
CS412, Spring 04

Prof. Amos Ron

RK4

The Runge-Kutta method of order 4 was by far the most popular IVP solver. It nowadays
competes with the ABM predictor-corrector. Predictor-corrector methods have the extra benefit
that they provide two different approximate values to y(tj) (the predicted one and the corrected
one). One can compare the two values and determine based on those whether the error committed
in the step seems to be too large. In this way, people may adjust their step-size h locally. This
methodology leads to the so-called adaptive algorithms, where the step size is modified on the run.
It is not hard to understand the qualitative underpinning of this idea: denoting the approximate
values provided by the predictor and the corrector by yjp and yjc (respectively), a large difference
yjp −yjc is an indication that the error is quite large (for example if the corrector reduced the error
of the predictor by a factor of ≈ 5, then the above difference is about 4 or 6 times larger than the
error of yjc (why?)). In fact, arguments like the above are used in order to derive from the pair
(yjc, yjp) a third value which is even better (a la extrapolation idea that we learned elsewhere).

Going back to RK4, it attempts to do Simpson on the interval [tj , tj+1]. Since the function we
integrate is y′, the method, ideally, would look like

yj+1 := y(tj) +
h

6
(y′(tj) + 4y′(tj +

h

2
) + y′(tj+1)).

Since we know none of the values on the right hand side, we must replace them by some approximate
values. y(tj) is trivially replaced by yj . y′(tj) is trivially replaced by A1 := f(tj , yj) (recall that
y′(tj) = f(tj , y(tj))). It is not hard to find reasonable approximations to the remaining two values.
However, if you would like the local error to behave like the local error of Simpson (viz., O(h5)), you
must take great precaution here. You cannot find, e.g., y ′(tj+1) to the requisite accuracy (at least
not easily). The RK4 method is designed such that the (relatively large) errors that are produced
in the approximations to y′(tj + h/2) and y′(tj+1) cancel to a large degree each other. (This is yet
another form of extrapolation).

The details are as follows. The definition is

yj+1 := yj +
h

6
(A1 + 2A2 + 2A3 + A4).

A1 is as above. A2 and A3 are two different approximations to y′(tj + h/2) = f(tj + h
2
, y(tj + h

2
)),

and A4 is an approximation to y′(tj+1) = f(tj+1, y(tj+1)).
Step I: finding A2 and A3. We just need to approximate y(tj + h

2
)). A tangent line approxi-

mation at tj gives the value

y(tj +
h

2
) ≈ y(tj) + .5hy′(tj) ≈ yj + .5hA1. (1)

Plugging that value into the DE, we get

A2 := f(tj +
h

2
, yj + .5hA1).

Once we found A2, we may get a fresh approximation to y(tj + h
2
):

y(tj +
h

2
) ≈ y(tj) + .5hy′(tj +

h

2
) ≈ yj + .5hA2. (2)

1



This gives us another approximation of y′(tj + h
2
), namely

A3 := f(tj +
h

2
, yj + .5hA2).

Note that A2 and A3 are both biased. Both attempt to march from tj to tj + h
2

based on derivative

info. One uses the derivative at tj the other uses the derivative at tj + h
2
. In fact, using the

derivative half the way (i.e., at tj + h
4
) would have been better. This heuristic explains why we

average A2 and A3 (rather than taking A3).
Step II: Finally, a good approximation for y(tj+1) is given by

y(tj+1) ≈ y(tj) + hy′(tj +
h

2
) ≈ yj + hA3.

Thus,
A4 := f(tj+1, yj + hA3).

I wrote all the above without looking at any text book (but, needless to say, have just checked
to see that the details are correct). The moral is that scientific algorithms, even hairy ones, are
sometimes based on simple heuristics, and can be recovered to their fullest details if you understand
the heuristics.

The good news is that despite of the content of the previous paragraph, you will not be expected
to remember the details of RK4 for the final exam (the same applies to AB and AM. I do expect
you to remember the details of every other IVP method).

2


