Amos Ron
Lectures Notes, CS515
15January02

(©)2002

Reproduction of these notes
for any commercial purpose
is prohibited

CS515 Lecture notes

AMOS RON

Part 1. Introduction: Representation

(1:) three examples: lena (four parts) music (48 decompositions) image compres-
sion (eeg)

functions: what kind of functions (highly oscillatory, or images). what kind of ques-
tions (e.g., the question of: find local minima or local maxima is much less interesting
here)

(2:) linear functionals: definition

examples: point evaluation

derivative evaluation

in general: we will assume that the linear functional is given as a function

examples: local averaging, local differencing

(3:) definition of the analysis map (=: the decomposition map)

A" f = {Nifbier

The set I is some index set that we use in order to index our linear functionals. For
example, the positive integers IN, the integers 7Z etc.
stress: decomposing the function with a well-organized collection of linear functionals.

the simplest example: the (regular) sampling transform

Definition: a signal is the image of a function under the regular sampling transform

Note: there is a natural way to order the samples (in this case the ordering coincides
with the coordinates of the original function).

Note: the domain (time) of the function is, for regular sampling, essentially the same
of the domain of the transformed function (i.e., the signal)

Organization of the decompositions: we always need to have some good way to orga-
nize the linear functionals of the decomposition map. This means that the linear functionals
are selected from a well-defined closely related family (e.g., in the case of sampling all the
linear functionals are point-evaluations).

(4:) Basic assumption: time is invariant.
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Thus: if we A\, is a linear functional, all linear functionals induced by translations
of g should be in.
Translation:

this means that we convolve.
definition of convolution:

(f % g)(t) = /]R Flu)g(t — u) du.

Note that we are ‘flipping’ the function g before we start to compute the inner products
between f and the translates of g. One explanation for that is the desire to get nice
properties for the binary operation f * g:

properties: commutative f g = g f, associative (f * g) xh = f (g * h), distributive
frlg+h)=(fxg)+(fxh)

example: By x By = Bs.

exponential functions:

cos, sin, exp, the notion of frequency

modulation as a way to measure changes in a function
leads to the fourier transform and to fourier analysis

dilation: given a dilation parameter a > 0, the a-dilation of f is the function

t— f(at).

Part 2. Introduction: Fourier series and orthonormal systems.

the basic assumption: all the linear functionals are exponentials.

how many exponentials?

two different theories: fourier series, the function is supported on an interval.
we choose the interval to be [—7, 7] for convenience.

fourier transform, or fourier integral, the functions are supported on IR.

Fourier series.
what kind of functions we would like to decompose?
the Lo-space: definition: a function f is in Lo if

= ([ 150

is finite.
Note: the inner product

(f.9):= [ [ft)g(t)at
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is connected to the norm via the relation

LFIIZ = (. f)-

This means that Lo is an inner product space.
Examples: the (restriction to [—m, 7] of) the function |¢| is not in Ly. However,
t|=2/3 is in Ly (the actual definition of these functions at the origin is immaterial).

—1/2

Definition: the Fourier series. Let e;,, be the periodic exponential with frequency w,
ie.,
i t = et = cos(wt) + i sin(wt).
The linear functionals in the decomposition map of the Fourier series are the exponentials
with integer frequencies i.e.,
A= (ein)n oo

Explicitly, we denote f(n) := (f, ein), i.e.,

™
f(n) = f(t)e ™ qt.

-
We then consider (naturally) f as a function (i.e., sequence) defined on the integers ZZ.

There is a sequence space, o, which is analogous to the Lo-space: A sequence x :
7L, — C belongs to {5 (or the sequence is ‘square-summable’) if
oo
el = (3 e P2 < oo

n=—oo

Properties of the analysis map of the Fourier series.

orthogonality: (€in,€eim) = 0, for any two different integers n.m. Moreover, (e;n, €in) =
27 (check!). (Thus, had we chosen to ‘normalize’ each exponential, by dividing it by /27
we would have obtained an orthonormal system, i.e., an orthogonal system with the norm
of each element being unit; because we do not normalize the exponentials, the factor 27
occurs in all the formulas below).

An important consequence of the above orthogonality is the Bessel inequality:

£l < v2r | fll, Vf € Ly,

ie.,
oo

(S 1 F)PY? < Vor | £l

n=-—oo
In particular, the map f — fmaps Lo into /5.

completeness: This is a highly non-trivial property of the exponential system (€, )nez
and is known as the Fischer-Riesz Theorem. There are several different ways to express
this property. The most convenient one is to say that ‘the map f +— f is one-to-one’ i.e.,
‘the only function f in Lo that satisfies f(n) = 0, all n, is the zero function.’

The fact that the exponential system is complete and (almost) orthonormal implies
several very important properties.

First and foremost is the perfect reconstruction property:
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Theorem. For every f € Lo,

oo oo

=g 3 fen =5 O (femein

n—oo n=—oo

The second property is Parseval’s identity: for every f € Lo,

1~
I1£1= =l

Another, seemingly stronger, version of Parseval’s identity is:

(f.9) = 57,3,
Fg@de = o > FkG0R)
R T rez

Note: Parseval’s identity is equivalent to the perfect reconstruction property. None of
the two implies the orthonormality of the system (of linear functionals) that we use. Later
on, we will see systems of linear functionals that give us perfect reconstruction without
being orthonormal (or orthogonal).

Connection between smoothness of f and the decay of its Fourier coefficients.

Theorem. Let k be a positive integer. Suppose that all the derivatives up to order k of
f (as a 2m-periodic function) exist and lie in Lo. Then the sequence n +— n* f(n) lies in
f5. The converse is also true.

Example: take the function f which is 0 on [-m,0) and is 1 on [0, 7) (note that the
function has two ‘bad’ points: the obvious one is at 0, the less obvious one is at 7; recall
that we think of the function as 2w-periodic hence identify 7 with —=.) This function does
not satisfy the above theorem for any value of k£ (other than k£ = 0), hence we are granted

that the sequence n — nf(n) is not square-summable. This implies, for example, that we
cannot have an inequality of the form

fm)l <eln| ™75, vnezZ,
for some ¢,e > 0 (why?). Compute fand find the exact rate of decay of it. O

Discussion. The above exemplifies the main shortcoming of the Fourier series: it
represents the original function f on a new domain (as the sequence f) in a way which is
not local in time. The function f in the above example has a bad behavior at two points,
and is very nice elsewhere. The decomposed function f reacts to the bad points on the
time domain by decaying very slowly (as it must do, in view of the above theorem). While
one can immediately conclude from that decay that the original f cannot have a first order
derivative in Lo, there is (at least in essence) no way to tell where the bad points of f are.



Part 3. Introduction: Fourier transform (L, theory)

In many (but not all) regards, the Fourier transform is the extension of the Fourier
series theory from periodic functions to functions defined on the entire real line.

This will be the first and last time that we use a non-countable number of linear
functionals (i.e., there are so many linear functionals that there is no way to index them
by the integers).

The Ly-space. We now assume that our functions are defined on the entire line. Then
our inner product is

(f.g) = /]R F(H)g(®) dt,

our norm is

1l = ( /}R @) )2,

and the space Lo is again the space of all functions whose above Ls-norm is finite. Note
that the functions in Lo should not be too bad around any point, and also should decay
somewhat at +oo.

Examples. The function ¢t — 1/t is not in Lo because it behaves too badly at the
origin. The function ¢ — ¢t~1/3 is not in Ly because it does not decay fast enough as t
approaches £oo. The function ¢ — 1/4/]t| is ‘too bad’ both at 0 and at +oo. How about

t 1 ?
=
t]+ Vit

The Fourier transform f +— fA is the decomposition map that employs all the expo-
nentials

A= (Ciw)wer-
Thus,
f(w> = <f7 eiw> = /]Rf(t)Gth dt.

The are a few technical difficulties here that arise from the fact that the exponentials
(viewed as functions defined on the entire line) do not belong to the Lo-space. For example,
the notion of orthogonality is not very meaningful since it is hard to make sense of the
inner product of two exponentials. Also, the above definition of the Fourier transform
makes sense only for ‘nice enough’ functions f in Ls.

We brush away all these difficulties, partly since we really are interested in analysing
functions f of compact support (and for those the theory is simpler).

We regard fas a function defined also on IR, i.e.,
FR-C:we f(w).
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However, the fact that the domains of f and fseem to be the same, is misleading (it is
mathematical accident: recall that in the periodic case, f is defined on [—m, 7] while fis
deﬁned on 7). Many books make the distinction formal by denoting the domain of f by
IR although of course IR is still the real line. We will distinguish between the two domains
by referring to one of them as the time domain and the other as the frequency domain.

The core of Fourier analysis is the fact that f and f , while both defined on the same
real line, exhibit completely different behavior. What may be apparent from an inspection
of f (e.g., a jump discontinuity) may be very hard to observe by looking at f, and vice
versa. To a large degree, we would like to be able to look at a function simultaneously in
both domains.

Example: Music. Music is an excellent example of the combined meaning of time
and frequency. We may regard each note of an instrument as representing one particular
frequency (it does not matter for the present discussion whether this is completely true).
So, the most basic info about music (one instrument, say), is to know which note was played
and when. The time representation of music answers the question ‘when’: the music was
played during the time that its time representation was non-zero (the time representation,
in essence, records the amplitude of the music at each particular time). The frequency
representation (i.e., f) answers the question ‘which’: it tells us what notes were active
during the entire time that the music was played. Neither of the two is satisfactory. We
will be looking soon for methods that allows a simultaneous representation of a function on
a combined ‘time-frequency’ domain. We need first the Fourier transform, since it defines
for us a new domain for inspecting a function the frequency domain.

Properties of the Fourier transform (i.e., properties of the above exponential
set A).

Completeness. The Fourier transform is one-to-one on L, i.e., the only function in
Lo that satisfies (f,e;,) = 0 for each w € IR is the zero function.

Parseval identity. For every f € Lo,

1~
1fIl = Ellfll-

Again, this identity leads to an analogous result on the corresponding inner products:

(f.9) = 5-(1.9),

ie.,

Perfect reconstruction.



The next three properties are easy to prove (try!)

Connection between translation and modulation. For every t € IR,
cuf =E'f, E'f=c"f.

Le., translation on the time domain is converted to modulation of the frequency domain.
(The fact that modulation of the time domain is converted to translation of the frequency
domain must then follow, since applying twice the Fourier transform brings us back, almost
exactly, to the original function; see the Perfect Reconstruction property).

connection between convolution and multiplication. This is among the most remarkable
and the most powerful properties of the Fourier transform:

(1) f+g9=T13.

Example. Let B; be the B-spline of order 1. It is relatively easy to compute its Fourier
transform .
- 1 — g~
Bi(w) = ——.
1) w
Higher order B-splines are defined by repeated convolutions:
Bk = Bk,1 * Bl.

It is non-trivial to compute By (it is, btw, a piecewise-polynomial supported on |0, k]).
The property (1) implies, almost immediately, that

1— e—iw

— k
B = )
0= (555
connection between dilation and dilation. It is useful to define dilation in a normalized

way: if a > 0, then

(Daf)(t) = Vaf(at).

(In this way, || f[| = [Daf]-)
Then . N
D.f = Dl/af-

(Thus, dilation by a on the time domain is converted to dilation by 1/a on the frequency
domain: ‘stretching’ on the time domain becomes ‘squeezing’ on the frequency domain.)

connection between differentiation and multiplication by a polynomial; connection be-
tween smoothness of f and decay of f.
Let () be the linear function w +— w. Then

=0

h)

It follows:



Theorem. Let k be a positive integer and let f € Lo. Then the derivatives f', f", ... , f(F)
all exist and lie in Ly if and only if the function ()* f : w + w¥ f(w) lies in L.

Example. We take the function Bj:= the B-spline of order k. While we do not know
much (yet) about this function in the time domain, we already know that

1— e—iw

k
iw )

Bi(w) = (

We can bound -
Bulw)] < 2] ~*.

Thus, .
WP By (w)] < 2%w| 7.

This implies that ()’€_1§7c € Ly, hence that all the derivatives of By, up to order k —1 exist
and are in Lo. O

Part 4. Time-frequency localization and WH systems

We would like to construct systems that:

(1) Perform a good time-frequency localization. In principle, this means that the
functions in the system are local in time (e.g., compactly supported, or decay very fast
at 00), and are also very smooth (since this corresponds to good decay of their Fourier
transform).

(2) Are good in the sense of the section on ‘Good Systems’. This means that once we
applied the decomposition operator

A f = <f7 )\>>\6A7

we have a ‘good’ way to reconstruct f. For example, a very good system would allow us
a perfect reconstruction:

F=Y 50N

AEA

(2) Are augmented by a fast algorithm that allows us to do painlessly the decompo-
sition and reconstruction.

When attempting to perform good time-frequency localization, we must have certain
priorities in mind: there is a subtle balance between the ability to be ‘very local’ in time,
and the ability to be very local in frequency.

Most of the prevailing constructions start with a window function g (or several window
functions) and associate with it its set of shifts i.e., integer translations:

E(g) :={E*q: k e 7}, Efg:t— gt —k).
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Assuming that g is ‘concentrated’ around the origin, we may associate the function E*g
in the system FE(g) with the point ¢ = k in the time domain.

In order to complete the construction of the system A, we need to choose between the
following two options:

Option 1: we aim at having elements in A that identify very local features in the time
domain. If this is our goal, then we need to have in A functions of smaller and smaller
supports. This can be achieved by applying dilations to E(g), and it leads to the notion of
wawvelets. The sacrifice here is in the frequency domain: using such a system, our ability
to distinguish between frequencies will deteriorate as the frequency gets higher.

Option 2: we would like to ‘tile’ the frequency domain in a similar way to that of the
time domain. lL.e., given the window g, we would like that our system will include all the
functions whose Fourier transforms is of the form E7§, with j varies over either the integers
of some fixed scale of the integers. This approach leads to the notion of Weyl-Heisenberg
systems. Since translating the Fourier transform is equivalent to modulating the original
function, we are led to constructing here a system of the form

A={ei;E*g: ke, jconll}.
Le., a typical function in the system is of the form
gjk it eijtg(t — k).

If g is ‘concentrated’ around the origin (in the frequency domain), then g;  is concentrated
around 27j. This means that, roughly speaking, that the inner product

<f, gj,k:>

‘tells us’ about the behaviour of f at time ¢ = k and frequency w = 27j. (The fact that
we use the lattice 2n7Z on the frequency domain is not essential, and for this reason we do
not justify that choice; however, see the theorem below).

Example. Let B; be the B-spline of order 1. Then the Weyl-Heisenberg (WH) system
{e;E*B,: k€7, jc2rZ}

is known as the (discretized) windowed Fourier transform. It is a complete orthonormal
system (and therefore has the ‘perfect reconstruction’ property. It is local in time (although
its elements cannot ‘zoom on’ very local features, which is a drawback of all WH systems),

but its localness in frequency of very bad (why? look at B\l) O

The attempt to construct WH systems with better frequency localization has to deal
first the following theoretical barriers. The third part of the theorem in known as the
Balian-Low Theorem.



Theorem 2. Let g € Lo, and let A be the
A:={e;E*g: ke 7,jc hiL}.

Then:

(i) If h < 2w (=oversampling) the system A is dependent, i.e., one of the elements in the
system can be represented by the others. In particular, A cannot be orthonormal in
this case.

(ii) If h > 27 (=undersampling) the system A is not complete.

(iii) If h = 27, and if A is known to be complete and orthonormal, then either g’ ¢ Lo
(and then the system has very poor frequency localization ), or g’ ¢ Lo (and then the
system has very poor time localization).

One may attempt to conclude from the above that there is no way to construct good
WH systems. That is not the case however. First, there is a genuine trick that alters
a bit the definition of a WH system. The systems constructed in this twisted manner
are known as Wilson bases and they escape the curse of the Balian-Low theorem: there
are smooth compactly supported Wilson bases which are orthonormal and complete. The
famous construction of Wilson bases is due to Daubechies-Jaffard-Journé (1992).

Simpler than that: it is very easy to construct WH systems which satisfy the complete
reconstruction property, and have excellent time-frequency localization property as well
(they are not orthonormal however). The first such construction is due to Daubechies-
Grossman-Meyer (1986).

Theorem 3. Let g be a function supported in the interval [0,1/h], for some positive
h < 1. Then the system

A={e;E*q: j €7, kc2rhZ}

is a complete orthonormal system, if and only if

Dol +k) =1

keZ

There are many compactly supported univariate functions whose shifts sum up to the
constant 1. For example, this is true for each B-spline B,,,. Thus, we can take g to be the
square root of the B-spline B,,. Since B,, is supported in the interval [0, m] we can choose
h = 1/m for this case.

Part 5: Wavelets and MRA
Wavelet systems are created from the shift-invariant system E(g) by applying dila-

tions. The most standard dilations are in powers of 2. Such wavelet systems are sometime
referred to as ‘dyadic wavelets’.
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Definition: a (dyadic) wavelet system. Let ¥ be a finite collection of a functions in
Lo(IR). The wavelet system generated by W is the collection of functions

Wy :={Dy E* : j k€ 7L, o € U}

The functions in ¥ are called mother wavelets. We index the wavelet by v, j and k.
Thus,

Wip ot 29/20(27t — k).

Note: 1) is obtained from ;o by translation. The translation is not by k, but by
k/27. Thus, our shifts become denser as j — oo and sparser as j — —oo. This completely
agrees with the fact that positive dilation ‘squeezes’ the function, while negative dilation
‘stretches’ the function.

Proposition. Let W, be a wavelet system generated by a single mother wavelet 1. Then
Wy, is orthonormal if and only if the following condition is valid for every k € 7/ and every
Jj=>0:

_J1, 5=k=0,
(4) (0.0, 9j k) = {0, otherwise.
Proof: One implication is trivial, i.e., if the system is orthonormal then the above

three conditions should definitely hold: they are a part of the definition of an orthonormal
system.

In order to prove the converse, we assume that (4) hold. We note that both dilation
and translation are unitary operators, that is for every ¢t € IR and every non-zero a and
every f,g € Lo

(E'f,E'q) = (Do f, Dag) = (f.9)-

We also note that
D,E' = E'D,.

Thus, first,
(Vi 1, ¥j) = (Do E¥4p, Dos E¥) = (4, ¢)) = 1.

Second, in computing (; x, 1, r’) we may assume that j < j' (since the inner product is
symmetric, up to conjugation). Thus,

(1> Vg0 ) = (Das E¥1p, Dyt E¥ 4p) = (EFip, Dyyr s E¥ p) =
(), E™*Dyyr s EF b)) = (1, Dyyr, E¥ =2 7'Rapy = 0,

with the last equality by assumption (4), since D,/ —; EF Y _jkz/) =y g2 =i O

11



We organise the wavelets in Wy in scales or layers of levels. The jth scale, W; of the
system consists of the 7 /27-shifts of the dilated functions v, .

Wj = {Q/)j’ki P e v, k’GZ}

Let’s see a few examples.

Example: The Haar wavelet system. We choose V¥ to consist only of one function, and
take this function to be the Haar function H. Then, one can show that Wy is orthonormal
(easy) and complete (a bit harder). This is the archetypal wavelet system. O

The Haar system gives us a good insight to the way wavelets organize the time domain:
each scale W) covers completely the time line IR. As j — oo, the ‘tiles’ becomes smaller
(hence we need more of them). As j — —oo the tiles becomes larger...

It is hard to envision the frequency decomposition of the wavelets by looking at the
Haar system. The performance of Haar on the frequency domain is so poor, that it gives
there a very blurred picture of ‘what should have happened’.

It is useful therefore to go to the other extreme and to look at the wavelet system
which has the ideal frequency localization (and which is very poorly localized on the time
domain).

The Shannon wavelet system. We take U to consist again of a single mother wavelet.
We choose this wavelet by defining its Fourier transform:

~ 1, 7<|w| <2,
Ylw) = {0, otherwise.

(one of the homework problems will ask you to compute this function explicitly.) Again,
it is easy to prove that the Shannon wavelet system is orthonormal (it is also complete).
It is also easy to understand that the wavelets of this system have poor time localization
(why?). However, the point of this example is to see how the wavelets tile here the frequency
domain. The is the ideal frequency tiling (for wavelets).

The Fourier transform of 1 is given explicitly. Recall that a dilation on the time
domain is transformed to the opposite dilation on the frequency domain. Thus, the Fourier
transform of the ‘squeezed’ wavelet 1 ¢ is the support function of the ‘stretched” domain:

~ 1 (1, 27 <|w| <4m,
Yro(w) = ﬁ {0, otherx‘)vis|e.

let’s accept for the time being the concept that we would like to keep the supports of the
various 1@-,\0 as separated as possible. The Shannon wavelet is ideal in this regard, since
that support of {QZ]\O}

The important observation here that we need 1%7) not only to decay fast at oo, but we
also need it to have a high order zero at the origin: otherwise, we get substantial overlaps
of the supports of %7) for negative j. We amplify that in the next discussion.

Thus, we think about the wavelet as ‘band pass filters’” which means that their fre-
quency content should concentrate in a domain that is ‘between’ 0 at oco. O

72 _ o tile the frequency domain.
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Discussion. By now, we know of a few ways to judge whether a given system is good
or not. One criterion is the ability to invert the decomposition by a ‘good reconstruction’.
As said, complete orthonormal systems enjoy the perfect reconstruction property. Thus,
in this regard the Haar system is ‘perfect’.

Another criterion is the time-frequency localization. In terms of time localization the
Haar function is perfect. Its frequency localization is poor. There are now two different
criteria that should be satisfied when judging the frequency localization of the wavelet .

How to judge the frequency localization of a given mother wavelet ¢? The first
is by looking at the decay rate of ¥ at +o00, or equivalently, at the smoothness of 1. The
Haar wavelet already fails this initial test. But it also fails another ‘frequency localization
test” which is specific to wavelets only: its Fourier transform has only a first order zero at
the origin. O

The main issue at stake: How to construct a wavelet system that (i) is ‘good’ (e.g.,
complete and orthonormal), (ii) performs good time-frequency localization (the mother
wavelets are compactly supported, smooth, and their Fourier transform vanishes to a high
order at the origin), (iii) can be implemented by a fast algorithm. Sometime, we also add
another requirement: (iv) the mother wavelet are symmetric (or anti-symmetric; note that
the Haar wavelet is anti-symmetric around the point 1/2.)

The vehicle for constructing wavelets systems is MultiResolution Analysis (MRA). Tt
was introduced by Mallat and Meyer in the late 80’s. At the heart of MRA is the notion
of a refinable function (also known as ‘scaling function’ and ‘father wavelet’).

Definition 5. Let ¢ € Lo be a given a function. We say that the function ¢ is refinable
if we can write ¢ as linear combination of the half-shifts of D5 . O

We will alter a bit this definition in the sequel. But, let’s start with examples.

Example. The simplest example of a refinable function is ¢ := By, since it is clear that
for this ¢

(6) P(t) = ¢(2t) + ¢p(2t — 1).
We can write this relation also as

V2¢ = 1,0+ P1,1-

Thus, to say that ¢ is refinable it tantamount to saying that

6= ck)prk,
ke

o0

o2 _ - For technical reasons, we normalize this sequence and

for a suitable sequence (c(k))
introduce



For example, in the case of By, h(0) = h(1) = 1/2, and h(k) = 0, for all other values of k.

The above sequence h is at the core of MRA and is usually referred to as the mask of
the refinable ¢. In most (but not all) examples of interest, the mask h is finitely supported
i.e., while being formally defined on all the integers, it assumes non-zero values only at
finitely many integers.

It will be convenient thus to define a mask by specifying only the non-zero entries of
it. Thus, we could simply define the mask of By by h(0) = h(1) =1/2.

Another useful notation here is the following:

Vo(¢) := all the linear combination of E(¢).

The definition is a little vague: the exact definition is that Vy(¢) is the Lo-closure
of the finite linear combinations of the shifts E(¢) of ¢. A more down-to-earth definition
(which, unfortunately works only in the case ¢ is compactly supported) is to take all linear
combinations of F(¢) (finite or not) that are ‘meaningful’ and which are in Ls.

It is more important here to pay attention to the nature of Vy(¢) then to its exact
definition. For example, if ¢ = By, then V;(¢) consists of piecewise-constants with (pos-
sible) integer breakpoints. If ¢ = Bs, then Vj(¢) consists of continuous piecewise-linear
functions with integer breakpoints.

Set

Vi(¢) := D2Vo(9).

Thus, V1(¢) is obtained by applying dyadic dilation to all the functions in V(). It is easy
to see that Vi(¢) is the ‘span’ of ¢1 1, k € ZZ, i.e. it is spanned by the half-shifts of the
dilated (‘squeezed’) function ¢ g.

Note that, in the above term, the refinability assumption simply says that

¢ € Vi(¢).

Example. Let ¢ be the hat function By(- + 1). Then (check!)

11 1
¢ = E(§¢1,—1 + @10+ §¢1,1)-
This means that the centered hat function is refinable with mask h(—1) = h(+1) = 1/4,
and h(0) = 1/2. O

There is yet another, sometimes more convenient, way to understand the notion of
refinability: viewing the refinability condition as connecting the Fourier transforms of ¢
and Da¢. Apply, for example, the Fourier transform to equation (6). Then (after some
simple calculation) we get that (for ¢ := By),

Bw) = 51+ T/ 5(w/2).

If we set )
_ 1 +e—zw

H(w) : 5
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then we can write R R
¢(w) = H(w/2)p(w/2).

The most important thing to observe is that H(w), as a linear combination of periodic ex-
ponentials, is 27-period. In fact, since it is a finite linear combination of such exponentials,
we name it a trigonometric polynomial. Thus, we found that on the Fourier domain
the refinability of ¢ leads to the existence of a 27-periodic function H together with the
relation

¢ = H(-/2)d(-/2).

The 27-periodic function H is nothing but the Fourier series of the mask sequence h:

H(w)= Y h(k)e ™"
k=—oc0
The function H is also called the mask of the refinable ¢, or the symbol of ¢.
Example. We previously found that the mask of the centered hat function is defined by
h(—1) = h(1) = 1/4, h(0) = 1/2. Thus, the symbol of this mask is

—iw W 1 1
H(w) = £ e 2—6 + 3= 7008(“;) LA cos?(w/2).
We can find that out directly, by finding first the Fourier transform of the centered hat
function. Recall that the transform of B; is

P 1 — e~ w ) w/2 _ —iw/2 o« 2
B2 Lo e sinfof2)

iw iw w/2
Thus, the transform of the non-centered hat function Bs is

sin(w/2)

§2(W) — e—iw( w/Q )2.

Since our function ¢ is E~! By, we obtain that

o - (e

Thus, the symbol H is defined by the relation

(sinc£72/2))2 _ H(w/2)(smu(ji4))2.

Using the correct trigonometric identity (which one?) one gets the exact formula for H.
O
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We now make a more convenient definition of refinability:

Definition 7. Let ¢ be in Ly. We say that ¢ is refinable if there exists a 27-periodic
function H(w) such that

(8)- $(2w) = H(w)o(w)

Example. Let ¢ be the function whose Fourier transform is the support function of the
interval [—m, 7| (i.e. ¢ equals 1 on that interval, and 0 outside that interval). Let H
be the (27m-periodic extension) of the support function of the interval [—m/2,7/2]. Then,
obviously, ¢ is refinable (according to definition (7)) with mask H. O

There are only a handful of known refinable functions. On the other hand, the second
definition of refinability allows one to construct, at least in a formal way, many such
functions. Simply, let H be some 27-periodic function, and define

(9) o(w) =[] H(w/2).
j=1

Theorem 10. Let H be a trigonometric polynomial (i.e., a finite linear combination of
exponentials), and assume that
H(0)=1.

Then the infinite product (9) converges everywhere.

The theorem is insufficient: it does not tell us that the limit is the Fourier transform
of some ¢ € Ly. It turns out that this is a much harder problem. Here is a much stronger
theorem, in which we assume H to be a CQF:

Definition 11. Let H a 2m-periodic function. We say that H is a CQF (Conjugate
Quadrature Filter) if H(0) =1 and

H@)P + [Hw + ) = 1.

Example. Let .
1 + ezw
5

Then |H(w)|? = cos?(w/2), and it follows then that H satisfies the CQF condition. Note
this particular H is the mask of Bj.

H(w) = /2 cos(w/2) =

Theorem 12. Let H be a trigonometric polynomial, and assume that H satisfies the
CQF condition.

Then there exists a compactly supported function ¢ € Lo which is refinable with mask H
(and whose Fourier transform satisfies (8) for the current H). Moreover, ¢ satisfies one
(and only one) of the following two conditions:

(1) The shifts E(¢) of ¢ are orthonormal

16



(2) g/g has a 2m-periodic zero, i.e., there exists a point wg such gg(wo +2mm) = 0, for every
integer m.

Discussion and example. In general, we would like to conclude that the refinable
function whose mask is a CQF has orthonormal shifts. The above theorem simply says
that the orthonormality condition of E(¢) is implied by the CQF condition of H, once we

know that (}5 does not have 2w-periodic zero. As an example, take

_ 1+673iw
e —2 .

Then H is a trigonometric polynomial, H(0) = 1 and H satisfies the CQF condition
(check!). The refinable function is the support function of the interval [0, 3], which obvi-
ously does not have orthonormal shifts. Indeed (check!)

H(w) :

N 1 — 6731'0.)
w) =
¢(w) 3w
and this transform has a 2m-periodic zero (where?) O

Construction of Daubechies’ refinable functions.
Let k£ be a positive integer. Consider the binomial expansion of

(13) (cos®(w/2) + sin?(w/2))?* 1,

and order the terms in decreasing powers of cos (i.e., the first term is cos**~2(w/2)). Let
T (w)

be the sum of the first k£ terms in this expansion. For example, when k = 2,

(14) T(w) = cos®(w/2) + 3 cos? (w/2) sin?(w/2).

T (w) is a trigonometric polynomial (why?). It is also clear that T'(w) > 0 for every w, and
that 7'(0) = 1. Finally, we observe that T'(w 4 7) is the sum of the last kK summands in
(13), and hence

T(w)+T(w+m)=1.

The Féjér-Riesz Lemma 15. Let T be a trigonometric polynomial which is non-negative
everywhere. Then there exists a trigonometric polynomial H such that

T(w) = [H(w)*
Applying this lemma, we obtain a trigonometric polynomial, Hy, such that |Hy(w)|? =

T'(w). For example, for the case (14) this polynomial turns out to be

Hy(w) = cosz(w/Q)(1 i 2\/(3) + Lo 2\/(3) e™).

Note that we can now conclude that each of the above Hj functions is a CQF. Then,
Theorem 12 implies most of next result.
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Theorem and Definition. For each of the above trigonometric polynomials Hy, there
exists a function Dy (known as ‘Daubechies’ refinable function’ of order k) such that
(i) Dy, is refinable with mask Hjy,.
(ii)) Dy is supported in the interval 0,2k — 1].
(iii) The shifts E(Dy,) of Dy, are orthonormal.
(iv) The mask hy associated with Hy, has exactly 2k non-zero coefficients:

2k—1 .
Hy(w) = Z hy(m)e™"me.
m=0

Note that there are two pieces missing in the above theorem. The first concerns the
actual ‘computation’ of the function Dy. It turns out that: (a) this can be done with ease
(using the tool of the cascade algorithm that will be discussed in the sequel). (b) It is not
important at all: the entire practical implementation of wavelets can be done purely in
terms of masks. This will become clear as soon as we discuss the construction of wavelets,
and the fast wavelet transform.

The other issue is the smoothness of Dy, an issue of critical importance. Estimating
the smoothness of refinable functions (by inspecting their masks) is a formidable prob-
lem, and is among the hardest problems in the theory of wavelets. The major success of
Daubechies’ construction was her ability to prove the following celebrated result:

Theorem 16. For each positive integer k, one can find a positive integer k' such that the
refinable function D, has k continuous derivatives.

The exact connection between k and £’ is rather complicated. For large values of k,
we have approximately that k' ~ 5k. On a more practical level, Dy (which is supported
in an interval on length 5), can be proved to have (barely) one continuous derivative.

Part 6: MRA and the unitary extension principle

We now discuss how wavelet systems are derived from refinable functions.
We start by selecting a refinable function ¢, and we denote by Hj its refinement mask:

$(2w) = Ho(w)$(w).
Next we denote by
Vii=Vi(¢)
the space ‘spanned’ by (¢1,x)kez (more precisely: Vi is the La-closure of the finite span
of (¢1,x)kez-)

Examples. Let ¢ be By, the B-spline of order 1. Then ¢; 5 is (up to multiplication by
a normalization constant) the support function of the interval [k/2, (k + 1)/2]. V1 is then
the space of all functions in Lo which are piecewise-constants with (possible) breakpoints
at the half-integers.

Similarly, if we choose ¢ to be the hat function By, then V; becomes the space of all
functions in Lo which are continuous piecewise-linear with (possible) breakpoints at the
half integers. O
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Note that the refinability assumption on ¢ implies that ¢ € V;. Note that the space
Vi is invariant under shifts, i.e., if f € V; then E¥f € V; for every integer k (in fact, that
is true even for k € 7ZZ/2, but we do not need it here.) Thus, we actually have that

E(¢) C V1.

Our goal is to construct a wavelet system. Recall that constructing a wavelet system
in tantamount to selecting the mother wavelets ¥. We will select all the mother wavelets
from the space V7. In some sense, the mother wavelets ¥ C V; ‘complement’ ¢.

Discussion. One might equate the situation here to a simple setup in Linear Algebra:
we are given vector v, and attempt to extend this vector to a spanning set of a given
vector space. Here, the role of the vector v is played by the shifts E(¢) of the refinable
function ¢, and the underlying vector space is V7. We complement E(¢) with the selection
of £ (‘I/) c V. O

Let 1 be any function in V;. Then one can prove that there exists a 2m-periodic
function H,, such that

(17) Y(w) = Hy(w/2)d(w/2).

This should come at no surprise: if we write

Hy(w) = Y hy(k)e ™,

k=—o0

then a simple exercise yields that (17) implies that

(18) S0 = 3 by (R)p(2t — k).

keZ

Since the function t +— ¢(2t — k) is (up to normalization by 1/2) the function ¢ s, (18)
says that ¢ € V1. (One should be warned that (18) may not always make sense, while the
fact that every function in V; satisfies an equation of the form (17) is always true).

Interim Summary. Our objective is to select mother wavelets from the space Vi(¢)
associated with a refinable function ¢. The refinable function is completely determined by
its refinement mask, which we denote here by Hy. Selecting mother wavelets (¢,,)N_; € V3
is on par with selecting 27-periodic functions (H,,)N_; (and then defining the wavelet 1.,
by the relation (cf. (17))

(19) V(W) = Hon(w/2)p(w/2).
So, the MRA construction of wavelet systems is reduced to the following setup:

The MRA setup: Let Hy be a given 2r-periodic (bounded) function, satisfying H(0) = 1.
Select 2m-periodic bounded functions Hy,..., Hy. Then: with ¢ the refinable function

associated with Hj, you obtain a wavelet system whose mother wavelets ¢1,... 9N are
defined by (19). We refer below to such a construction as the wavelet system associated
with the refinement mask H, and the wavelet masks (Hy,..., H,,). O
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The ultimate goal is to understand the process well-enough so that we can construct
in this way good wavelet systems. The immediate question is thus what we mean by ‘good’.
The five basic desired properties are as follows:

(i) Localness in time: ideally we would like all the mother wavelets to be supported in a
small interval.
(ii) Smoothness: in order to be local in frequency, all the wavelets should be as smooth

as possible. R
(iii) High wvanishing moments: we would like each 1), to have a high-order zero at the

origin (this is the other condition for frequency localization).

(iv) Good reconstruction method. Ideally, we would like the wavelet system to satisfy the
perfect reconstruction formula:

f=Y (fie)ie,  VfE L.

w?khj

(v) symmetry, or anti-symmetry. We postpone a discussion of that issue.

We ignore, for the time being, properties (iii) and (v). Note that property (ii) is
completely controlled by the choice of ¢ (i.e., the choice of Hy): once ¢ is smooth, all the
functions in V; will be smooth, too. Property (i) is also largely controlled by the choice
of ¢: if ¢ is compactly supported, we will get compactly supported wavelets by simply
choosing all the functions (H,,) to be trigonometric polynomials (show that!).

The crux in the MRA construction of wavelets is property (iv). Let’s name that
property first:

Definition 20. Let G be a system of functions in L,. We say that G is a tight frame
for Lo if the perfect reconstruction property is valid:

f=>(f9)g9. VfeLs

geG

O

We study this property further in a later section. At this point, one may interpret a
tight frame as some relaxation of the notion of orthonormal system.

Theorem 21 (The unitary extension principle). Let ¢ be refinable with mask Hy,
Hy(0) = 1. Let Hy,...,Hy be 2m-periodic functions. Assume that the following two
conditions hold for every w € [—m,7]:

(22) [Ho(w)[* + [Hi(w)|* + ... + [Hy(w)|* = 1,
and
(23) Hy(w)Ho(w+m) + Hi(w)Hi(w+7)+ ...+ Hy(w)Hy(w + ) = 0.
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Then the wavelet system associated with the refinement mask Hy and the wavelet masks
(Hy,...,Hy) is a tight frame.

Example. We examine the binomial expansion of

(24) (cos?(w/2) + sin®(w/2))?,

and take H,, to be the square root of the mth term in that expansion. Thus,
Hy(w) := cos?(w/2), Hp(w) :=iv2cos(w/2)sin(w/2), Ha(w) :=sin*(w/2).

Then condition (22) is obviously valid here, and condition (23) can be easily verified (the
three terms that are obtained when checking that latter condition come from the expansion
of

(cos(w/2) sin(w/2) — cos(w/2) sin(w/2))%.)

So, the above should lead to a tight wavelet frame. Let’s find the two mother wavelets.
First, Hy is known to be the mask of the (centered) hat function. In order to find the
wavelets, we first find the Fourier coefficients hq, ho of H; and H,. Note

This means that k(1) = _Tﬁ, hi(—1) = \/Ti, and

1) = 2001 (B2t — 1) + b (~1)$(2t + 1) = L= (p(2t + 1) — $(2t — 1)).

S

Similarly,

1 — _ W 2 _ W
Hy(w) = sin*(w/2) = CQOS(W) N Z €

This time ho(—1) = ha(1) = —1, while h(0) = 1, hence

Pa(t) = 2(hi(1)6(2t — 1) + ho(0)@(2t) + ha1(1)(2t + 1)) =1 — %(cb(?t — 1+t +1)).

The above example generalizes to higher order B-spline. One just needs to use a
higher power in (24). Note that the number of wavelet increases together with that power.
O
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There is no general recipe for constructing a tight wavelet frame based on the unitary
extension principle. Such a rule does exist, however, if the refinement mask is a CQF.

Construction of a wavelet system from a CQF mask: Mallat’s construction
Since a CQF mask H satisfies

|Ho(w)|> + |Ho(w + )| = 1,

one may be tempted in this case to choose a single wavelet mask H;(w) := Hp(w + 7),
since then (22) is trivially satisfied. However, this is too crude for the satisfaction of (23).
Instead, we define the unique wavelet mask to be

Hy(w) := e™ Hy(w + 7).

Then (22) and (23) are always satisfied, and we obtain a tight wavelet frame generated by
a single mother wavelet. The name CQF is usually connected to the pair (Hy, Hy).
Let’s try to decipher the meaning of

Hy(w) := e Hy(w + ).

Suppose that we know the sequence (filter) hy whose Fourier series is Hy. How do we
modify the filter hg in order to obtain the filter h1? There are three easy steps:

(1) Shifting Hy by m: this amounts to changing the signs of all the coefficients at odd
locations, i.e., we replace ho(k) by (—1)%hq(k).

(2) Applying complex conjugation to Ho(w + m): this amounts to interchanging the
positive location with the negative location, so that we now find at the kth location
(~1) o (k). |

(3) Multiplying the result by €*: this amounts to shifting the filter one step (forward
or backward, as you wish: we could have defined H; with e~ instead of ¢*). Thus,
finally,

hi(k) = (=) tho(—k +1).

Example. The mask H of the refinable B; is associated with the filter ho(0) = ho(1) =
1/2. Its mirror filter h; is thus defined by h1(0) = —1, hy(1) = 1. Note that the resulting
wavelet is (no surprise) the Haar wavelet.

We conclude this part with the following improvement of the CQF construction:

Theorem 25. Let (Hy, H1) be a CQF pair. If the shifts E(¢) of the underlying re-
finable function are orthonormal then the corresponding wavelet system is complete and
orthonormal.

Example. The shifts of By are indeed orthonormal, and the resulting Haar wavelet system
is indeed complete and orthonormal. The same applies to each of Daubechies’ refinable
functions: the resulting wavelet system is complete and orthonormal. In contrast, while the
mask of the support function ¢ of the interval [0, 3] is a CQF, E(¢) is not an orthonormal
system. Indeed, the wavelet system constructed by applying the CQF unitary extension
principle is a tight frame (as it should), but is not an orthonormal system. O
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Part 7: Filters, filter banks, and the fast wavelet transform

We would like first to connect the theoretical discussion so far, to practical algorithms.
We start with the notions of signals, filters, and low-pass/high-pass filters.

Discussion: filters. In signal analysis, functions cannot be given as a continuum of
values. Instead, we are given a discrete sequence of values which we can index by the
integers

kw— xz(k), ke,

and refer to as a signal. The signal x can be either obtained by sampling some given
function, or by some other (local) processing of the function. We need to assume that the
process is regular in time, e.g., in the case of sampling this means that we have sampled
the underlying function equidistantly in time.

With only discrete information on f in hand, we need to discretize some of the oper-
ations we use. In a natural way, the Fourier transform is replaced by the Fourier series:

[e.9]

X(w) = Y a(k)e ",

k=—00

Next, convolution is replaced by discrete convolution:

(hxx)(k) == > h(m)a(k —m).

meZ

Note that the Fourier series of h * x is the function H(w)X(w). While the action of
convolution is commutative (h * x = z * h), the user will usually regard differently the
two sequences: one, say x, is the given signal. The other, h, is an especially designed
sequence, made in order to separate (i.e., ‘filter!, ‘mask’) certain properties of x; first, and
foremost, frequency properties. For that reasons, h (or more precisely the convolution
action h# : x — h* x (which acts on all signals) is referred to as filter. A filter h is low-
pass if H is concentrated around the origin (and therefore vanishes at the ‘end points’ £7).
Note that this means that H;(w) := H(w + 7) vanishes at the origin, and is concentrated
at the end points £+m. Its corresponding filter h; is thus a high-pass filter. Computing
the sequence h; in terms of h is easy, and one finds that

ha(k) = (=1)"h(k).

So we have just found an easy way to associate low-pass filter with high-pass filter and
vice versa.

Filtering a given signal x (i.e., replacing it by h * x) results in the enhancement of
certain properties of x, and in the suppression of others. It is rather hard to recover the
original signal z from its filtered version h % x. For example, if h is a very good low pass
filter, then H is very flat at the origin, very flat at 7, and H(0) = 1 while H(7w) = 0 (and
what about —n?7). This means that the filtering by h results in a signal whose Fourier
series H(w)X (w) preserves very accurately the low frequency content of x while suppresses
completely the frequencies of x near 7. It will be very hard, thus, and highly non-robust
to recover = from h * x.
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In order to address this problem, one can use several, complementary filters. Say, a
low-pass hg and a high pass h;. The immediate problem is then of oversampling: if the
filter h is short (i.e., has only a few non-zero values), then the size (i.e., the number of
non-zero values) in h x z is on par with those of x. However, if we use 2 filters hg, h1, we
find ourselves dealing with a combined ‘processed’ signal of size double the original one.

Heuristically, one then should guess that some of the values in hg * x, h1 * x should be
discarded. For example, why not discard every other sample. This leads to the operation
of downsampling:

x| (k) == x(2k).

Note that x| preserves only the values of x at even locations (and renumber those loca-
tions).

Decomposition of a signal using filter banks. We restrict our attention to the setup
that is connected to decomposition by wavelet systems. Let (hg,hq,...,hn) be a filter
bank. We assume that hg is a low-pass filter, and all the others are high-pass filters. Set:

"iom = \/i(hm * .’lf)l.

Note that if we have more than one high-pass filter, we still oversample (by how much?).
This is the intrinsic oversampling of the process.

We then proceed by reapplying the process to v ¢ (which corresponds to the low-pass
filtering of x). We do not touch any more vy ,,,, m > 0. (There are applications where
it is necessary to reprocess the high-frequency components of x. The wavelet theory that
relates to these algorithms is connected with the notion of wavelet packets. We will not
discuss it here).

Thus, in the next stage we decompose v o. Inductively, we define:

(26) Vj,m = \/i(hm * I/j_LQ)l.

Note that our labeling of the frequency grades is opposite to that used in the wavelet:
V2 m corresponds to frequencies lower than vy ,.

The connection between filter banks, the above process and wavelet system is given
in the next (easy to prove) theorem:

Theorem: the fast wavelet/frame transform. Let f be some function, let ¢ be some
refinable function, and denote:

z(k) := (f, E*¢), ke 7.

Let Hy be the refinement mask of ¢, and let Wy be the wavelet system associated with
the refinement mask Hy and the wavelet masks (Hy,...,Hy). Let hg,...,hx be the
corresponding filters. Then, in the notation of (26), and for every j > 0,

<f7 Tj,k> = Vj,m(k)u m = 1, . ’N’

with 1™ the wavelet associated with the mask H,,. Moreover,

(f,0—jx) = vjolk).
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Part 8: Reconstruction.

The reconstruction goal can be described as follows:
Given a collection of linear functionals A, associate each one of them with a function
g such that we obtain the perfect reconstruction formula:

F=> (N, Vf.

AEA

In the case A is orthonormal, and even in the case A is a tight frame, we can take gy = .
There are many interesting aspects to the more general case, when we reconstruct using
a system different from the one we used to decompose. This will be discussed in the next
section. Our direction in this section is rather different.

We want, in view of the development of filter banks and the fast wavelet transform,
and in view of the fact that our actual world is discrete, to re-examine the notion of
reconstruction.

We have seen in the last section that ‘decomposition’ in the practical level, does
not mean that we actually compute the inner products of a given function against the
elements A of the system. Rather, we assume that we are given the inner products of f
with respect to some system, and decompose those inner products. It is rather ambitious
thus to attempt at finding the actual function f during the reconstruction, while we did
not assume to have full access to the function in the first place.

Instead, we merely should wish to invert the process of decomposition. The fast
wavelet transform produces sequences of the form

Vim, Jj=12,...,J m=1,...,N.

Note that we are assuming that we terminated the decomposition process after J steps.
This means that we need to retain also the lowest frequency part of the signal

VJ0

since this part was not decomposed further (note that at previous levels we retain only the
high-frequency values, which correspond indeed to the inner products with the wavelets).
Our theorem concerning the unitary extension principle leads to a tight wavelet frame.
The tight frame property says that we should be able to reconstruct using the same wavelet
system that we used to decompose. In terms of the masks and its filters, this should indicate
that we might be able to use (essentially) the same masks during the reconstruction.
The reconstruction algorithm is recursive:

for j=J:-1:0

use Vjm,m, m=0,1,..., N,

in order to reassemble the sequence v; 19
end

In order to understand the reconstruction process, it is instructive to envision the
decomposition part of the fast wavelet transform on the frequency domain. On the time
domain, we decomposed v;_1 o as follows:

(27) Vi = V2(hm *vj_10),m=0,...,N.
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Let’s denote by
Xjm

the Fourier series of v ,,. With some (but not much) effort, one shows that (27) can be
rewritten on the frequency domain as

Xjm (@) = (HmXj-1,0)(w/2) + (HmXj-10)(w/2 + ).

Now, substitute 2w for w, and then multiply each side of the last equality by H,,(w), and
sum over all m. Then

w + W)Xj_l,o(w + 7T).

] =
5
§
E’
Fﬁ
=
€
5’
2
OMZ

Now, comes the punch-line: if our filter bank satisfies the unitary extension principle, we
can use (22) and (23) to conclude that

N
Z Hm ]m 2w) Xj_L()(u)).

m=0

This means that we found a reconstruction algorithm; we only need (if we want to imple-
ment the algorithm on the time domain) to understand, on the time domain) the meaning
of

Hp (W)X m (2w).

There are two actions here:
(1) Dilation: X, (w) — X m(2w). This is simply a relabelling of the entries of the
signal x; ,,,. If we define the upsampling operator

V2

then, with y := 21, Y (w) = X (2w). The switch from H,,(w) to Hy,(w/2) is just a relabeling
of the coeflicients in to be continued...

(k) = — {g(m), k is even,

, otherwise, ’

Part 10: More on refinable functions

When constructing wavelets via MRA, the choice of the refinable function plays a
major role:

(1) Tt determines completely the smoothness of the mother wavelets (why?)

(2) It determines almost completely the localness in time of the wavelet: it is practi-
cally impossible to construct a wavelet system with compactly supported mother wavelets
unless the corresponding refinable function is compactly supported.
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(3) It determines to a large degree the number of vanishing moments the mother
wavelets have. Remember that we say that ¢ has m vanishing moments if

PH0)=0, ¢=0,.... k-1

Recall that the frequency localization of the wavelet is determined its smoothness and its
vanishing moments.

(4) It determines to some degree the properties of the resulting wavelet system. For
example, if the shifts of the refinable function are orthonormal, we can construct (via
MRA) an orthonormal wavelet system (using e.g., the unitary extension principle).

In summary, we need to be able to construct refinable functions with desired proper-
ties. We list some of these desired properties:

(1) Smoothness: we would like to have a smooth refinable function.

(2) High approximation order: we explain that property later. This is the property of
the refinable function that we allow us to generate wavelets with high vanishing moments.

(3) Orthonormality (or a similar property) of the shifts E(¢).

We must, therefore, keep in mind that the refinable function, almost always, is not
given to us in an explicit form. We choose the refinement mask Hg, and need to know how
to read the desired properties of ¢ from its refinement mask Hy

Before we turn our attention to this problem, we ask a simpler one: given the mask Hy,
is there a simple way to visualize the corresponding refinable function ¢? An affirmative
answer is given in terms of

The Cascade Algorithm. A refinable ¢ with mask hg satisfies (by definition) the re-

finement relation
$(t) =2 ho(k)p(2t — k).

Now, let us define the Cascade operator

C()(t) =Y ho(k)f(2t — k).

keZ

Thus the cascade operator maps a give function f to a linear combination of the dilated
shifts of that function. We have chosen the coefficients in that linear combination to be
those of the refinement equation. Thus,

C(¢) = ¢.

In the language of linear algebra, ¢ is an eigenvector of C. In the language of Numerical
Analysis, ¢ is a fized point of C. A standard way to attempt finding a fixed point is by
iterations:

Starting with some initial function ¢°,

define ¢™ :=C(¢™ 1), m=1,2,....

It turns out that the algorithms succeeds only if the initial function ¢ partition unity

in the sense that
> ¢t —k)=1
ke
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Such functions exist in abundance. For example, all the B-splines satisfy this property. A
standard choice for ¢° is the centered hat function.

Does the cascade algorithm converge? What does it mean ‘to converge’ here? Can it
converge to function other than the refinable ¢?

Fact 28. If the mask Hy is a trigonometric polynomial, and if Hy(0) = 1, then the cascade
algorithm either diverges, or converges to the refinable ¢. It does not matter in that context
how exactly ‘convergence’ is defined. O

Definition of ‘convergence’. There are several possible definition here. One of those is
as follows:

I = ¢™ |z, =0,

as m — o0.
While the complete characterization of the convergence of the cascade algorithm is
non-trivial, there are important cases where such convergence is guaranteed:

Theorem 29. If the shifts of the refinable ¢ are orthonormal, or even if they only form a
Riesz basis (a notion that is defined in the next section), the cascade algorithm converges.

One should be warned that the cascade algorithm may fail to converge if we only know
that the mask Hj of the refinable ¢ is a CQF. An example of that possible phenomenon
is given the support function of the interval [0, 3].

How to determine properties of the refinable function from its mask Hq?
We focus on three basic properties: the smoothness of ¢, the approximation order the
shifts of ¢, and the (possible) orthonormality of the shift of ¢.

Part 10: Good Systems

(6:) Summary: a general recipe for constructing the linear functionals of
the analysis map A*.

Step I: select a suitable ‘window’ function g (more generally, select a few such win-
dows). The window function is always selected with great care (and much of the theory
goes into the question of how to construct useful window functions). The window function
induces the linear functional

Ag i f=Af.g9) = /]Rf(t)@dt.

Notions in the context of the current discussion:

(a) Compactly supported functions: a function f : IR — IR is compactly sup-
ported if it is identically 0 outside of some bounded closed interval (the smallest such
interval is the support of f; warning: there are finer definitions for the notion of sup-
port).
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Examples of compactly supported functions: the function By, Bs, B3, H;; (0 < j, k <
1) from Assignment 1.
(b) Periodic functions: A function f: IR — IR is periodic (with period 27) if

flt+2m) = f(t), VteR.

Examples of such functions are abundant. E.g., for every integer (positive or negative,
or even 0) number, each of the functions

t — sin(nt), t— cos(nt)
is 2m-periodic. Closely related to those are the periodic exponential functions
en  t s €™ = cos(nt) + isin(nt).

The ideal window is a periodic exponential function supported in an interval of length
zero. Obviously, such function does not exist (it is not only that there exists no function
supported at a single point. In fact we could interpret the point evaluation functional as ‘a
function supported at one point’; however, the periodic exponential functions are far from
having one point support, and none of them is even compactly supported. moreover, the
only compactly supported periodic function is the O-function). For reasons that will be
explained later, we try to ‘get close’ to the ideal window by constructing window functions
that are local (i.e., supported in a small interval) and smooth (i.e., possess many continuous
derivatives; look at the above examples of compactly supported functions, to realize that
compactly supported functions may have very low smoothness). In this regard, it is useful
to recall the notation (for a non-negative integer k)

C*(R) := {f : IR — IR : the kth order derivative of f exists and is continuous}.

(The case k = 0 refers to continuous functions. If f € C¥(IR) for every k, we write
f € C*(IR), and we say that f is infinitely differentiable. Note that we never differentiate
any function infinitely many times, despite of the above name).

We also recall that in the context of Fourier analysis we measure the smoothness not
in terms of continuous derivatives, but in terms of derivatives that lie in Ly. Thus we have
another space

WFIR) := {f : IR — IR : all the derivative of f up to order k exist and are in Ly}.

Example. Let By be the hat function. The hat function is continuous, but its derivative
is not. Therefore, By € CY, but By & C'. On the other hand, the first derivative of By is
still in Lo, hence By € W (but not in W?2). O
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Step II:

After you selected you window function(s), you select the operation(s) you would like
to apply to this window:

(1) translation

(2) modulation

(3) dilation

The different choices have beautiful names:

translation — convolution

modulation — fourier transform (here g is the constant function)
translation+modulation — Gabor system

translation+dilation == wavelet system

(7:) so what does it mean to be a ‘good system’?

A ‘good system’ does not relate necessarily to the operations used to produce the
system. Wavelet systems are neither better nor worse than Gabor systems. They simply
fit different applications and have different theories and different algorithms. The notion
of a ‘good system’ is universal to all the systems.

There are two basic criteria, which are seemingly unrelated (but are, as a matter of
fact very much related) that guide us in classifying ‘good systems’.

(I) We want to have a close relation between the ‘size’ of the function f we analyse,
and the ‘size’ of the numbers we produce via f — A*f.

Parseval’s identity tells us that, in the context of Fourier analysis we do achieve such
a relation. In fact, this is the case for every complete orthonormal system.

We measure the size of f by its Lo-norm

LFIF = 11 o ary -

and we measure the size of A* f by the f5-norm:
1A £l == QI3
i=0

We want then the norm of A*f to be ‘nicely’ related to the ||f||. Here are the relevant
definitions:
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