Polynomial Identity Testing via Evaluation of Rational Functions

Andrew Morgan

with Dieter van Melkebeek
January, 2022

Polynomial Identity Testing

- Given an arithmetic formula computing $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, decide whether $p=0$
- Simple randomized algo: evaluate p at a random point
- Goal: deterministic algo
- Whitebox: full access to formula
- Blackbox: only evaluations allowed

Polynomial Identity Testing

Generator

- Fresh seed variables u_{1}, \ldots, u_{ℓ}
- Substitute $x_{i} \leftarrow \mathrm{G}_{i}\left(u_{1}, \ldots, u_{\ell}\right)$, G_{i} polynomial
- We want $p \neq 0 \Longrightarrow p(\mathrm{G}) \neq 0$ for all p in a class $\mathcal{C} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

Blackbox Derandomization

- Design a generator with $\ell \ll n$, small $\operatorname{deg} G_{i}$
- Test $p(\mathrm{G})=0$ using random evaluations of seed variables
- If $\operatorname{deg}(p)=n^{O(1)}, \operatorname{deg}\left(\mathrm{G}_{i}\right)=n^{O(1)}$
then $n^{O(\ell)}$ evaluations suffices

Conceptual Contributions

Use of Rational Functions as Generators

- Substitutions are rational functions of the seed
- Rational Function Evaluation generator (RFE)

Systematic Approach via Vanishing Ideal

- $\operatorname{Van}[\mathrm{G}] \doteq$ the set of polynomials such that $p(\mathrm{G})=0$
- For any $\mathcal{C} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], G$ works for \mathcal{C} iff $\operatorname{Van}[G] \cap \mathcal{C} \subseteq\{0\}$
- Derandomization \Leftrightarrow lower bounds for Van[G]
- Focuses research on the generator rather than syntactic classes, where progress is easier

Technical Contribution \#1

Rational Function Evaluation Generator (RFE) \equiv Shpilka-Volkovich Generator (SV)

- Van[SV] = Van[RFE] up to variable rescaling
- If \mathcal{C} closed under variable rescaling then SV works for $\mathcal{C} \Leftrightarrow$ RFE works for \mathcal{C}

Technical Contribution \#2

Generating Set for Vanishing Ideal of RFE/SV

- Small, explicit
- Gröbner basis

Implications

- Tight bounds for Van[RFE], Van[SV] for
- minimum degree
- minimum sparsity
- minimum partition class size of set-multi-linearity
- Lower bounds: SV is known to work for some \mathcal{C}; the explicit generators cannot be in such \mathcal{C}

Technical Contribution \#3

Membership Test for Vanishing Ideal of RFE/SV

- For multi-linear p, can be expressed in terms of partial derivatives and zero substitutions

Implications

- Derivatives and zero substitutions are complete for reasoning with RFE and SV
- Alternate proof for polynomial-time blackbox derandomization for read-once formulas
- Progress on derandomization for read-once oblivious algebraic branching programs (ROABPs)

Outline

- Define SV and RFE
- Equivalence of RFE and SV
- Generators for vanishing ideal of RFE/SV
- Membership test for vanishing ideal

Shpilka-Volkovich Generator

Parameters

- for each x_{i}, a distinct abscissa $a_{i} \in \mathbb{F}$

Generator SV ${ }^{1}$

- Seed: y, z
- Substitute $x_{i} \leftarrow z \cdot L_{i}(y) \doteq z \prod_{j \in[n] \backslash\{i\}} \frac{y-a_{j}}{a_{i}-a_{j}}$

Generator SV^{ℓ}

- $\mathrm{SV}^{\ell} \doteq$ sum of ℓ copies of SV^{1} with fresh seeds

Properties

- Range includes all points with Hamming weight $\leq \ell$
- ℓ-wise independence

Rational Function Evaluation Generator

Parameters

- For each x_{i}, a distinct abscissa $a_{i} \in \mathbb{F}$
- k, the numerator degree
- ℓ, the denominator degree

Generator RFE_{ℓ}^{k}

- Seed: univariate rational function $f=g / h \in \mathbb{F}(\alpha)$ with $\operatorname{deg}(g) \leq k$ and $\operatorname{deg}(h) \leq \ell$
- Substitute $x_{i} \leftarrow f\left(a_{i}\right)$

Example: $k=1, \ell=2$

$$
f(\alpha)=\frac{c_{1} \alpha+c_{0}}{d_{2} \alpha^{2}+d_{1} \alpha+d_{0}} \quad x_{i} \leftarrow \frac{c_{1} a_{i}+c_{0}}{d_{2} a_{i}^{2}+d_{1} a_{i}+d_{0}}
$$

Equivalence of $S V^{1}$ with RFE_{1}^{0}

- Starting with $X \leftarrow \mathrm{SV}^{1}$:

$$
x_{i} \leftarrow z \prod_{j \in[n] \backslash\{i\}} \frac{y-a_{j}}{a_{i}-a_{j}}
$$

- Remove denominator by rescaling variables:

$$
\tilde{x}_{i} \leftarrow z \prod_{j \in[n]\{i\}}\left(y-a_{j}\right)=\underbrace{\left(z \cdot \prod_{j \in[n]}\left(y-a_{j}\right)\right)}_{z^{\prime}} \cdot \frac{1}{y-a_{i}}
$$

- Reparametrize seed:

$$
\tilde{x}_{i} \leftarrow \frac{z^{\prime}}{y-a_{i}}=f\left(a_{i}\right) \quad \text { where } f(\alpha)=\frac{z^{\prime}}{y-\alpha}
$$

Conclusion

- $p\left(X \leftarrow \mathrm{SV}^{1}\right)=0 \Leftrightarrow p\left(\tilde{X} \leftarrow \mathrm{RFE}_{1}^{0}\right)=0$
- $\operatorname{Van}\left[\mathrm{SV}^{1}\right] \equiv \operatorname{Van}\left[\mathrm{RFE}_{1}^{0}\right]$; i.e., $\mathrm{SV}^{1} \equiv \mathrm{RFE}_{1}^{0}$

Equivalence of SV with RFE

General ℓ

- $\mathrm{SV}^{\ell} \equiv$ sum of ℓ independent copies of RFE_{1}^{0}
- Latter $\equiv \mathrm{RFE}_{\ell}^{\ell-1}$ by partial fraction decomposition

Derandomization

- If \mathcal{C} closed under variable rescaling then SV^{ℓ} works for $\mathcal{C} \Leftrightarrow \mathrm{RFE}_{\ell}^{\ell-1}$ works for \mathcal{C}
- If RFE_{ℓ}^{k} works for \mathcal{C}, then $\mathrm{SV}^{\max (k+1, \ell)}$ works for \mathcal{C}

Conclusion
RFE and SV are equivalent in power for derandomization

Some Explicit Polynomials in the Vanishing Ideal of RFE

- Let g / h be a seed to $\operatorname{RFE}_{\ell}^{k}$ with $\operatorname{deg}(g) \leq k, \operatorname{deg}(h) \leq \ell$
- $h\left(a_{i}\right) x_{i}-g\left(a_{i}\right)=0$ when $x_{i} \leftarrow g\left(a_{i}\right) / h\left(a_{i}\right)$
- Write equations in terms of coefficients of g and h :

$$
\begin{gathered}
g(\alpha)=\sum_{d} g_{d} \alpha^{d} \quad h(\alpha)=\sum_{d} h_{d} \alpha^{d} \\
{\left[\begin{array}{cccccccc}
a_{1}^{\ell} x_{1} & a_{1}^{\ell-1} x_{1} & \ldots & x_{1} & a_{1}^{k} & a_{1}^{k-1} & \ldots & 1 \\
a_{2}^{\ell} x_{2} & a_{2}^{\ell-1} x_{2} & \ldots & x_{2} & a_{2}^{k} & a_{2}^{k-1} & \ldots & 1 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{n}^{\ell} x_{n} & a_{n}^{\ell-1} x_{n} & \ldots & x_{n} & a_{n}^{k} & a_{n}^{k-1} & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
\vec{h} \\
-\vec{g}
\end{array}\right]=0}
\end{gathered}
$$

- For any choice of $k+\ell+2$ rows, the determinant vanishes upon substituting RFE ${ }_{\ell}^{k}$
- Without the substitution, the determinant is nonzero
- The determinant is a nonzero element of $\operatorname{Van}\left[\mathrm{RFE}_{\ell}^{k}\right]$

Elementary Vandermonde Circulation (EVC)

- Select distinct rows $i_{1}, \ldots, i_{k+\ell+2}$
- $\mathrm{EVC}_{\ell}^{k}\left[i_{1}, \ldots, i_{k+\ell+2}\right]$ is the determinant

$$
\left|\begin{array}{cccccccc}
a_{i_{1}}^{\ell} x_{i_{1}} & a_{i_{1}}^{\ell-1} x_{i_{1}} & \ldots & x_{i_{1}} & a_{i_{1}}^{k} & a_{i_{1}}^{k-1} & \ldots & 1 \\
a_{i_{2}}^{\ell} x_{i_{2}} & a_{i_{2}}^{\ell-1} x_{i_{2}} & \ldots & x_{i_{2}} & a_{i_{2}}^{k} & a_{i_{2}}^{k-1} & \ldots & 1 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{i_{k+\ell+2}}^{\ell} x_{i_{k+\ell+2}} & a_{i_{k+\ell+2}}^{\ell-1} x_{i_{k+\ell+2}} & \ldots & x_{i_{k+\ell+2}} & a_{i_{k+\ell+2}}^{k} & a_{i_{k+\ell+2}}^{k-1} & \ldots & 1
\end{array}\right|
$$

Elementary Vandermonde Circulation (EVC)

Example

$$
\begin{aligned}
\operatorname{EVC}_{1}^{0}[1,2,3] & \doteq\left|\begin{array}{lll}
a_{1} x_{1} & x_{1} & 1 \\
a_{2} x_{2} & x_{2} & 1 \\
a_{3} x_{3} & x_{3} & 1
\end{array}\right| \\
& =\left(a_{1}-a_{2}\right) x_{1} x_{2}+\left(a_{2}-a_{3}\right) x_{2} x_{3}+\left(a_{3}-a_{1}\right) x_{3} x_{1}
\end{aligned}
$$

Properties

- Homogeneous, degree $\ell+1$, multi-linear
- All consistent monomials are present

EVCs Generate the Vanishing Ideal of RFE

Theorem

For every $k, \ell \geq 0$, the instantiations of $\mathrm{EVC}_{\ell}^{k}\left[i_{1}, \ldots, i_{k+\ell+2}\right]$ generate $\operatorname{Van}\left[\mathrm{RFE}_{\ell}^{k}\right]$.

Proof Sketch

- Let $\left\langle\mathrm{EVC}_{\ell}^{k}\right\rangle$ be ideal generated by instances of EVC_{ℓ}^{k}
- We saw that $\left\langle\mathrm{EVC}_{\ell}^{k}\right\rangle \subseteq \operatorname{Van}\left[\operatorname{RFE}_{\ell}^{k}\right]$; now show the reverse
- Multivariate polynomial division by instances of $E V C_{\ell}^{k}$ leaves a structured remainder
- Set C of $k+1$ variables
- Every monomial in the remainder uses only variables in C and at most ℓ other variables.
- Show directly that RFE_{ℓ}^{k} works for every nonzero remainder

Implications

Properties of $\operatorname{Van}\left[\mathrm{RFE}_{\ell}^{k}\right]$

- Minimum degree is $\ell+1$
- Minimum sparsity is $\binom{k+\ell+2}{k+1}$
- Minimum set-multi-linear partition class size is $k+2$ for degree- $(\ell+1)$

Lower Bounds

- Computational lower bounds for EVC follow from prior derandomization results based on SV

Membership Test for Multi-Linear Polynomials

Let $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ multi-linear

Theorem

$p \in \operatorname{Van}\left[\mathrm{RFE}_{\ell}^{k}\right]$ iff both

1. p has no monomials with $\leq \ell$ variables nor $\geq n-k$ variables
2. For every way to choose

- k zero substitutions, $K \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$
- ℓ partial derivatives, $L \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$
- K, L disjoint
the resulting polynomial vanishes at $x_{i} \leftarrow f_{K, L}\left(a_{i}\right)$ where

$$
f_{K, L}(\alpha) \doteq z \cdot \frac{\prod_{i^{*} \in K}\left(\alpha-a_{i^{*}}\right)}{\prod_{i^{*} \in L}\left(\alpha-a_{i^{*}}\right)}
$$

and z is a fresh variable
Sidenote: when $k=\ell=O(1)$, there are $n^{O(1)}$ conditions

Completeness of Derivatives and Zero Substitutions

Derivatives and Zero Substitutions Suffice

- Suppose we know that RFE_{ℓ}^{k} works for a multi-linear p ... perhaps through some very difficult proof
- By Membership Test, there is a structured proof of this:
- p has a monomial with ℓ variables, or
- p has a monomial with all but k variables, or
- there are k zero substitutions and ℓ derivatives so that the result is nonzero at $\operatorname{RFE}_{\ell}^{k}\left(f_{K, L}\right)$

Example: Read-Once Formulas

- SV ${ }^{1}$ works for ROFs [MV18]
- If $p=p_{1}+p_{2}$, and p_{1}, p_{2} are variable-disjoint, then p inherits above obstructions from p_{1}, p_{2}

Read-Once Oblivious Algebraic Branching Programs

ROABP

- Product of matrices with univariate polynomials as entries
- Each variable appears in at most one matrix in the product
- Width = largest dimension of a matrix in the product
- Constant-width ROABPs are at the frontier of PIT research

Proof of Concept: Derandomization for ROABPs

Lemma

Every ROABP computing a nonzero $p \in \operatorname{Van}\left[\mathrm{SV}^{\ell}\right]$ with $\operatorname{deg}(p)=\ell+1$ has width at least $1+(\ell / 3)$.

- Includes $\mathrm{EVC}_{\ell}^{\ell-1}$ and others
- Extends to p with nonzero degree- $(\ell+1)$ homogeneous part

Theorem

SV^{ℓ} works for ROABPs of width less than $1+(\ell / 3)$ that contain a monomial of degree at most $\ell+1$.

- Generalizing lemma to all degrees would imply full derandomization for constant-width ROABPs

Zoom Lemma for Multi-Linear Polynomials

- Prove $p\left(\right.$ RFE $\left._{\ell}^{k}\right) \neq 0$ by "zooming in" on a subset of monoms
- For disjoint $K, L \subseteq[n]$, let $\hat{p}=\left.\left(\frac{\partial p}{\partial L}\right)\right|_{K \leftarrow 0}$

Lemma

If \hat{p} does not vanish after substituting $x_{i} \leftarrow f_{K, L}\left(a_{i}\right)$, where

$$
f_{K, L}(\alpha) \doteq z \cdot \frac{\prod_{i^{*} \in K}\left(\alpha-a_{i^{*}}\right)}{\prod_{i^{*} \in L}\left(\alpha-a_{i^{*}}\right)}
$$

then RFE_{ℓ}^{k} works for p where $k=|K|$ and $\ell=|L|$.

Proof Sketch

- Parametrize RFE in terms of seed's roots and poles
- Expand $p\left(\mathrm{RFE}_{\ell}^{k}\right)$ as Laurent series near roots/poles of $f_{K, L}$
- Degree considerations and the lemma hypothesis imply that one of the coefficients is nonzero

Alternating Algebra Representation

Focus: $k=0, \ell=1$, degree -2 polynomials

$$
\mathrm{EVC}_{1}^{0}\left[i_{1}, i_{2}, i_{3}\right]=\left|\begin{array}{ll}
a_{i_{1}} & 1 \\
a_{i_{2}} & 1
\end{array}\right| x_{i_{1}} x_{i_{2}}+\left|\begin{array}{ll}
a_{i_{3}} & 1 \\
a_{i_{1}} & 1
\end{array}\right| x_{i_{3}} x_{i_{1}}+\left|\begin{array}{ll}
a_{i_{2}} & 1 \\
a_{i_{3}} & 1
\end{array}\right| x_{i_{2}} x_{i_{3}}
$$

- Any multi-linear degree-2 polynomial can be represented
- Weight $i \rightarrow j=$ the coefficient of $x_{i} x_{j}$ divided by $\left|\begin{array}{ll}a_{i} & 1 \\ a_{j} & 1\end{array}\right|$

Intuition from Network Flow

Elementary Circulations

- $E V C_{1}^{0}$: from three vertices, construct elementary circulation
- Closed under linear combinations, $\mathrm{EVC}_{1}^{0 \text { 's }}$ generate the degree-2 part of Van[RFE $\left.E_{1}^{0}\right]$
- Elementary circulations similarly generate all circulations
- Degree-2 part of the vanishing ideal \cong circulations

Circulation \Leftrightarrow Conservation of Flow

- Circulations = flow that satisfies conservation
- Membership test: check for conservation of flow

Example

$$
\begin{aligned}
p \equiv & \left(a_{1}-a_{2}\right) x_{1} x_{2}+\left(a_{2}-a_{3}\right) x_{2} x_{3}+\left(a_{3}-a_{4}\right) x_{3} x_{4} \\
& +\left(a_{4}-a_{5}\right) x_{4} x_{5}+\left(a_{5}-a_{1}\right) x_{5} x_{1}
\end{aligned}
$$

$\cong E V C_{1}^{0}[1,2,3]+\operatorname{EVC}_{1}^{0}[1,3,4]+\operatorname{EVC}_{1}^{0}[1,4,5]$

Summary

Conceptual Contributions

- Use of rational functions as generators
- Systematic approach to derandomization via the vanishing ideal

Technical Contributions

- RFE \equiv SV
- Generating set for vanishing ideal of RFE/SV
- Membership test for vanishing ideal of RFE/SV

Thank you!!

(Back-up Slides)

Completeness of Derivatives and Zero Substitutions

Sum of Variable-Disjoint Polynomials

- Suppose $p=p_{1}+p_{2}$ with p_{1} and p_{2} variable-disjoint
- If p_{j} hit by RFE_{1}^{0}, either

1. p_{j} has a constant term
2. p_{j} has a linear term
3. p_{j} has the product of all the variables
4. For some $i^{*}, \frac{\partial}{\partial x_{i^{*}}} p_{j}$ is nonzero at $\operatorname{RFE}_{1}^{0}\left(f_{\varnothing,\left\{i^{*}\right\}}\right)$

- Variable-disjointness implies
- $p_{1}+p_{2}$ has the union of their nonconstant monomials
- For each i^{*}, there is $j \in\{1,2\}$ so that $\frac{\partial}{\partial x_{i^{*}}} p=\frac{\partial}{\partial x_{i^{*}}} p_{j}$
- p inherits any of 2-4 from p_{1} or p_{2}
- Let $p^{*}, p_{1}^{*}, p_{2}^{*}$ be constant-free p, p_{1}, p_{2}
- RFE 1_{1}^{0} works for p_{1}^{*} or $p_{2}^{*} \Longrightarrow$ RFE $_{1}^{0}$ works for p^{*}

Application: Systematic Derandomization of ROFs

Read-Once Formula (ROF)

- formula:,$+ \times$, variable reads, constants
- each variable read at most once

Theorem
Let $F \neq 0$ be $R O F$. Then $F\left(\mathrm{SV}^{1}\right) \neq 0$.
Proof

- Induction on $F: \quad F^{*} \neq 0 \Longrightarrow F^{*}\left(\mathrm{SV}^{1}\right) \neq 0$
- Base cases: $F=$ read or constant
- $F=F_{1}+F_{2}$: use previous slide
- $F=F_{1} \times F_{2}$:
- $F^{*}\left(\mathrm{SV}^{1}\right) \neq 0 \Leftrightarrow F\left(\mathrm{SV}^{1}\right)$ nonconstant
- $F\left(\mathrm{SV}^{1}\right)=F_{1}\left(\mathrm{SV}^{1}\right) \times F_{2}\left(\mathrm{SV}^{1}\right)$
- $($ nonconstant poly $) \times($ nonzero poly) $=($ nonconstant poly $)$

Zoom Lemma for General Polynomials

Lemma

If \hat{p} does not vanish after substituting $x_{i} \leftarrow f_{K, L}\left(a_{i}\right)$, then RFE ${ }_{\ell}^{k}$ works for p where $k=|K|$ and $\ell=|L|$.

Generalization

- Replace $\left.\hat{p} \leftarrow\left(\frac{\partial p}{\partial L}\right)\right|_{K \leftarrow 0}$ by projection
- Write p as sum of monomials in $K \cup L$, coeffs in $\mathbb{F}[\overline{K \cup L}]$
- Pick monomial m^{*} supported on $K \cup L$
- $\hat{p} \leftarrow$ coefficient of m^{*} in the expansion
- Proof requires that for every m in p, either
- $\operatorname{deg}_{i^{*}}(m)=\operatorname{deg}_{i^{*}}\left(m^{*}\right)$ for all $i^{*} \in K \cup L$
- $\operatorname{deg}_{i^{*}}(m)>\operatorname{deg}_{i^{*}}\left(m^{*}\right)$ for some $i^{*} \in K$
- $\operatorname{deg}_{i^{*}}(m)<\operatorname{deg}_{i^{*}}\left(m^{*}\right)$ for some $i^{*} \in L$
- OK if K, L overlap

