CS412, Spring 97 Prof. Ron

Exam #1

My Name is													
My i.d. is													
My seat during the exam time is: Row Seat													
Gradin	g table (not	to filled by t	the student)										
Question 1.	A	В	C	D	Tot:								
Question 2.	A	В	С	D	Tot:								
Question 3.	A	В	C	D	Tot:								
Question 4.	A	В	С	D	Tot:								

- [1] (25=5+7+8+5)
- (a) Apply one interation of the fixed point algorithm to the equation $x = \sin(x) + .5$, starting with $x_0 = .6$
- (b) Without interating further, do you expect the fixed point iterations to converge? Explain.

(c) Suggest an alternative method for solving the same equation, which in your opinion may be better. Reason your choice, and implement the first iteration of your method (with $x_0 = .6$).

(d) Write the output of the matlab code
C=[7,0,-1;0,1,0]';
C(2,:)

[2]	(25 =	=10+5	5+5+5	You	are	given	four	data	val	ues (0, -1),	(1,0),	(2, 1)	and	(4,27),	and	are
asked	to in	nterpo	olate th	e data	a by	a cubi	c po	lynon	nial	(i.e.,	a poly	nomial	in Π_3).			
() (٠ ،		1 1	1 1.00		. 1		. 11	c	.1							

(a) Construct a divided difference table suitable for that purpose.

(b) Using that table, find the polynomial interpolant. How would you check that you have the correct result?

(c) Your friend Jim tells you that there exists also a *quadratic* polynomial that interpolates these data. Is he right or wrong? Explain.

(d) Your friend Tina tells you that there exists a polynomial of *exact* degree 6 that interpolates these data. Is she right or wrong? Explain.

- [**3**] (30=8+10+7+5)
- (a) The error bound in cubic Hermite interpolation at k points is five times smaller than the error bound for spline interpolation at those points. Why would one then use spline interpolation?

(b) You are asked to approximate the function $f(x) = e^{-x} + x^3$ on the interval [0,1] by cubic Hermite interpolation on equidistant partition. How many subintervals should you use in order to have an error $\leq 10^{-6}$?

((c)	In	(b)	where	do	VO11	expect	the	error	to	he	larger.	near	r = 1	or	near	x = 0?	Ex	nlain?
١	\cup	TII	(D)	WHELE	uО	you '	CAPCU	ULIC	CIIOI	UU	ne	iaigei.	near	x - 1	. О1	near	x - 0:	LIA	pram:

(d) Explain why polynomial interpolation is considered 'global' while cubic Hermite interpolation is considered 'local'.

- [**4**] (30=10+5+7+8)
- (a) You have a calculator that performs only the four basic arithmeatic operations. You wish to find $x = 28^{1/3}$, and know that $x \approx 3$. Suggest an efficient method for doing that, and iterate once with your method.

(b) Here is a 5-line code that implements your method from (a). Complete the second and fourth line.

end

- (c) Write the output of the following matlab code $x=[2,0; 2,1]; y=[2,1]; x \setminus y$
- (d) Write a matlab code (preferably without a loop) that evaluates the polynomial $(x-2)(x-3)(x-4)\dots(x-51)$ at x=2.4.