has these main
steps:

e Decompose a boolean combination of quantified array for-
mulas into individual quantified array formulas.
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Replace index terms that occur within array access terms
with auxiliary integer variables; introduce auxiliary integer
constraints to capture this replacement.

Each array-store term is replaced by equivalent constraints
that do not contain array-store expressions.

Rewrite expressions that are universally quantified over ar-
ray index variables as a conjunctions over all possible indices,
with upper bounds enforced by each array s LENGTH predi-
cate.

Perform Ackermann’s reduction, converting array access
terms into integer terms.

Send the resulting linear integer arithmetic constraint to
BARVINOK [30] to compute the final model count.

Algorithm 1 MCBAT: Compute the model count for
$lar,....ansk, ... kw)
1: procedure MCBAT(¢(ay, ..., an; ki, ..., kw))

2:
3:

Decompose ¢ into a tree T of array formulas ¢1, g2, . .., dm.
Create a tree T’ and a label-formula map M using

1, 2, - . ., Pm as labels.
for ¢; do

gV
)

e
end for
Construct M’ from M and the formulas ¢1(3), el
Construct ¢ by applying the label-formula map M’ to

the Boolean tree T’.
¢ — AckerMaNNREDUCTION(¢ ()
return BARVINOK(¢(5))

13: end procedure

«— REMOVETERMSINACCESS(¢;)
<— REPLACEALLARRAYSTORES( ¢i(1))

— REMOVEQ}JANTS(¢§2))

(3)

4 IMPLEMENTATION

{Bounded Theory of Z-Arrays ]

Index Replacement

(Haskell)

[(V, 3)-Free Theory of Arraysj

Ackermann’s Reduction
(Haskell)

(V, 3)-Free LIA

Cardinality Calculation
(Barvinok)

Figure 2: High-level view of MCBAT implementation archi-
tecture.

We implemented the MCBAT algorithm in a tool, also called MC-
BAT. A high level architecture of MCBAT can be seen in Fig. 2. The
core MCBAT algorithm is implemented in a series of Haskell func-
tions, eventually passing a quantifier-free linear integer arithmetic
formula to the Barvinok library which returns the final model count.
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Array constraints may be entered directly as Haskell expressions
at the REPL. MCBAT also supports reading and writing constraint
files in an SMT-LIB2-like format. This allows use of MCBAT as a
command line utility that takes an SMT file as input and prints the
count to the terminal. For example, an interaction with MCBAT
might look like

> mcbat examplel.smt
{10076}

The complete implementation is freely available along with the
source code. In addition, our implementation has an associated
Docker image, so that one can immediately download and run
MCBAT in a virtual environment using a single terminal command.
Assuming one has docker installed, MCBAT can be (downloaded
and) run on the command line as

> docker run -it abtinm/mcbat

Once the MCBAT Docker container running, the user can ex-
plore the source code of MCBAT in the src directory, and example
constraints arising from symbolic execution of array programs are
contained in src/test/ed/.

The experimental evaluation of MCBAT is also replicable using
this Docker image and the expected depth experiment can easily
be extended to new sets of constraints using a special flag at the
command line.

5 CASE STUDY

In order to demonstrate the usefulness of MCBAT as a tool for
quantitative program analysis, here we present a short case study
that makes use of model counting. Within the field of quantitative
information flow (QIF) one often needs to compute probabilities
of program events. Those probabilities can be computed using
model counting. Here we discuss MCBAT’s applicability to security
analysis by providing a tool for computing those probabilities.

Consider the problem of determining if a piece of code might be
vulnerable to side-channel attacks. In a timing-based side channel
exploit, an attacker is able to observe the exection time of a function
that operates over secret values. If the running time of the code is
affected by the combination of the attacker’s input values and the
secret values stored in the program, an attacker can measure the
running time of the system to gain partial information about the
unknown secret [3, 16, 23, 29].

We briefly summarize how automatic static side-channel analysis
techniques work. First symbolic execution is run on on a piece of
code. The length of the symbolic execution path to each leaf node
is taken as a proxy for the running time of that execution path.
Each leaf has a path constraint ¢; that is then associated with a
static estimate of the a timing observation o;, based on the path
length. Path constraints are merged into observation constraints
¥j where each ¢j = ¢, Vi, V...V ¢inj , the disjunction of the
n;j path constraints that lead to the same observation (i.e. 0;, =
Oy = +v = Oy - Each ¢/; describes all program observations that
can lead to the same timing observations from the point of view of
the attacker.

A bound on the amount of information H that an attacker can
gain about a secret value is then given by the Shannon entropy of
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Table 1: Information leakage in number of bits for a set of
functions computed using MCBAT.

Function Leakage
Check for element at index 0.00
Search for a number 0.00
Check array equality 0.00
Lexicographic compare 1.00
Insert in sorted list 3.81
Insertion sort 3.45
Bubble sort 0.00
Find Maximum 0.00
Merge two sorted arrays 2.47
Longest common subsequence 0.00
Check if sorted 1.63

the distribution of the m possible observations. We compute H =
Z;."zl p(0j)log,(1/p(0;)). Now, observe that, assuming a uniform
distribution of progam inputs, the probability of an observation can
be computed by performing model counting on the observation
contraints: p(o;) = #(;)/ X, #(¢:). (This is the fundamental idea
behind probabilistic symbolic execution [31].) One then computes
the Shannon entropy to compute an upper bound on the amount of
information leaked to an attacker through the timing side channel.

We applied this idea to a small case study of programs that use
arrays. We performed symbolic execution using a custom Python-
based symbolic execution engine to generate path constraints over
arrays, and performed the above-described leakage computation.
We found that our implementations of common array operations
leaked the amounts of information shown in Table 1. Functions
with zero leakage are likely to be safer with respect to timing side
channels. All of the constraints used to perform this computation
are provided in our repository.

6 RELATED WORK

The Theory of Arrays. In 1962, McCarthy introduced a formal
theory of arrays based the two select and store axioms [21]. In more
recent times, decision procedures for the theory of arrays have
been developed and implemented, for instance in the Z3 SMT solver
[9, 10]. A comprehensive treatment of satisfiability checking for
array constraints is given in Kroening and Strichman’s “Decision
Procedures: An Algorithmic Point of View” [17].

We find that the most closely related work to ours is that of
Plazar, et. al [24]. While their work is focused primarily on satis-
fiability checking of array constraints over arbitrary value types,
the bounded fragment of array theory that they focus on and the
resulting algorithm bear resemblances to our approaches that focus
on bounded integer arrays. While the authors observe a “strong cor-
respondence between the models to the input and transformed for-
mulas”, their algorithm, as it is not concerned with model counting,
is not strong enough to fully maintain the model correspondence
across transformations.

Applications of Array Constraint Procedures. SMT solving
for arrays is an important component of symbolic execution for
programs that operate on arrays, as in Symbolic Path Finder for
Java[14]. Another useful application of satisfiability checking for
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arrays is the synthesis of invariants over arrays [18] by Larraz, et.
al., whose constraints we used as a benchmark for our experimental
analysis. In this paper, we applied model counting to a case study
on computing information leakage of functions operating on ar-
rays. Existing work for computing information leakage of function
that operate on arrays work by performing symbolic execution
by creating arrays of symbolic integers, and therefore generating
constraints on integers, rather than by creating symbolic arrays
and dealing with array constraints directly [3, 29].

Model Counting. Initial work in model counting applied to formu-
las of propositional logic. Of particular interest is the use of DPLL
as a model counting procedure [5]. Recent years have seen a signif-
icant increase in interest in model counting for domains beyond
propositional logic. LattE [19] and Barvinok [30] are popular model
counters for the theory of linear integer arithmetic. Closely related
to the theory of arrays is the theory of strings, which are also an
indexable type. Recent approaches to model counting for strings
make use of generating functions [20], recurrence relations [28],
and automata theory [1]. Earlier work on model counting for data
structures exists in which Java code that defines a data structure
is symbolically executed and the resulting constraints are model
counted using LattE during analysis [12]. Finally, recent theoret-
ical results have been shown for the problem of weighted model
counting for constraints containing uninterpreted functions [4].

7 CONCLUSION

We presented tool, MCBAT, for performing model counting on
constraints over integer arrays of bounded length. MCBAT per-
forms a series of transformations on constraints in order to accom-
plish model counting. In addition, we demonstrated its usefulness
on a case study regarding quantitative information flow analysis.
It is our hope that MCBAT can be used by other researchers in
applications requiring model counting for array constraints.

There are many avenues for future work. Extending our approach
to higher dimensional arrays would increase the expressiveness
of MCBAT, as would handling arrays of types other than integers.
In addition, we would like to allow for reasoning over arrays of
symbolic lengths. Finally, as arrays can be used to model vectors,
hash maps, memory accesses, heaps, and so on, we model counting
for arrays is a first step toward building practical tools for model
counting for these more complex data structures.

In performing this research, we observed that in many works
on model counting the fundamental insights are to (1) convert ele-
ments of satisfiability checking procedure into a model counting
procedure or (2) convert elements a model enumeration procedure
into a model counting procedure. This is the case with model count-
ing algorithms that are based on DPLL, automata, and generating
functions. The challenging question arises: to what degree can satis-
fiability checking and model enumeration algorithms be converted,
perhaps automatically, into counting algorithms?

To conclude, we note that Satisfiability Modulo Theories has dra-
matically increased the ability to perform program analyses. SMT
solvers combine decision procedures for Boolean combinations of
constraints from various theories. Because there are model counting
algorithms for Boolean formulas, linear integer arithmetic, strings,
and now integer arrays, we look forward to a future in which Model
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Counting Modulo Theories combines model counting procedures
for various theories to become the fundamental enabling technol-
ogy behind quantitative program analysis.
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