Polynomial Identity Testing via Evaluation of Rational Functions

Andrew Morgan with Dieter van Melkebeek January, 2022

- Given an arithmetic formula computing p ∈ 𝔅[x₁,...,x_n], decide whether p = 0
- Simple randomized algo: evaluate *p* at a random point
- Goal: deterministic algo
 - Whitebox: full access to formula
 - Blackbox: only evaluations allowed

Polynomial Identity Testing

Generator

- Fresh seed variables u_1, \ldots, u_ℓ
- Substitute $x_i \leftarrow G_i(u_1, \ldots, u_\ell)$, G_i polynomial
- We want $p \neq 0 \implies p(G) \neq 0$ for all p in a class $C \subseteq \mathbb{F}[x_1, \dots, x_n]$

Blackbox Derandomization

- Design a generator with $\ell \ll n$, small deg G_i
- Test p(G) = 0 using random evaluations of seed variables
- If deg(p) = n^{O(1)}, deg(G_i) = n^{O(1)} then n^{O(ℓ)} evaluations suffices

Conceptual Contributions

Use of Rational Functions as Generators

- Substitutions are rational functions of the seed
- Rational Function Evaluation generator (RFE)

Systematic Approach via Vanishing Ideal

- Van[G] = the set of polynomials such that p(G) = 0
- For any $C \subseteq \mathbb{F}[x_1, \ldots, x_n]$, G works for C iff $Van[G] \cap C \subseteq \{0\}$
- Derandomization ⇔ lower bounds for Van[G]
- Focuses research on the generator rather than syntactic classes, where progress is easier

Rational Function Evaluation Generator (RFE) ≡ Shpilka–Volkovich Generator (SV)

- Van[SV] = Van[RFE] up to variable rescaling
- If C closed under variable rescaling then SV works for C ⇔ RFE works for C

Technical Contribution #2

Generating Set for Vanishing Ideal of RFE/SV

- Small, explicit
- Gröbner basis

Implications

- Tight bounds for Van[RFE], Van[SV] for
 - minimum degree
 - minimum sparsity
 - minimum partition class size of set-multi-linearity
- Lower bounds: SV is known to work for some C; the explicit generators cannot be in such C

Technical Contribution #3

Membership Test for Vanishing Ideal of RFE/SV

• For multi-linear *p*, can be expressed in terms of partial derivatives and zero substitutions

Implications

- Derivatives and zero substitutions are *complete* for reasoning with RFE and SV
- Alternate proof for polynomial-time blackbox derandomization for read-once formulas
- Progress on derandomization for read-once oblivious algebraic branching programs (ROABPs)

- Define SV and RFE
- Equivalence of RFE and SV
- Generators for vanishing ideal of RFE/SV
- Membership test for vanishing ideal

Shpilka–Volkovich Generator

Parameters

• for each x_i , a distinct *abscissa* $a_i \in \mathbb{F}$

Generator SV^1

• Seed: *y*, *z*

• Substitute
$$x_i \leftarrow z \cdot L_i(y) \doteq z \prod_{i \in [n] \setminus \{i\}} \frac{y - a_j}{a_i - a_j}$$

Generator SV^ℓ

- $\mathsf{SV}^\ell \doteq \mathsf{sum} \text{ of } \ell \text{ copies of } \mathsf{SV}^1 \text{ with fresh seeds}$

Properties

- Range includes all points with Hamming weight $\leq \ell$
- ℓ -wise independence

Rational Function Evaluation Generator

Parameters

- For each x_i , a distinct *abscissa* $a_i \in \mathbb{F}$
- k, the numerator degree
- ℓ , the denominator degree

Generator RFE_{ℓ}^{k}

- Seed: univariate rational function f = g/h ∈ 𝔽(α) with deg(g) ≤ k and deg(h) ≤ ℓ
- Substitute $x_i \leftarrow f(a_i)$

Example: $k = 1, \ell = 2$

$$f(\alpha) = \frac{c_1 \alpha + c_0}{d_2 \alpha^2 + d_1 \alpha + d_0} \qquad \qquad x_i \leftarrow \frac{c_1 a_i + c_0}{d_2 a_i^2 + d_1 a_i + d_0}$$

Equivalence of SV^1 with RFE_1^0

• Starting with $X \leftarrow SV^1$:

$$x_i \leftarrow z \prod_{j \in [n] \smallsetminus \{i\}} \frac{y - a_j}{a_i - a_j}$$

• Remove denominator by rescaling variables:

$$\tilde{x}_i \leftarrow z \prod_{j \in [n] \setminus \{i\}} (y - a_j) = \underbrace{\left(z \cdot \prod_{j \in [n]} (y - a_j)\right)}_{z'} \cdot \frac{1}{y - a_i}$$

• Reparametrize seed:

$$\tilde{x}_i \leftarrow \frac{z'}{y - a_i} = f(a_i) \quad \text{where } f(\alpha) = \frac{z'}{y - \alpha}$$

Conclusion

•
$$p(X \leftarrow \mathsf{SV}^1) = 0 \iff p(\tilde{X} \leftarrow \mathsf{RFE}_1^0) = 0$$

• $Van[SV^1] \equiv Van[RFE_1^0]$; i.e., $SV^1 \equiv RFE_1^0$

Equivalence of SV with RFE

General ℓ

- $SV^{\ell} \equiv sum \text{ of } \ell \text{ independent copies of } RFE_1^0$
- Latter $\equiv \mathsf{RFE}_\ell^{\ell-1}$ by partial fraction decomposition

Derandomization

- If \mathcal{C} closed under variable rescaling then SV^{ℓ} works for $\mathcal{C} \Leftrightarrow \mathsf{RFE}_{\ell}^{\ell-1}$ works for \mathcal{C}
- If RFE_{ℓ}^k works for \mathcal{C} , then $\mathsf{SV}^{\mathsf{max}(k+1,\ell)}$ works for \mathcal{C}

Conclusion RFE and SV are equivalent in power for derandomization

Some Explicit Polynomials in the Vanishing Ideal of RFE

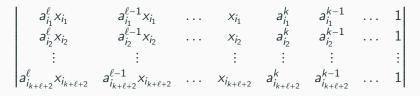
- Let g/h be a seed to RFE_{ℓ}^k with $\deg(g) \le k$, $\deg(h) \le \ell$
- $h(a_i)x_i g(a_i) = 0$ when $x_i \leftarrow g(a_i)/h(a_i)$
- Write equations in terms of coefficients of g and h:

$$g(\alpha) = \sum_{d} g_{d} \alpha^{d} \quad h(\alpha) = \sum_{d} h_{d} \alpha^{d}$$
$$\begin{bmatrix} a_{1}^{\ell} x_{1} & a_{1}^{\ell-1} x_{1} & \dots & x_{1} & a_{1}^{k} & a_{1}^{k-1} & \dots & 1\\ a_{2}^{\ell} x_{2} & a_{2}^{\ell-1} x_{2} & \dots & x_{2} & a_{2}^{k} & a_{2}^{k-1} & \dots & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ a_{n}^{\ell} x_{n} & a_{n}^{\ell-1} x_{n} & \dots & x_{n} & a_{n}^{k} & a_{n}^{k-1} & \dots & 1 \end{bmatrix} \begin{bmatrix} \vec{h} \\ -\vec{g} \end{bmatrix} = 0$$

- For any choice of k + ℓ + 2 rows, the determinant vanishes upon substituting RFE^k_ℓ
 - Without the substitution, the determinant is nonzero
 - The determinant is a nonzero element of $Van[RFE_{\ell}^{k}]$

Elementary Vandermonde Circulation (EVC)

- Select distinct rows $i_1, \ldots, i_{k+\ell+2}$
- $EVC_{\ell}^{k}[i_{1}, \ldots, i_{k+\ell+2}]$ is the determinant



Elementary Vandermonde Circulation (EVC)

Example

$$EVC_{1}^{0}[1,2,3] \doteq \begin{vmatrix} a_{1}x_{1} & x_{1} & 1 \\ a_{2}x_{2} & x_{2} & 1 \\ a_{3}x_{3} & x_{3} & 1 \end{vmatrix}$$
$$= (a_{1} - a_{2})x_{1}x_{2} + (a_{2} - a_{3})x_{2}x_{3} + (a_{3} - a_{1})x_{3}x_{1}$$

Properties

- Homogeneous, degree $\ell + 1$, multi-linear
- All consistent monomials are present

EVCs Generate the Vanishing Ideal of RFE

Theorem

For every $k, \ell \ge 0$, the instantiations of $EVC_{\ell}^{k}[i_{1}, ..., i_{k+\ell+2}]$ generate $Van[RFE_{\ell}^{k}]$.

Proof Sketch

- Let $\left< \mathsf{EVC}_\ell^k \right>$ be ideal generated by instances of EVC_ℓ^k
- We saw that $\langle EVC_{\ell}^k \rangle \subseteq Van[RFE_{\ell}^k]$; now show the reverse
- Multivariate polynomial division by instances of EVC_ℓ^k leaves a structured remainder
 - Set C of k + 1 variables
 - Every monomial in the remainder uses only variables in *C* and at most ℓ other variables.
- Show directly that RFE_ℓ^k works for every nonzero remainder

Implications

Properties of $Van[RFE_{\ell}^{k}]$

- Minimum degree is $\ell + 1$
- Minimum sparsity is $\binom{k+\ell+2}{k+1}$
- Minimum set-multi-linear partition class size is k + 2 for degree-(l + 1)

Lower Bounds

• Computational lower bounds for EVC follow from prior derandomization results based on SV

Membership Test for Multi-Linear Polynomials

Let $p \in \mathbb{F}[x_1, ..., x_n]$ multi-linear **Theorem** $p \in Van[RFE_{\ell}^k]$ iff both

- 1. *p* has no monomials with $\leq \ell$ variables nor $\geq n k$ variables
- 2. For every way to choose
 - k zero substitutions, $K \subseteq \{x_1, \ldots, x_n\}$
 - ℓ partial derivatives, $L \subseteq \{x_1, \ldots, x_n\}$
 - K, L disjoint

the resulting polynomial vanishes at $x_i \leftarrow f_{K,L}(a_i)$ where

$$f_{\mathcal{K},L}(\alpha) \doteq z \cdot \frac{\prod_{i^* \in \mathcal{K}} (\alpha - a_{i^*})}{\prod_{i^* \in L} (\alpha - a_{i^*})}$$

and z is a fresh variable

Sidenote: when $k = \ell = O(1)$, there are $n^{O(1)}$ conditions

Completeness of Derivatives and Zero Substitutions

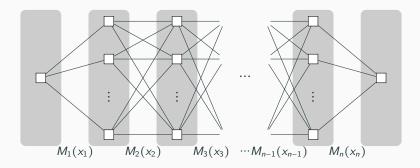
Derivatives and Zero Substitutions Suffice

- Suppose we know that RFE^k_ℓ works for a multi-linear p
 ... perhaps through some very difficult proof
- By Membership Test, there is a structured proof of this:
 - p has a monomial with ℓ variables, or
 - p has a monomial with all but k variables, or
 - there are k zero substitutions and l derivatives so that the result is nonzero at RFE^k_l(f_{K,L})

Example: Read-Once Formulas

- SV¹ works for ROFs [MV18]
- If p = p₁ + p₂, and p₁, p₂ are variable-disjoint, then p inherits above obstructions from p₁, p₂

Read-Once Oblivious Algebraic Branching Programs



ROABP

- Product of matrices with univariate polynomials as entries
- Each variable appears in at most one matrix in the product
- Width = largest dimension of a matrix in the product
- Constant-width ROABPs are at the frontier of PIT research

Proof of Concept: Derandomization for ROABPs

Lemma

Every ROABP computing a nonzero $p \in Van[SV^{\ell}]$ with $deg(p) = \ell + 1$ has width at least $1 + (\ell/3)$.

- Includes $\mathsf{EVC}_\ell^{\ell-1}$ and others
- Extends to p with nonzero degree- $(\ell + 1)$ homogeneous part

Theorem

 SV^{ℓ} works for ROABPs of width less than $1 + (\ell/3)$ that contain a monomial of degree at most $\ell + 1$.

• Generalizing lemma to all degrees would imply full derandomization for constant-width ROABPs

Zoom Lemma for Multi-Linear Polynomials

- Prove $p(\mathsf{RFE}_{\ell}^k) \neq 0$ by "zooming in" on a subset of monoms
- For disjoint $K, L \subseteq [n]$, let $\hat{p} = \left(\frac{\partial p}{\partial L}\right)\Big|_{K \leftarrow 0}$

Lemma

If \hat{p} does not vanish after substituting $x_i \leftarrow f_{K,L}(a_i)$, where

$$f_{K,L}(\alpha) \doteq z \cdot \frac{\prod_{i^* \in K} (\alpha - a_{i^*})}{\prod_{i^* \in L} (\alpha - a_{i^*})}$$

then $\operatorname{RFE}_{\ell}^{k}$ works for *p* where k = |K| and $\ell = |L|$.

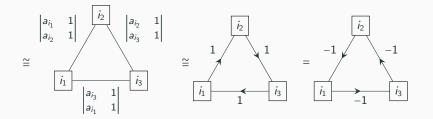
Proof Sketch

- Parametrize RFE in terms of seed's roots and poles
- Expand $p(\mathsf{RFE}_{\ell}^k)$ as Laurent series near roots/poles of $f_{K,L}$
- Degree considerations and the lemma hypothesis imply that one of the coefficients is nonzero

Alternating Algebra Representation

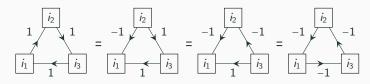
Focus: k = 0, $\ell = 1$, degree-2 polynomials

$$\mathsf{EVC}_{1}^{0}[i_{1}, i_{2}, i_{3}] = \begin{vmatrix} a_{i_{1}} & 1 \\ a_{i_{2}} & 1 \end{vmatrix} x_{i_{1}} x_{i_{2}} + \begin{vmatrix} a_{i_{3}} & 1 \\ a_{i_{1}} & 1 \end{vmatrix} x_{i_{3}} x_{i_{1}} + \begin{vmatrix} a_{i_{2}} & 1 \\ a_{i_{3}} & 1 \end{vmatrix} x_{i_{2}} x_{i_{3}}$$



- Any multi-linear degree-2 polynomial can be represented
- Weight $i \rightarrow j$ = the coefficient of $x_i x_j$ divided by $\begin{vmatrix} a_i & 1 \\ a_j & 1 \end{vmatrix}$

Intuition from Network Flow



Elementary Circulations

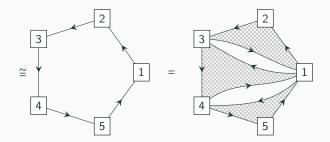
- EVC₁⁰: from three vertices, construct elementary circulation
- Closed under linear combinations, EVC₁⁰'s generate the degree-2 part of Van[RFE₁⁰]
- Elementary circulations similarly generate all circulations
- Degree-2 part of the vanishing ideal ≅ circulations

$Circulation \Leftrightarrow Conservation \ of \ Flow$

- Circulations = flow that satisfies conservation
- Membership test: check for conservation of flow

Example

$$p \doteq (a_1 - a_2)x_1x_2 + (a_2 - a_3)x_2x_3 + (a_3 - a_4)x_3x_4 + (a_4 - a_5)x_4x_5 + (a_5 - a_1)x_5x_1$$



 $\cong \mathsf{EVC}_1^0[1,2,3] + \mathsf{EVC}_1^0[1,3,4] + \mathsf{EVC}_1^0[1,4,5]$

Summary

Conceptual Contributions

- Use of rational functions as generators
- Systematic approach to derandomization via the vanishing ideal

Technical Contributions

- $\mathsf{RFE} \equiv \mathsf{SV}$
- Generating set for vanishing ideal of RFE/SV
- Membership test for vanishing ideal of RFE/SV

Thank you!!

(Back-up Slides)

Completeness of Derivatives and Zero Substitutions

Sum of Variable-Disjoint Polynomials

- Suppose $p = p_1 + p_2$ with p_1 and p_2 variable-disjoint
- If p_j hit by RFE_1^0 , either
 - 1. *p_j* has a constant term
 - 2. p_j has a linear term
 - 3. p_j has the product of all the variables

4. For some
$$i^*$$
, $\frac{\partial}{\partial x_{i^*}} p_j$ is nonzero at $\mathsf{RFE}_1^0(f_{\emptyset,\{i^*\}})$

- Variable-disjointness implies
 - $p_1 + p_2$ has the union of their nonconstant monomials
 - For each i^* , there is $j \in \{1, 2\}$ so that $\frac{\partial}{\partial x_{i*}}p = \frac{\partial}{\partial x_{i*}}p_j$
 - *p* inherits any of 2–4 from *p*₁ or *p*₂
- Let p^* , p_1^* , p_2^* be constant-free p, p_1 , p_2
- RFE_1^0 works for p_1^* or $p_2^* \implies \mathsf{RFE}_1^0$ works for p^*

Application: Systematic Derandomization of ROFs

Read-Once Formula (ROF)

- formula: +, ×, variable reads, constants
- each variable read at most once

Theorem

Let $F \neq 0$ be ROF. Then $F(SV^1) \neq 0$.

Proof

- Induction on $F: F^* \neq 0 \implies F^*(SV^1) \neq 0$
- Base cases: F = read or constant
- $F = F_1 + F_2$: use previous slide
- $F = F_1 \times F_2$:
 - $F^*(SV^1) \neq 0 \Leftrightarrow F(SV^1)$ nonconstant
 - $F(SV^1) = F_1(SV^1) \times F_2(SV^1)$
 - (nonconstant poly) × (nonzero poly) = (nonconstant poly)

[MV18]

Zoom Lemma for General Polynomials

Lemma

If \hat{p} does not vanish after substituting $x_i \leftarrow f_{K,L}(a_i)$, then RFE_{ℓ}^k works for p where k = |K| and $\ell = |L|$.

Generalization

- Replace $\hat{p} \leftarrow \left(\frac{\partial p}{\partial L}\right)\Big|_{K \leftarrow 0}$ by projection
 - Write *p* as sum of monomials in $K \cup L$, coeffs in $\mathbb{F}[\overline{K \cup L}]$
 - Pick monomial m^* supported on $K \cup L$
 - $\hat{p} \leftarrow \text{coefficient of } m^* \text{ in the expansion}$
- Proof requires that for every *m* in *p*, either
 - $\deg_{i^*}(m) = \deg_{i^*}(m^*)$ for all $i^* \in K \cup L$
 - $\deg_{i^*}(m) > \deg_{i^*}(m^*)$ for some $i^* \in K$
 - $\deg_{i^*}(m) < \deg_{i^*}(m^*)$ for some $i^* \in L$
- OK if K, L overlap