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Polynomial Identity Testing

• Given an arithmetic formula computing p ∈ F[x1, . . . , xn],
decide whether p = 0

• Simple randomized algo: evaluate p at a random point
• Goal: deterministic algo

• Whitebox: full access to formula
• Blackbox: only evaluations allowed
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Polynomial Identity Testing

Generator

• Fresh seed variables u1, . . . ,uℓ

• Substitute xi ← Gi(u1, . . . ,uℓ), Gi polynomial

• We want p ≠ 0 Ô⇒ p(G) ≠ 0 for all p in a class
C ⊆ F[x1, . . . , xn]

Blackbox Derandomization

• Design a generator with ℓ≪ n, small degGi

• Test p(G) = 0 using random evaluations of seed variables

• If deg(p) = nO(1),deg(Gi) = nO(1)
then nO(ℓ) evaluations suffices
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Conceptual Contributions

Use of Rational Functions as Generators

• Substitutions are rational functions of the seed

• Rational Function Evaluation generator (RFE)

Systematic Approach via Vanishing Ideal

• Van[G] ≐ the set of polynomials such that p(G) = 0
• For any C ⊆ F[x1, . . . , xn], G works for C iff Van[G] ∩ C ⊆ {0}
• Derandomization ⇔ lower bounds for Van[G]
• Focuses research on the generator rather than syntactic

classes, where progress is easier
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Technical Contribution #1

Rational Function Evaluation Generator (RFE) ≡
Shpilka–Volkovich Generator (SV)

• Van[SV] = Van[RFE] up to variable rescaling

• If C closed under variable rescaling
then SV works for C ⇔ RFE works for C
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Technical Contribution #2

Generating Set for Vanishing Ideal of RFE/SV

• Small, explicit

• Gröbner basis

Implications

• Tight bounds for Van[RFE],Van[SV] for
• minimum degree
• minimum sparsity
• minimum partition class size of set-multi-linearity

• Lower bounds: SV is known to work for some C; the explicit
generators cannot be in such C
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Technical Contribution #3

Membership Test for Vanishing Ideal of RFE/SV

• For multi-linear p, can be expressed in terms of partial
derivatives and zero substitutions

Implications

• Derivatives and zero substitutions are complete for
reasoning with RFE and SV

• Alternate proof for polynomial-time blackbox
derandomization for read-once formulas

• Progress on derandomization for read-once oblivious
algebraic branching programs (ROABPs)
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Outline

• Define SV and RFE

• Equivalence of RFE and SV

• Generators for vanishing ideal of RFE/SV

• Membership test for vanishing ideal
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Shpilka–Volkovich Generator

Parameters

• for each xi , a distinct abscissa ai ∈ F

Generator SV1

• Seed: y , z

• Substitute xi ← z ⋅ Li(y) ≐ z ∏
j∈[n]∖{i}

y − aj
ai − aj

Generator SVℓ

• SVℓ ≐ sum of ℓ copies of SV1 with fresh seeds

Properties

• Range includes all points with Hamming weight ≤ ℓ
• ℓ-wise independence
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Rational Function Evaluation Generator

Parameters

• For each xi , a distinct abscissa ai ∈ F
• k , the numerator degree

• ℓ, the denominator degree

Generator RFEk
ℓ

• Seed: univariate rational function f = g/h ∈ F(α)
with deg(g) ≤ k and deg(h) ≤ ℓ

• Substitute xi ← f (ai)

Example: k = 1, ℓ = 2

f (α) = c1α + c0
d2α2 + d1α + d0

xi ←
c1ai + c0

d2a2i + d1ai + d0
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Equivalence of SV1 with RFE0
1

• Starting with X ← SV1:

xi ← z ∏
j∈[n]∖{i}

y − aj
ai − aj

• Remove denominator by rescaling variables:

x̃i ← z ∏
j∈[n]∖{i}

(y − aj) =
⎛
⎝
z ⋅ ∏

j∈[n]

(y − aj)
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
z ′

⋅ 1

y − ai

• Reparametrize seed:

x̃i ←
z ′

y − ai
= f (ai) where f (α) = z ′

y − α
Conclusion

• p(X ← SV1) = 0 ⇔ p(X̃ ← RFE0
1) = 0

• Van[SV1] ≡ Van[RFE0
1]; i.e., SV1 ≡ RFE0
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Equivalence of SV with RFE

General ℓ

• SVℓ ≡ sum of ℓ independent copies of RFE0
1

• Latter ≡ RFEℓ−1
ℓ by partial fraction decomposition

Derandomization

• If C closed under variable rescaling
then SVℓ works for C ⇔ RFEℓ−1

ℓ works for C
• If RFEk

ℓ works for C, then SVmax(k+1,ℓ) works for C

Conclusion
RFE and SV are equivalent in power for derandomization
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Some Explicit Polynomials in the Vanishing Ideal of RFE

• Let g/h be a seed to RFEk
ℓ with deg(g) ≤ k , deg(h) ≤ ℓ

• h(ai)xi − g(ai) = 0 when xi ← g(ai)/h(ai)
• Write equations in terms of coefficients of g and h:

g(α) = ∑
d

gdα
d h(α) = ∑

d

hdα
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aℓ1x1 aℓ−11 x1 . . . x1 ak1 ak−11 . . . 1

aℓ2x2 aℓ−12 x2 . . . x2 ak2 ak−12 . . . 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
aℓnxn aℓ−1n xn . . . xn akn ak−1n . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
h⃗

−g⃗
⎤⎥⎥⎥⎦
= 0

• For any choice of k + ℓ + 2 rows, the determinant vanishes
upon substituting RFEk

ℓ

• Without the substitution, the determinant is nonzero
• The determinant is a nonzero element of Van[RFEk

ℓ ]
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Elementary Vandermonde Circulation (EVC)

• Select distinct rows i1, . . . , ik+ℓ+2
• EVCk

ℓ [i1, . . . , ik+ℓ+2] is the determinant

RRRRRRRRRRRRRRRRRRRRRR

aℓi1xi1 aℓ−1i1
xi1 . . . xi1 aki1 ak−1i1

. . . 1

aℓi2xi2 aℓ−1i2
xi2 . . . xi2 aki2 ak−1i2

. . . 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
aℓik+ℓ+2xik+ℓ+2 aℓ−1ik+ℓ+2

xik+ℓ+2 . . . xik+ℓ+2 akik+ℓ+2 ak−1ik+ℓ+2
. . . 1

RRRRRRRRRRRRRRRRRRRRRR
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Elementary Vandermonde Circulation (EVC)

Example

EVC0
1[1,2,3] ≐

RRRRRRRRRRRRRRRR

a1x1 x1 1

a2x2 x2 1

a3x3 x3 1

RRRRRRRRRRRRRRRR
= (a1 − a2)x1x2 + (a2 − a3)x2x3 + (a3 − a1)x3x1

Properties

• Homogeneous, degree ℓ + 1, multi-linear

• All consistent monomials are present
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EVCs Generate the Vanishing Ideal of RFE

Theorem
For every k , ℓ ≥ 0, the instantiations of EVCk

ℓ [i1, . . . , ik+ℓ+2]
generate Van[RFEk

ℓ ].

Proof Sketch

• Let ⟨EVCk
ℓ ⟩ be ideal generated by instances of EVCk

ℓ

• We saw that ⟨EVCk
ℓ ⟩ ⊆ Van[RFEk

ℓ ]; now show the reverse
• Multivariate polynomial division by instances of EVCk

ℓ

leaves a structured remainder
• Set C of k + 1 variables
• Every monomial in the remainder uses only variables in C

and at most ℓ other variables.

• Show directly that RFEk
ℓ works for every nonzero remainder
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Implications

Properties of Van[RFEk
ℓ ]

• Minimum degree is ℓ + 1
• Minimum sparsity is (k+ℓ+2k+1

)
• Minimum set-multi-linear partition class size is k + 2 for

degree-(ℓ + 1)

Lower Bounds

• Computational lower bounds for EVC follow from prior
derandomization results based on SV
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Membership Test for Multi-Linear Polynomials

Let p ∈ F[x1, . . . , xn]multi-linear
Theorem
p ∈ Van[RFEk

ℓ ] iff both

1. p has no monomials with ≤ ℓ variables nor ≥ n − k variables
2. For every way to choose

• k zero substitutions, K ⊆ {x1, . . . , xn}
• ℓ partial derivatives, L ⊆ {x1, . . . , xn}
• K , L disjoint

the resulting polynomial vanishes at xi ← fK ,L(ai)where

fK ,L(α) ≐ z ⋅
∏i∗∈K(α − ai∗)
∏i∗∈L(α − ai∗)

and z is a fresh variable

Sidenote: when k = ℓ = O(1), there are nO(1) conditions 18



Completeness of Derivatives and Zero Substitutions

Derivatives and Zero Substitutions Suffice

• Suppose we know that RFEk
ℓ works for a multi-linear p

. . .perhaps through some very difficult proof
• By Membership Test, there is a structured proof of this:

• p has a monomial with ℓ variables, or
• p has a monomial with all but k variables, or
• there are k zero substitutions and ℓ derivatives so that the

result is nonzero at RFEk
ℓ (fK ,L)

Example: Read-Once Formulas

• SV1 works for ROFs [MV18]

• If p = p1 + p2, and p1, p2 are variable-disjoint,
then p inherits above obstructions from p1, p2
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Read-Once Oblivious Algebraic Branching Programs

⋮ ⋮ ⋮
⋯

M1(x1) M2(x2) M3(x3) Mn−1(xn−1) Mn(xn)⋯

ROABP

• Product of matrices with univariate polynomials as entries

• Each variable appears in at most one matrix in the product

• Width = largest dimension of a matrix in the product

• Constant-width ROABPs are at the frontier of PIT research
20



Proof of Concept: Derandomization for ROABPs

Lemma
Every ROABP computing a nonzero p ∈ Van[SVℓ]with
deg(p) = ℓ + 1 has width at least 1 + (ℓ/3).

• Includes EVCℓ−1
ℓ and others

• Extends to p with nonzero degree-(ℓ + 1) homogeneous
part

Theorem
SVℓ works for ROABPs of width less than 1 + (ℓ/3) that contain
a monomial of degree at most ℓ + 1.

• Generalizing lemma to all degrees would imply full
derandomization for constant-width ROABPs
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Zoom Lemma for Multi-Linear Polynomials

• Prove p(RFEk
ℓ ) ≠ 0 by “zooming in” on a subset of monoms

• For disjoint K ,L ⊆ [n], let p̂ = (∂p∂L)∣K←0

Lemma
If p̂ does not vanish after substituting xi ← fK ,L(ai), where

fK ,L(α) ≐ z ⋅
∏i∗∈K(α − ai∗)
∏i∗∈L(α − ai∗)

then RFEk
ℓ works for p where k = ∣K ∣ and ℓ = ∣L∣.

Proof Sketch

• Parametrize RFE in terms of seed’s roots and poles

• Expand p(RFEk
ℓ ) as Laurent series near roots/poles of fK ,L

• Degree considerations and the lemma hypothesis imply
that one of the coefficients is nonzero
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Alternating Algebra Representation

Focus: k = 0, ℓ = 1, degree-2 polynomials

EVC0
1[i1, i2, i3] = ∣

ai1 1

ai2 1
∣ xi1xi2 + ∣

ai3 1

ai1 1
∣ xi3xi1 + ∣

ai2 1

ai3 1
∣ xi2xi3

≅
i1

i2

i3

∣
ai1 1

ai2 1
∣ ∣

ai2 1

ai3 1
∣

∣
ai3 1

ai1 1
∣

≅

i1

i2

i3

1 1

1

=

i1

i2

i3

−1 −1

−1

• Any multi-linear degree-2 polynomial can be represented

• Weight i → j = the coefficient of xixj divided by
RRRRRRRRRRR

ai 1

aj 1

RRRRRRRRRRR 23



Intuition from Network Flow

i1

i2

i3

1 1

1

=
i1

i2

i3

−1 1

1

=
i1

i2

i3

−1 −1

1

=
i1

i2

i3

−1 −1

−1

Elementary Circulations

• EVC0
1: from three vertices, construct elementary circulation

• Closed under linear combinations, EVC0
1’s generate the

degree-2 part of Van[RFE0
1]

• Elementary circulations similarly generate all circulations

• Degree-2 part of the vanishing ideal ≅ circulations

Circulation⇔Conservation of Flow

• Circulations = flow that satisfies conservation

• Membership test: check for conservation of flow 24



Example

p ≐ (a1 − a2)x1x2 + (a2 − a3)x2x3 + (a3 − a4)x3x4
+ (a4 − a5)x4x5 + (a5 − a1)x5x1

≅ 1

2

3

4

5

= 1

2

3

4

5

≅ EVC0
1[1,2,3] + EVC0

1[1,3,4] + EVC0
1[1,4,5]
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Summary

Conceptual Contributions

• Use of rational functions as generators

• Systematic approach to derandomization via the vanishing
ideal

Technical Contributions
• RFE ≡ SV
• Generating set for vanishing ideal of RFE/SV

• Membership test for vanishing ideal of RFE/SV
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Completeness of Derivatives and Zero Substitutions

Sum of Variable-Disjoint Polynomials

• Suppose p = p1 + p2 with p1 and p2 variable-disjoint
• If pj hit by RFE0

1, either
1. pj has a constant term
2. pj has a linear term
3. pj has the product of all the variables

4. For some i∗, ∂

∂xi∗
pj is nonzero at RFE0

1(f∅,{i∗})

• Variable-disjointness implies
• p1 + p2 has the union of their nonconstant monomials
• For each i∗, there is j ∈ {1,2} so that ∂

∂xi∗
p = ∂

∂xi∗
pj

• p inherits any of 2–4 from p1 or p2

• Let p∗, p∗1 , p∗2 be constant-free p, p1, p2
• RFE0

1 works for p∗1 or p∗2 Ô⇒ RFE0
1 works for p∗
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Application: Systematic Derandomization of ROFs [MV18]

Read-Once Formula (ROF)

• formula: +, ×, variable reads, constants

• each variable read at most once

Theorem
Let F ≠ 0 be ROF. Then F (SV1) ≠ 0.

Proof

• Induction on F : F ∗ ≠ 0 Ô⇒ F ∗(SV1) ≠ 0
• Base cases: F = read or constant

• F = F1 + F2: use previous slide
• F = F1 × F2:

• F ∗(SV1) ≠ 0⇔ F (SV1) nonconstant
• F (SV1) = F1(SV1) × F2(SV1)
• (nonconstant poly) × (nonzero poly) = (nonconstant poly) 28



Zoom Lemma for General Polynomials

Lemma
If p̂ does not vanish after substituting xi ← fK ,L(ai),
then RFEk

ℓ works for p where k = ∣K ∣ and ℓ = ∣L∣.

Generalization

• Replace p̂ ← (∂p∂L)∣K←0
by projection

• Write p as sum of monomials in K ∪ L, coeffs in F[K ∪ L]
• Pick monomial m∗ supported on K ∪ L
• p̂ ← coefficient of m∗ in the expansion

• Proof requires that for every m in p, either
• degi∗(m) = degi∗(m∗) for all i∗ ∈ K ∪ L
• degi∗(m) > degi∗(m∗) for some i∗ ∈ K
• degi∗(m) < degi∗(m∗) for some i∗ ∈ L

• OK if K , L overlap
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