
CS515, F03, Spline Lecture Notes

These are unedited notes of Carl de Boor from his Spring 2000 lectures

lecture 7apr00 :data maps, column maps, recovery, projectors, ...
Recall the setup so far. We are hoping to recover an element f of the ls F from

information Λ′f = (λif : i ∈ I) about it, with each λi a lfnl, hence

Λ′ : F → IFI

a linear map. We assume that Λ′ is 1-1.
We only looked at the finite-dimensional case:

Λ′f = (λi : i = 1, . . . , n),

and assumed that Λ′ is onto.
Then F is necessarily n-dimensional, hence has a basis consisting of n elements, or,

equivalently, there is a reconstruction map, or column map,

W : IFn → F : a 7→
n∑

j=1

wja(j) =: [w1, . . . , wn]a

that is invertible.
Under that assumption, the Gram matrix Λ′W = (λiwj : i, j = 1, . . . , n) is invertible,

and the formula
f = W (Λ′W)−1Λ′f, ∀f ∈ F,

provides the complete reconstruction of f ∈ F from the information Λ′f about it.
We observed that this amounts to nothing more than a change of basis: Since Λ′ :

F → IFn is invertible, its inverse, V := (Λ′)−1, is a linear map, hence necessarily of the
form

V : IFn → F : a 7→
n∑

j=1

vja(j) =: [v1, . . . , vn]a,

and, necessarily,
id = Λ′V = (λivj : i, j = 1, . . . , n)

the identity matrix, i.e., the two sequences (λi) and (vj) are biorthonormal and, corre-
spondingly,

f = V Λ′f =

n∑

j=1

vjλjf, ∀f ∈ F.

In fact, necessarily
V = W (Λ′W)−1.

21apr00 1 c©2000 Carl de Boor

Hence, our reconstruction consisted of the following: obtain, from the coordinates Λ′f of
f wrto the basis V , the coordinates (Λ′W)−1Λ′f of f wrto the basis W .

Nevertheless, we counted this a success to the extent that the coordinates of f wrto
the basis W , more readily than Λ′f , provide the information about f we are after.

This led us to the basic question: What information about f ∈ F is readily obtainable
from its coordinates wrto a given basis W for F?

We are going to look in detail into this question for the case that F is a spline space,
and the basis in question is its B-spline basis.

But before starting that discussion, here are two more general observations at this
more abstract level, that will be important.

1. linear projectors: Extend our setup slightly, by assuming that our linear space
F is actually a linear subspace of some linear space X. A concrete example would be

F = Π<n ⊂ C[0 . . 1] =: X.

Correspondingly, assume that our data map, Λ′, is actually defined on all of X. For our
earlier concrete example,

Λ′f = (f(τi) : i = 1, . . . , n),

this is obviously true (provided τi ∈ [0 . . 1], all i). Then we can construct

Pg := W (Λ′W)−1Λ′g

for every g ∈ X, but, while g = Pg whenever g ∈ F , this need not hold for every g ∈ X.
In fact, since necessarily Pg ∈ F (why?), it follows that

g = Pg ⇐⇒ g ∈ F.

In other words,
ranP = F, PP = P.

A linear map with the property P 2 = P is called idempotent or a projector. So, P is
a linear projector onto F .

What is the relationship between g ∈ X and Pg? Since

Λ′Pg = Λ′W (Λ′W)−1Λ′g = Λ′g,

we recognize Pg as the unique element of F that agrees with g on Λ′ and therefore call it the
unique interpolant from F to the data Λ′g. The most commonly used approximation
schemes are all of this form, with the only difference being the choice of the data map, i.e.,
the choice of the information to be matched.

By considering g from a superspace for F , we cannot hope any more for lossless
reconstruction; still, it is reconstruction of a sort.

2. In the first part of this course, a situation more special and more general was
considered. The ls F was usually infinite-dimensional, but a Hilbert space. But, even
when when F was finite-dimensional, the data map, while 1-1, was not assumed to be
onto. This provided some extra flexibility, but it is important to realize what was lost.

21apr00 2 c©2000 Carl de Boor

If Λ′ = [λ1, . . . , λn]′ : F → IFn is not onto, then

m := dimF < n.

In particular, our basis W for F now is a map from IFm rather IFn, hence, offhand, not
helpful for the reconstruction. Rather, we now must choose some column map U : IFn → F ,
necessarily not 1-1, so that

f = UΛ′f, ∀f ∈ F,

but it is not obvious how to do this. If U is such a map, then, certainly, the Gramian Λ′U
must be the identity on ranΛ′, but that is far from having it be the identity matrix.

In contrast, if all we know is that Λ′ is some data map to IFn and that F = ranW
for some reconstruction map W : IFn → X, then just the fact that the Gramian Λ′W ,
which is square, is either 1-1 or onto tells us already that it must be invertible, and Λ′

must be onto even when restricted to F , and W must be a basis for F , and we get the
earlier reconstruction formula for all f ∈ F .

A standard sufficient condition for a square matrix to be invertible is for the matrix
to be triangular with nonzero diagonal entries.

lecture 10apr00 – ??: B-splines defined
The traditional definition of a B-spline is in terms of the divided difference of the

truncated power function

()j
+ : x 7→ xj

+ :=

{
xj , x ≥ 0
0, otherwise.

However, since I did not take the time to introduce divided differences (so far), I’ll introduce
B-splines instead ‘out of the blue’ via their recurrence, with the B-spline of order 1 the
starting point for that recurrence.

Definition. The B-spline with knots a, b is the characteristic function of the half-open
interval [a . . b), i.e.,

B(x|a, b) := χ
[a..b)

(x) =

{
1, a ≤ x < b;
0, otherwise

.

Observations
• B(·|a, b) is piecewise constant, with a breaks a and b (and nowhere else), in case a < b;

in particular, it is positive on the interval [a . . b), and is zero elsewhere.
• B(·|a, b) is the zero function in case a ≥ b.
• B(·|a, b) is right-continuous, i.e.,

B(x|a, b) = B(x+|a, b) := lim
h↓0

B(x+ h|a, b).

The choice of making the B-spline right-continuous is just that, a choice, since some
choice has to be made, and other choices would have been possible, e.g., the more symmetric
choice

f(x) := (f(x−) + f(x+))/2.

12apr00 3 c©2000 Carl de Boor

The particular choice made is connected to the ppform, a standard way to represent piece-
wise polynomials.

If now
t := (· · · ≤ ti ≤ ti+1 ≤ · · ·)

is a given nondecreasing sequence, we associate with it the sequence

Bi = Bi,1,t := B(·|ti, ti+1), ∀i,

of first-order B-splines, and find that this sequence is a partition of unity, i.e.,

∑

i

Bi(x) = 1, inf
i
ti < x < sup

i
ti.

Further, if ti < ti+1 for all i, then (Bi : i) provides a ‘basis’ for the space

Π<1,t

of all (right-continuous) piecewise constant functions with possible breaks at the ti’s and
nowhere else. Here, I have put ‘basis’ in quotes since I don’t exclude the possibility that
the sequence t is infinite or even bi-infinite, hence correspondingly consider the infinite or
even bi-infinite sum

f =
∑

i

a(i)Bi : x 7→
∑

i

a(i)Bi(x) =

{
a(j), tj ≤ x < tj+1;
0, otherwise,

i.e., as a pointwise sum.
In practice, one usually only considers finite sequences t, but it is convenient to permit

t to be nonfinite. In fact, in your consideration of B-splines so far, the sequence t was
always bi-infinite, namely the sequence t = ZZ.

Definition. With t continuing to denote a nondecreasing sequence,

Bi := Bi,2 := Bi,2,t := B(·|ti, ti+1, ti+2)x 7→

x−ti

ti+1−ti
, ti ≤ x < ti+1

ti+2−x
ti+2−ti+1

, ti+1 ≤ x < ti+2

0, otherwise,

is the B-spline with knots ti, ti+1, ti+2.

Observations
• Bi,2 = B(·|ti, ti+1, ti+2) is piecewise linear, with breaks at ti, ti+1, ti+2; it is positive

on (ti . . ti+2) and is zero off [ti . . ti+2].
• Bi,2 is continuous from the right and it continuous at any of its breaks if and only if

that break appears only once the the sequence t.

12apr00 4 c©2000 Carl de Boor

It is still true that

∑

i

Bi,2(x) = 1, inf
i
ti < x < sup

i
ti,

except for some possible trouble near the first or last ti, if there is one. It is a little bit
harder, though, to describe precisely the span of (Bi,2 : i).

Now the following observation: With ωi,2 the linear polynomial

ωi,2 : x 7→
x− ti
ti+1 − ti

, ∀i,

we have
Bi,2 = ωi,2Bi,1 + (1 − ωi+1,2)Bi+1,1.

Thus B2,i fits the following recursive definition of the B-spline.

Definition. With t a nondecreasing sequence and k a positive integer, the B-spline with
knots ti, . . . , ti+k is

B(·|ti, . . . , ti+k) := Bi,k := Bi,k,t :=

{
χ

[ti...ti+1)
, k = 1;

ωi,kBi,k−1 + (1 − ωi+1,k)Bi+1,k−1, k > 1,

where ωi,k is the linear polynomial

ωi,k : x 7→
x− ti

ti+k−1 − ti
.

Use the MATLAB Spline Toolbox command bspligui to become more familiar with
just how Bi,k,t depends on its k + 1 knots.

Also, marvel at the fact that the recurrence relation takes two functions of a certain
smoothness, multiplies each of them by some linear polynomial, and then adds the resulting
products and, in this way, obtains a function with higher smoothness than either summand.

The discussion of B-spline properties to follow is taken from the book (though I won’t
necessarily go through the proofs), hence I won’t prepare class notes for it.

lecture 14apr00 – ??: B-spline recurrence used
Let

f :=
∑

j

ajBjk.

If k > 1, then, from the recurrence relations,

f =
∑

j

aj(ωjkBj,k−1 + (1 − ωj+1,k)Bj+1,k−1)

=
∑

j

(ajωjk + aj−1(1 − ωj,k))Bj,k−1.

18apr00 5 c©2000 Carl de Boor

Hence, with

a
[i+1]
j :=

aj , i = 0;

a
[i]
j ωj,k−i+1 + a

[i]
j−1(1 − ωj,k−i+1) =

(· − tj)a
[i]
j + (tj+k−i − ·)a

[i]
j−1

tj+k−i − tj
, i > 0,

we get

f =
∑

j

a
[i]
j Bj,k−i+1, i = 1:k.

In particular,

f =
∑

j

a
[k]
j Bj,1,

with each a
[k]
j a polynomial of degree < k, i.e., a polynomial of order k,

a
[k]
j ∈ Π<k.

Consider some specific sequences a = (aj : j).

1. a = δj , i.e., f = Bjk. Then, by induction, a
[i]
j , . . . , a

[i]
j+i−1 are the only nonzero

entries in a[i]. In particular, Bjk has its support in the interval [tj . . tj+k).

2. aj = 1, all j. Then also a
[i]
j = 1 for all j, therefore

∑

j

Bjk =
∑

j

Bj1 = 1,

showing that (Bjk : j) forms a (positive and local) partition of unity (B-spline property
(ii)).

3. This example is the prettiest:

aj = (tj+1 − τ) · · · (tj+k−1 − τ) =: ψjk(τ), ∀j,

with τ arbitrary. Then

a
[2]
j = ψjk(τ)ωjk + ψj−1,k(τ)(1 − ωjk)

= ψj,k−1(τ) ((tj+k−1 − τ)ωjk + (tj − τ)(1 − ωjk))

= ψj,k−1(τ)(· − τ).

In other words,

∑

j

ψjk(τ)Bjk = (·− τ)
∑

j

ψj,k−1(τ)Bj,k−1 = · · · = (·− τ)k−1
∑

j

ψj,1(τ)Bj,1 = (·− τ)k−1.

This is Marsden’s identity (B-spline property (iii)):

(· − τ)k−1 =
∑

j

ψjk(τ)Bjk.

18apr00 6 c©2000 Carl de Boor

From this, we get a formula for writing any p ∈ Π<k as a weighted sum of the Bjk by
going through the following steps:

1. divide both sides by (k − 1)! (to make differentiation easier)
2. differentiate both sides ν − 1 times with respect to −τ
3. multiply both sides by Dk−νp(τ)
4. sum all these equations for ν = 1, . . . , k.

This gives the (horrendous) equation

k∑

ν=1

Dk−νp(τ)
(· − τ)k−ν

(k − ν)!
=

k∑

ν=1

Dk−νp(τ)
∑

j

(−D)ν−1ψjk(τ)

(k − 1)!
Bjk.

However, since we assume that p is of degree < k, the left side is just the Taylor expansion
for p (around the point τ), hence equal to p. Further, since we agreed that the sum over
j is to be taken pointwise and, at any point x, at most k of the Bjk(x) are not zero, there
is no difficulty with interchanging those two summations. After that, we finally get that

(0.1) p =
∑

j

λjkpBjk, ∀p ∈ Π<k,

with

(0.2) λjk : f 7→
k∑

ν=1

(−D)ν−1ψjk(τ)

(k − 1)!
Dk−νf(τ).

Take in the fact that this holds for an arbitrary τ . (In fact, it is easy to verify that, for
any f ∈ Π<k, λjkf is independent of τ).

As a quick check, take for p a constant polynomial. Then all derivatives of p are zero
everywhere, hence

λjkp =
(−D)k−1ψjk(τ)

(k − 1)!
p(τ),

and this equals p(τ) since ψjk(τ) = (−τ)k−1 + l.o.t., hence (−D)k−1ψjk = (k − 1)!. We
conclude that

λjkp = p(τ), p ∈ Π0.

A more interesting case occurs when p is a linear polynomial, say p = ` ∈ Π1. Now
Dip(τ) = 0 for any i > 1. Therefore,

λjk` = `(τ) +
(−D)k−2ψjk(τ)

(k − 1)!
D`(τ).

Now, since ψjk is a polynomial of exact degree k−1, its (k−2)nd derivative is a polynomial
of exact degree 1, hence has exactly one zero. This zero turns out to be the point

t∗jk := (tj+1 + · · · + tj+k−1)/(k − 1).

18apr00 7 c©2000 Carl de Boor

In other words
λjk` = `(t∗jk), ∀` ∈ Π1,

hence (B-spline property (v))

` =
∑

j

`(t∗jk)Bjk, ∀` ∈ Π1.

It turns out that the formula (0.1) holds not just for p ∈ Π<k, but for every p =∑
j ajBjk with arbitrary coefficient sequence (aj : j), provided only that the τ appearing

in the definition (0.2) of the linear functional λjk be, more precisely, some point τj in the
support of Bjk, i.e., from the interval (tj . . tj+k).

lecture 17apr00 – ??: spline := linear combination of B-splines
By definition, a spline of order k with knot sequence t is a weighted sum of the

B-splines Bj,k,t, i.e., an element of

$:= $k,t := ran(Bj,k,t : j) = {
∑

j

ajBj,k,t : aj ∈ IR}.

Exactly what functions are in $k,t?
Pick a nontrivial knot interval,

Ij := (tj . . tj+1) 6= ∅,

say. Then, on such an interval, every Bi = Bi,k,t is just a polynomial of order k, i.e., of
degree < k, hence every f ∈ $k,t has the same property:

$k,t Ij
⊂ Π<k Ij

.

Is there equality? That depends. For each i, let pi be the polynomial that agrees with Bi on
Ij . Then at most k of these are nonzero, namely pj+1−k, . . . , pj , hence, since dimΠ<k = k,
there cannot be equality unless all k of these pi actually exist. Note that there could be
fewer. If, e.g., t has a first entry, t = (t1, t2, . . .), say, then, for j = 1, only pj has a chance
of being defined. For that reason, I work with the basic interval for $k,t (see B-spline
properties hand-out)

Ik,t := (t− . . t+),

with

t− :=

{
tk, if t = (t1, . . .);
infj tj , otherwise,

t+ :=

{
tn+1, if t = (. . . , tn+k);
supj tj , otherwise.

For each Ij ⊂ Ik,t, the full sequence (pj+1−k, . . . , pj) is defined. Moreover, we already
know that

p =

j∑

i=j+1−k

(λikp) pi, ∀p ∈ Π<k.

21apr00 8 c©2000 Carl de Boor

Since there are exactly k of these pi involved here, and dimΠ<k = k, we conclude that
[pj+1−k, . . . , pj] is a basis for Π<k and that

λikph = δih, i, h = j + 1 − k, . . . , j,

i.e., the data map Π<k → IRk : p 7→ (λikp : i = j + 1 − k, . . . , j) is its inverse.
The linear functionals

(0.1) λik : f 7→
k∑

ν=1

(−D)ν−1ψik(τi)

(k − 1)!
Dk−νf(τi)

involved here depend on the choice of the points τi. As already remarked, λikf is inde-
pendent of the choice of τi in case f ∈ Π<k. But this independence cannot hold for every
f ∈ $k,t: E.g., if f = Bik for i = j+ 1− k, . . . , j, then we just saw that λikf = 1 if τi ∈ Ij ,
while it is certainly 0 in case τi is outside the interval (ti . . ti+k). Remarkably, that is the
only restriction. In particular, assuming from now on that

ti < τi < ti+k, ∀i,

we have
λikBjk = δij , ∀i, j.

For this reason, the λik are called the dual functionals (for the corresponding B-spline
sequence). See B-spline property (vii).

In particular (Bjk : j) is linearly independent, hence a basis for its span, $k,t. It is for
this reason that their creator, I. J. Schoenberg, gave them the letter ‘B’, as an acronym
for ‘Basis’ or ‘basic’.

By now, we know that each f ∈ $k,t is piecewise polynomial of order k with breaks at
the ti (and nowhere else). For a fuller description, return once more to Marsden’s Identity:

(· − τ)k−1 =
∑

j

ψjk(τ)Bjk,

but choose τ = ti for some i, and observe that

ψjk(ti)Bjk(ti) = 0 ∀i.

Indeed, if Bjk(ti) 6= 0, then necessarily tj < ti < tj+k, hence ti is one of the zeros of ψjk.
Hence,

(· − ti)
k−1 =

∑

Bjk(ti)=0

ψjk(τ)Bjk.

This sum neatly splits into two, one involving all the B-splines with support to the left of
ti, the other involving all the B-splines with support to the right of ti. In particular,

(· − ti)
k−1
+ =

∑

j≥i

ψjk(τ)Bjk.

21apr00 9 c©2000 Carl de Boor

So, in addition to Π<k, $k,t also contains all the truncated powers

(· − ti)
k−1
+ , ti < t+.

One shows in a similar way that, more generally, $k,t contains all the truncated powers

(· − ti)
k−ν
+ , 1 ≤ ν ≤ #ti := #{j : ti = tj}, ti < t+.

Note here the appearance of the knot multiplicity #ti which counts the number of times
the number ti appears in the knot sequence t.

And that’s it, as is made clear in B-spline property (vi). Specifically, if you take any
interval I := [a . . b] ⊂ Ik,t, then we now know that the entire sequence

(((· − a)k−ν : ν = 1:k), ((· − ti)
k−ν
+ : 1 ≤ ν ≤ #ti, a < ti < b)) I

of k + #{i : a < ti < b} functions is in $k,t I and is also easily seen to be linearly
independent. On the other hand, $k,t I is spanned by the sequence (Bjk I 6= 0) and this
sequence also contains exactly k+#{i : a < ti < b} functions. Hence, Linear Algebra tells
us that both sequences must be a basis for $k,t I . In particular, each f ∈ $k,t satisfies (at
least) k − #ti smoothness conditions across the knot ti, all i, i.e., jumpti

Dr−1f = 0 for
r = 1:(k − #ti):

knot multiplicity + smoothness = order

Next: What information about f =
∑

j ajBjk is ‘easily’ obtained from its B-spline
coefficients (aj : j)?

1. evaluation: . To compute f(x), (i) determine j such that tj ≤ x < tj+1 and
initialize b := (aj+1−k, . . . , aj); then (ii) use the recurrence:

for i=2:k

| for r=k:-1:i

| b(r) = ((x-t(j-k+r))*b(r) + (t(j+r-i+1)-x)*b(r-1))/...

| ((x-t(j-k+r)) + (t(j+r-i+1)-x));

| end

end

After this, b(k) contains the value of f at x. Note that the index for the inner loop
runs down rather than up (why?). To be sure, a preferable implementation would compute
the quantities x-t(i) and t(k+i)-x, i=1:k, needed here outside the double loop, in which
case computation of the denominator is no more costly than in its simpler form -t(j-k+r)

+ t(j+r-i+1). The present form is preferable for rounding-error control.

21apr00 10 c©2000 Carl de Boor

What about Df(x), D2f(x), . . .? Simply ‘differentiate’ the above double loop, gen-
erating with each quantity also its derivatives with respect to x. For example, if we also
want the first derivative, we make b a matrix of size [2,k], with b(2, i) the derivative with
respect to x of the quantity in b(1, r), r = 1:k. This means that we initialize b as the 2-row
matrix

b =

[
aj−k+1 · · · aj

0 · · · 0

]

(since the coefficients are just constants as far as x is concerned).

The only line of code explicitly involving x is easily differentiated wrto x (note that
the denominator is, in fact, independent of x) and so gives the enlarged code:

for i=2:k

| for r=k:-1:i

| b(2,r) = (b(1,r)-b(1,r-1) + ...

| (x-t(j-k+r))*b(2,r) + (t(j+r-i+1)-x)*b(2,r-1))/...

| ((x-t(j-k+r)) + (t(j+r-i+1)-x));

| b(1,r) = ((x-t(j-k+r))*b(1,r) + (t(j+r-i+1)-x)*b(1,r-1))/...

| ((x-t(j-k+r)) + (t(j+r-i+1)-x));

| end

end

Note that the differentiated line is executed first, thus updating the derivative values
before updating the function values.

What if x does not lie in the interval [tj . .tj+1)? Then b(k) (or, more generally, b(1, k))
contains the value at x of the polynomial that agrees with f on that interval.

2. Differentiation (B-spline property (viii)) The derivative of a spline f =
∑

j ajBjk

is a spline of one order lower, and its coefficients are difference quotients of the coefficients
of the spline itself:

D
(∑

j

ajBjk

)
=

∑

j

aj − aj−1

(tj+k−1 − tj)/(k − 1)
Bj,k−1.

To be sure, if, e.g., tj+k−1 = tj , then that quotient multiplying Bj,k−1 is not defined.
However, in that case, Bj,k−1 is the zero function, and we don’t care.

Note that, in this case, #tj ≥ k, i.e., f itself may have a jump discontinuity across tj ,
and is not even differentiable at tj . In effect, we ignore that, by taking the derivative here
piecewise-polynomial style, i.e., for each polynomial piece separately.

As a consequence,
∫ y

x
(Df)(s) ds will equal f(y) − f(x) in general only if the spline f

is continuous on the interval [x . . y], for example if #ti < k for all ti ∈ (x . . y).

3. Good condition aka stable basis (B-spline property (x)) We already saw that,

for tj ≤ x < tj+1, the value f(x) =
∑j

i=j−k+1 aiBik(x) is a convex combination of the k
coefficients aj−k+i, i = 1:k. In particular, the value f(x) must lie between the smallest

21apr00 11 c©2000 Carl de Boor

and the largest of these k coefficients. On the other hand, at least for modest k, none of
these k coefficients can be too far from the value f(x). Precisely,

|ai| ≤ Dk,∞‖
∑

j

ajBjk‖[ti+1..ti+k−1],

with Dk,∞ ≈ 2k−3/2.
This makes (Bjk) a stable basis (or Riesz basis) in the uniform norm in the sense

that
(1/Dk,∞)‖a‖∞ ≤ ‖

∑

j

ajBjk‖∞ ≤ ‖a‖∞.

But the B-spline basis has this property even locally.
lecture 21apr00 – ??: B-splines are refinable

The close connection between the value f(x) of f =
∑

j ajBjk and the ‘nearby’ coef-
ficients (ai : Bik(x) 6= 0) is made visible in CAGD by considering the curve

x 7→ (x, f(x)) = (
∑

j

t∗jkBjk,
∑

j

ajBjk) =:
∑

j

PjBjk

(note the use of B-spline property (v) here!), with

Pj = Pj,k,tf := (t∗jk, aj) ∈ IR2

called the control points, and the broken line connecting these control points, and denoted
here by

Ck,tf,

called the control polygon.
This nomenclature arose in CAGD (:= Computer-Aided Geometric Design), where

one considers, more generally, spline curves, i.e., curves of the form x 7→
∑

jk PjBjk(x)
with Pj arbitrary vectors in the plane (or even in 3-space or higher dimensions) and,
correspondingly, its control polygon, i.e., the piecewise linear curve x 7→

∑
j PjBjk(x).

The control polygon provides a rough outline or caricature of the spline itself. At the
same time, by B-spline property (x), for modest order k, this control polygon cannot be
too far from the curve itself. Sticking with a spline function, i.e., our scalar-valued spline
f =

∑
j ajBjk, one infers directly from the dual functionals that

aj = f(t∗jk) +O((tj+k−1 − tj+1)
2‖D2f‖[tj+1..tj+k−1]).

This implies that the control polygon is close to the spline itself when the mesh spacing

|t| := sup
i

(ti+1 − ti)

is sufficiently small.

24apr00 12 c©2000 Carl de Boor

E.g., try out this simple example, in which a cubic spline is generated by interpolation,
then plotted, along with its control polygon:

x = sort(rand(1,21))*4*pi; k = 4; sp = spapi(k,x,sin(x)./(.3+x));

fnplt(sp)

hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’k’), hold

off

If the mesh spacing isn’t small enough, we can make it smaller simply by inserting
more knots. After all, if t is a subsequence of t̂, then $k,t is a subset of $

k,̂t
, i.e.,

t ⊂ t̂ =⇒ $k,t ⊂ $
k,̂t
,

hence, in that case, each f ∈ $k,t is also uniquely writeable as a weighted sum of the

B̂jk := B
j,k,̂t

:

(0.1)
∑

j

ajBjk = f =
∑

j

âjB̂jk.

E.g., continue the example:
sp = fnrfn(sp,aveknt(x,3));

hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’r’), hold

off

The formula for the âj can be quite involved. However, we can obtain any refinement

t̂ of t in a sequence of steps, each of which consists of adding just one knot. Hence, it is
sufficient to know the formula for âj in the special case that t̂ is obtained from t by the

insertion of just one additional knot. This formula constitutes B-spline property (xi). If t̂
is obtained from t by insertion of the point x, then (0.1) holds with

âj = ω̂jk(x)aj + (1 − ω̂jk(x))aj−1,

where
ω̂jk(x) := max{0,min{1, ωjk(x)}}.

lecture 24apr00: an aside: the ppform
Here is a standard method for the evaluation of a cardinal cubic spline, i.e., a cubic

spline with the uniform knot sequence ZZ.
Assume that we are interested in the value of f =

∑
j ajBj at some x ∈ [0 . . 1). Then

f(x) =
0∑

i=−3

Bi(x)ai =
0∑

i=−3

pi(x)ai,

with pi the polynomial that agrees with Bi on the interval (0 . . 1). Let

pi =:
4∑

r=1

()4−rC(r, 4 + i), i = −3:0.

24apr00 13 c©2000 Carl de Boor

Then C is the change-of-basis matrix (or transition matrix) for going from the basis
[p−3, . . . , p0] for Π3 to the power basis [()3, . . . , ()0], i.e.,

C = [()3, . . . , ()0]−1[p−3, . . . , p0],

and

(0.1)
f(x) = [p−3(x), . . . , p0(x)](a−3, . . . , a0)

= [x3, . . . , x0]C (a−3, . . . , a0).

In particular, the vector b := C (a−3, . . . , a0) provides the coefficients in the power form
for the cubic polynomial that agrees with f on the interval (0 . . 1). With this vector in
hand, we would now compute f(x), not by forming [x3, . . . , x0] and then multiplying b
by it, but by using Nested Multiplication (remember Nested Multiplication??), i.e., by
computing

f(x) = ((x ∗ b1 + b2) ∗ x+ b3) ∗ x+ b4.

Once b is known, then this calculation takes only 3 adds and 3 multiplies, considerably
less than working directly with the recurrence relation. (Part of this advantage is thrown
away if one follows the CAGD habit of explicitly forming the vector [x3, . . . , x0].) But this
gain comes at the cost of computing b from a, hence pays off only if evaluation at more
than just one x is needed.

In Matlab, this calculation can be carried out simultaneously for a whole vector or
even a matrix x.

If we need f(x) for x ∈ [j . . j + 1) for some j 6= 0, then the needed changes are quite
minor: the relevant coefficient segment becomes (aj−3, . . . , aj) and we would replace x by
x− j, i.e., we would, in effect, write f on [j . . j + 1) in local power form:

f(x) =
k∑

r=1

(x− j)k−rbr.

In particular, the matrix C remains unchanged, but this is a special feature of using the
uniform knot sequence ZZ.

For an arbitrary knot sequence t and arbitrary order k, the evaluation of f =
∑

i aiBi

at some x ∈ [tj . . tj+1) still can be handled this way, i.e., by writing

(0.2)
f(x) = [pj−k+1(x), . . . , pj(x)](aj−k+1, . . . , aj]

= [(x− tj)
k−1, . . . , (x− tj)

0]C (aj−k+1, . . . , aj).

But now the change-of-basis matrix C depends on j and t as well as on k. There are
several ways in use (and knot insertion is one of them) to carry out such a conversion,
from the B-form for f to the corresponding ppform. The latter describes f in terms of
its breaks (ξi : i), i.e., the largest strictly increasing subsequence of the knot sequence t,
and the coefficient matrix c for its local power form, i.e.,

f(x) =
k∑

r=1

(x− ξj)
k−rcj,r, ξj ≤ x < ξj+1, ∀j.

27apr00 14 c©2000 Carl de Boor

E.g., the command ppB = fn2fm(spmak(0:4,1),’pp’) provides the ppform of the cardi-
nal cubic B-spline, and fnbrk(ppB,’coe’) provides the entries for the matrix C appearing
in (0.1), though differently ordered.

lecture 26apr00: an aside: the ppform, continued
Here is a formal description of the two forms for describing splines in Matlab. A

specific example for each is given below.
The B-form describes f ∈ $k,t in terms of its
knots t = (t1 ≤ · · · < tn+k)
coefficients a = (ai : i = 1:n)
degrees of freedom n = length(a) = length(t) - order
order k.

The ppform describes f ∈ Πk,ξξξξξ in terms of its
breaks ξξξξξ = (ξ1 < · · · < ξ`+1)
coefficients (c(i, r) : i = 1:`, r = 1:k)
number of pieces `
order k

in the sense that

f(x) =

∑k
r=1(x− ξ1)

k−rc(1, r), x < ξ2;∑k
r=1(x− ξi)

k−rc(i, r), ξi ≤ x < ξi+1, i = 2:`−1;∑k
r=1(x− ξ`)

k−rc(`, r), ξ` ≤ x.

In other words, outside its basic interval, [ξ1 . .ξ`+1], such a piecewise polynomial function
is defined by extension of its first, respectively its last, polynomial piece. Correspondingly,
neither ξ1 nor ξ`+1 is an active break.

We are usually not interested in the whole space Πk,ξξξξξ, but in its subspaces

Πk,ξξξξξ,ννννν := {f ∈ Πk,ξξξξξ : jump
ξ

Dr−1f = 0, r = 1:νi, i = 2 : `}.

On the basic interval [ξ1 . . ξ`+1], this space coincides with the spline space $k,t, with
t the nondecreasing sequence that contains ξ exactly k − νi times, i = 1:(` + 1), and
ν1 = 0 = ν`+1. In other words, each such piecewise polynomial space has a B-spline basis.
This is a reiteration of B-spline property (vi).

The Matlab command spline(x,y) constructs a cubic spline, f , that interpolates
the given data in the sense that f(x(i)) = y(i) for all relevant i. It returns this 4th order
spline in ppform, as is evident from the following example:

x = linspace(0,2*pi,5); y = sin(x);

cs = spline(x,y)

cs =

form: ’pp’

breaks: [0 1.5708 3.1416 4.7124 6.2832]

coefs: [4x4 double]

pieces: 4

27apr00 15 c©2000 Carl de Boor

order: 4

dim: 1

coefs = fnbrk(cs,’coe’)

coefs =

0.0860 -0.8106 1.6977 0

0.0860 -0.4053 -0.2122 1.0000

0.0860 -0.0000 -0.8488 0.0000

0.0860 0.4053 -0.2122 -1.0000

Notice the 5 breaks and, correspondingly, the four polynomial pieces, as evidenced by
the four rows of coefficients. If you take in that the ith row describes the coefficients for
the ith piece, on the interval [ξi . . ξi+1] = [(i − 1)π/2 . . iπ2], and that the coefficients are
ordered from highest to lowest, then you can read off that this spline has the value 0 at 0,
1 at π/2, 0 at π, and -1 at 3π/2 (as it should, since these are the values the sine function
takes at those points).

The command fn2fm provides conversion from one form to another. Here is our cubic
interpolating spline written in an appropriate B-form:

bs = fn2fm(cs,’B-’)

bs =

form: ’B-’

knots: [0 0 0 0 6.2832 6.2832 6.2832 6.2832]

coefs: [-6.2172e-015 3.5556 -3.5556 -5.5511e-016]

number: 4

order: 4

dim: 1

Note that the first and the last knot appear with ‘full multiplicity’, i.e., 4-fold. Note
also that there are no interior knots. This is due to the fact that this particular spline has
no active breaks (and the fn2fm command was able to detect and act on that). Here is
the explanation.

The cubic spline interpolant f provided by spline(x,y) to data ((xi, yi) : i = 1 : `+1)
is constructed as a C2 piecewise cubic, hence satisfies 3 smoothness conditions across each
interior break, with breaks at the data sites xi. Hence

f ∈ Π4,x,ννννν ,

with νi = 3, i = 2:`. But, it so happens that, with this choice of ννννν, the linear space Π4,x,ννννν

has dimension ` + 3, i.e., two more degrees of freedom than there are data points. There
are many different ways to make use of these two extra degrees of freedom (look at cubic
spline interpolation in splinetool, under end conditions). The spline command uses
the so-called not-a-knot conditions, which amount to choosing ν2 = 4 = ν` and so make
x2 and x` inactive breaks and, correspondingly, dimΠ4,x,ννννν = `+ 1 = #x.

With ννννν so chosen, the B-spline basis for Π4,x,ννννν , as per the earlier recipe, has as its
knot sequence

(x1, x1, x1, x1, x3, . . . , x`−1, x`+1, x`+1, x`+1, x`+1).

For our specific example, this reduces to the sequence

(0, 0, 0, 0, π, 2π, 2π, 2π, 2π).

27apr00 16 c©2000 Carl de Boor

However, as is evident from the coefficients in the ppform, the third derivative of the
interpolant to our particular data has no jump across π (and shouldn’t, since the problem
is antisymmetric around that point, hence we must have f(π + s) = −f(π − s), hence
D3f(π+) = −(−1)3D3f(π−) = D3f(π−)). Therefore, also the break π is inactive for this
particular f , and the command fn2fm was able to detect and act on that, too.

Note also that, in this example, the ppform involves 16 coefficients, while the B-
form involves only 4, a remarkable amount of compression. To be sure, we could have
represented this f as one cubic piece, requiring also only 4 coefficients. In general, though,
a C2 piecewise cubic function with ` interior breaks involves 4` coefficients, while the
corresponding B-form only involves 3 + ` coefficients. It is in this sense, that the B-form
is much more efficient than the ppform. On the other hand, evaluation from the ppform
is much faster than from the B-form. Hence, if the spline is to be evaluated at many
points, conversion to ppform would be indicated. Of course, cs = spline(x,y) already
delivers its answer in ppform, and this is taken advantage of in the evaluation command
ppval(cs,xx) that replaces each entry of xx by the value at that entry of the spline
described by cs.

Finally, notice that both forms have an additional parameter, labeled dim in the exam-
ples given. In both examples, this number is 1, corresponding to the fact that the spline in
question is scalar-valued. The command spline is also prepared to deal with vector-valued

functions. Have a look at the last example in the help from spline, obtainable by the
command help spline.

lecture 28apr00: knot insertion
Recall B-spline property (xi). If t̂ is obtained from t by insertion of the point x, and,

correspondingly,

B̂jk := B
j,k,̂t

,

then

(0.1)
∑

j

ajBjk = f =
∑

j

âjB̂jk,

with

âj = ω̂jk(x)aj + (1 − ω̂jk(x))aj−1,

where

ω̂jk(x) := max{0,min{1, ωjk(x)}}.

Recall also the control polygon for f =
∑

j ajBj,k,t as the broken line with vertices
the control points

Pj = (t∗jk, aj) ∈ IR2,

i.e., the coefficients of the spline curve

x 7→ (x, f(x)) =
∑

j

PjBj,k,t(x)

03may00 17 c©2000 Carl de Boor

that is the graph of f . It follows that

∑

j

PjBj,k,t =
∑

j

P̂jB̂jk,

with

P̂j = ω̂jk(x)Pj + (1 − ω̂jk(x))Pj−1.

This shows that the refined control polygon has its vertices on the control polygon we
started with.

This is worth a picture. I’ll make up a (cubic) spline in B-form consisting of just
one cubic piece, pretty much like the interpolant to sin, i.e., with B-spline coefficients
(0, 32/9,−32/9, 0), except that I’ll rescale the interval of interest to be [0 . . 4]. Then I’ll
insert the point 1 three times into the knot sequence, each time plotting the control polygon
a little bit thicker. I also circle the final set of control points:

k = 4; sp = spmak(augknt([0 4],k),[0 32/9 -32/9 0]);

fnplt(sp), hold on

plot(aveknt(sp.knots,k),sp.coefs,’-r’,’linew’,.5)

sp = fnrfn(sp,1); plot(aveknt(sp.knots,k),sp.coefs,’-r’,’linew’,2)

sp = fnrfn(sp,1); plot(aveknt(sp.knots,k),sp.coefs,’-r’,’linew’,4)

sp = fnrfn(sp,1); plot(aveknt(sp.knots,k),sp.coefs,’-w’,’linew’,2)

plot(aveknt(sp.knots,k),sp.coefs,’ok’), hold off

Note that the refined control points lie exactly where they are supposed to lie: Since
1 is the quarter-point on the way from 0 = tj to 4 = tj+k−1, each new P̂j lies at the
quarter-point from Pj−1 to Pj .

Also, notice that the initial (and the final) slope of f and its control polygon coincide
(why??).

Also, the second time, only the first part of the control polygon changes.
Finally, on the third time, the polygon doesn’t change; it only acquires one more

vertex, exactly at the point where the control polygon touches the spline. This is not
surprising because, by this time, the number 1 is a three-fold knot for this cubic spline,
hence there is only one cubic B-spline not zero at that point and its coefficient therefore
necessarily equals f(1).

In general, if #tj+1 = k − 1, then Bjk is the only Bi,k,t not zero at x := tj+1, hence
necessarily has the value 1 there and, correspondingly, aj = f(x). In other words, we can
use repeated knot insertion as a way to evaluate splines.

This fact together with the fact that the refined control polygon has its vertices on
the original control polygon is at the basis of B-spline property (xii): If

∑
j ajBj and τ1 <

· · · < τr are such that f(τi−1)f(τi) < 0 for all i, then there exist indices j(1) < · · · < j(r)
so that

f(τi)aj(i)Bj(i)(τi) > 0, i = 1:r.

This property is called variation diminution since it says, offhand, that the spline
cannot oscillate any more times than its control polygon.

03may00 18 c©2000 Carl de Boor

But it says much more than that. Since, by B-spline property (v), any linear poly-
nomial is its own control polygon, it says that a spline cannot oscillate across any linear
polynomial any more times than its control polygon does.

In particular, if the control polygon is monotone, so is the spline. If the control
polygon is convex, so is the spline. This property is also called shape-preserving, and
the wide use of splines in CAGD is almost entirely due to this property. For it makes it
easy to construct a smooth spline curve of a desired shape simply by sketching that shape
as a control polygon and then use the corresponding spline.

As an example, take the corners of the unit square as control points, i.e., consider the
spline curve

x 7→
5∑

j=1

PjBj,k,t,

with

P =

[
1 −1 −1 1 1
1 1 −1 −1 1

]
,

hence t any knot sequence of length 5 + k. To be definite, take k = 4, hence t should have
length 9. If we also want the first and last knot have multiplicity k = 4, that leaves us
with just one interior knot. E.g.,

t = [0 0 0 0 1 2 2 2 2];

a = [1 -1 -1 1 1; ...

1 1 -1 -1 1];

sp = spmak(t,a);

fnplt(sp), hold on, plot(a(1,:),a(2,:),’-o’), hold off, axis equal, axis

off

Because of the end knots of multiplicity k, the curve begins at P1 and ends at P5(= P1).

But don’t be misled by the terms control point and control polygon. As my perfor-
mance at the end of class showed, it is not all that easy to produce a curve of some desired
shape by playing with the control points (contrary what some books might want you to
believe). The construction of a spline with desired properties (i.e., the reconstruction of a
spline from information about it) is best done by direct interpolation or other fitting of a
suitable spline model to specific data, our next (and final) topic.

lecture 03may00: spline interpolation
We are now ready to use splines to recover (not necessarily perfectly) a function from

some information about it, using splines.
To be specific, we choose some real interval I, some sequence τ = (τ1 < · · · < τn) in

I, and consider the data

Λ′
τg := (g(τi) : i = 1:n)

for some real-valued function g on I, i.e., some

g ∈ X := IRI .

04may00 19 c©2000 Carl de Boor

We also choose some linear subspace F ⊂ X, of dimension n, i.e., with some basis
V : IRn → F , and assume that the Gramian matrix Λ′

τV is invertible. Then we know that

f = Pτg := V (Λ′
τV)−1Λ′

τg

is the unique element of F that matches the given information about g, i.e., satisfies

Λ′
τf = Λ′

τg.

The classical choice for F is Π<n, the space of polynomials of degree < n. As discussed
earlier, Λ′

τV is invertible for any choice of basis V for this space. However, there are some
problems, as the following calculations show.

Take, specifically, I = [−1 . . 1], and choose

τ = (−1 = τ1 < · · · < τn = 1)

uniformly spaced (i.e., τi = −1 + 2(i − 1)/(n − 1), i = 1:n). Also choose the Runge
example

g : x 7→
1

1 + (5x)2
.

We can compute and plot the polynomial interpolant with the aid of the command spapi

as follows (choosing n = 15, to be specific):
g = inline(’1./(1+(5*x).2)′);
xx = linspace(-1,1,101); plot(xx,g(xx)), hold on

n = 15; tau = linspace(-1,1,n); pol = spapi(n,tau,g(tau));

fnplt(pol,’k’)

Near the end points, this polynomial interpolant overshoots the function g by more
than 7.

For comparison, we also construct and plot a cubic spline interpolant to the same
data:

cs = spapi(4,tau,g(tau)); fnplt(cs,’r’), hold off

It agrees with g to graphic accuracy.
What is going wrong with the polynomial interpolant? The main difficulty appears to

be that the polynomial interpolant can be much bigger than the function it interpolates.
To make this precise, we introduce the size or norm of a function:

‖g‖ := sup
x∈I

|g(x)|, g ∈ X = IRI .

Further, we introduce

‖P‖ := sup
g∈X

‖Pg‖

‖g‖

as a measure of the worst-case scenario, i.e., the biggest possible ratio of the size of Pg
compared to the size of g. The larger ‖P‖, the bigger can be the difference between some
g and its interpolant.

04may00 20 c©2000 Carl de Boor

As it turns out, there is a convenient formula for ‖P‖, namely

‖P‖ = sup
x∈I

n∑

j=1

|`j(x)|,

with [`1, . . . , `n] the basis for F dual to Λ′
τ (also called the Lagrange basis), i.e.,

`i(τj) = δij .

This means that we can estimate ‖P‖ quite closely in the following way, first for polynomial
interpolation and then for cubic spline interpolation:

max(sum(abs(fnval(spapi(n,tau,eye(n)),xx))))

ans = 283.1809

max(sum(abs(fnval(spapi(4,tau,eye(n)),xx))))

ans = 1.9698

This shows a great difference. Moreover, one can work out that, as n increases, ‖P‖
grows like exp(n/2) for the polynomial case, while, for cubic spline interpolation, it stays
around 2 regardless of n.

This very different behavior is a main reason we use splines rather than just one
polynomial when trying to recover a function from function values. But this is not the
whole story.

Have a look at the error g − Pg in our interpolant Pg to g. Since Pg ∈ F , ‖g − Pg‖
cannot be any smaller than the distance

dist(g, F) := inf
f∈F

‖g − f‖

of g from F . On the other hand, since ‖P‖ is the supremum over all ratios ‖Pg‖/‖g‖, we
know that

‖Pg‖ ≤ ‖P‖‖g‖, g ∈ X.

We also know that Pf = f for all f ∈ F , and that P is linear, hence g − Pg = g − f +
Pf − Pg = g − f + P (f − g). Therefore,

‖g − Pg‖ ≤ ‖g − f‖ + ‖P‖‖f − g‖ = (1 + ‖P‖)‖g − f‖,

and this holds for every f ∈ F . By choosing f to make ‖g − f‖ as small as possible, we
obtain

Lebesgue’s inequality. For all g ∈ X,

dist(g, F) ≤ ‖g − Pg‖ ≤ (1 + ‖P‖) dist(g, F).

In particular, if our interpolation process P has a modest norm, then the interpolation
error ‖g − Pg‖ is within a modest factor of the best possible error.

This shows that there are two aspects to good recovery (by interpolation or otherwise):

08may00 21 c©2000 Carl de Boor

(1) The recovery process should have a modest norm, and that is often easily achievable
with splines (and not so easy with polynomials).

(2) The distance dist(g, F) of g from F should be small. This, too, is often easily achiev-
able with splines, simply by making the knot spacing sufficiently small or otherwise
placing the knots appropriately, while, for polynomials, the only possibility is to make
the degree large, and that leads to many difficulties.

lecture 05may–: spline interpolation (cont)
With τ = (τ1 < · · · < τn) in the interval I = [a . . b] arbitrary, the data map

Λ′
τ : f 7→ (f(τi) : i = 1:n)

is invertible on F = Π<n for any such τ . This cannot be true for F = $k,t. For example, if
some knot interval contains more than k of the τi, then surely we cannot match arbitrary
values there since, on such an interval, each element of F is only a polynomial of degree
< k.

The coefficient vector a of the interpolant Pg =
∑

j ajBjk, if any, must satisfy the
linear system

Aτa = Λ′
τg,

with

Aτ := Λ′
τ [Bj,k,t : j = 1:n] = (Bj<k,t(τi) : i, j = 1:n).

Hence it all depends on whether or not this Gramian matrix is invertible. Remarkably,
there is a simple characterization for its invertibility.

Schoenberg-Whitney Theorem. Let τ = (τ1 < · · · < τn) and t = (t1 ≤ · · · ≤ tn+k).
Then the Gramian matrix Aτ is invertible if and only if all its diagonal entries are nonzero,
i.e.,

Bi,k,t(τi) 6= 0, i = 1:n.

Moreover, when Aτ is invertible, then it is a banded matrix, with at most 2k + 1
nontrivial bands (consecutive), hence its numerical solution is relatively cheap. More than
that, the matrix is totally positive (whatever that may mean; look it up in the book),
and this has as a consequence that the linear system can be solved by Gauss elimination
without any pivoting, another savings in work and storage requirements. I hope you begin
to appreciate just why B-splines are so wonderful.

There may be some doubt in the Schoenberg-Whitney Theorem in case τi equals some
knot of multiplicity k, in which case f ∈ $k,t may be discontinuous at τi, hence has, in
effect, two values at τi, namely the limit from the left and the limit from the right. In
particular, by our way of choosing the knot sequence to work for a particular interval, the
first and the last knot has that multiplicity. In such a case, you need to specify, more
precisely, whether you want to match the limit from the left or the limit from the right. In
particular, you would take the limit from the right at the first knot and the limit from the
left at the last knot, and this is done automatically by the command spapi, which always
takes the limit from the right except at the last knot where it takes the limit from the left.

08may00 22 c©2000 Carl de Boor

So, how does the command spapi(k,tau,g(tau)) choose the knot sequence for the
interpolating spline of order k it outputs? It obtains the knot sequence as aptknt(tau,k),
and this, for k > 1, is simply the output from

augknt([tau(1),aveknt(tau,k),tau(end)] ,k)

meaning that it constructs the vector

τ∗ := (τ∗jk : j = 1:n−k),

and appends to it both the first and the last data site with multiplicity k. Do verify that

the resulting knot sequence does satisfy the above Schoenberg-Whitney conditions wrto τ .
For example, if k = 2, then τ ∗ = (τi : i = 2:n−1), hence the knot sequence used is

t = (τ1, τ1, τ2, τ3, . . . , τn−1, τn, τn),

and the corresponding B-spline sequence is quite simply the sequence in $k,t dual to Λ′
τ ,

i.e., Bj,2,t(τi) = δij .
What happens when k = 3? Then

τ∗j3 = (τj+1 + τj+2)/2, j = 1:, n− 2,

hence the knots will lie between the data sites. In particular, the data sites will be at the
midpoints between the knots if τ is uniformly spaced.

As another example, if k = 4 and τ is uniformly spaced, then τ ∗ = (τ3, . . . , τn−2),
hence the knot sequence used is

t = (τ1, τ1, τ2, τ3, . . . , τn−1, τn, τn).

In particular, the resulting cubic spline interpolant has a break or knot at every data site
except the second and the second-last and so satisfies what is known as the not-a-knot
end condition.

Finally, if k = n, then τ∗ is empty and, correspondingly, the knot sequence has both
τ1 and τn in it k times and nothing else. Correspondingly, $k,t = Π<n (on the interval
[τ1 . . τn]).

Next, we discuss Hermite or osculatory interpolation, as follows. You know that,
for any continuously differentiable function,

lim
y→x

g(y) − g(x)

y − x
= Dg(x).

Hence, if all else is ok, we would expect our interpolant Pg to satisfy not only (Pg)(τi) =
g(τi) but also, in the limit as τi−1 → τi,

DPg(τi) = Dg(τi).

If also τi−2 → τi, then we would also expect, in the limit, to have

D2Pg(τi) = D2g(τi).

08may00 23 c©2000 Carl de Boor

For this reason, it is reasonable to define the data map Λ′
τ even in the limiting case

that τ is merely nondecreasing, i.e.,

τ = (τ1 ≤ · · · ≤ τn),

in the following way:

Λ′
τ : g 7→ (Drg(τi) : τi−r−1 < τi−r = · · · = τi; i = 1:n).

The command spapi(k,tau,y) interprets multiplicities in the data site sequence τ :=
tau in exactly this way, i.e., interprets y as the information Λ′

τg to be matched, with the
following convenient feature. If the input tau is not already ordered, it will be re-ordered
to make it nondecreasing and the input y will be re-ordered in the same way. Hence, if
you would like to match the values of g at all points of a some sequence x without any
multiplicities and also would like to match the first derivative at some subsequence x1 of
x, then the command

spapi(k, [x x1], [g(x) dg(x1)]);

would accomplish this (provided the desired order k is at least 3 (to make certain that
the splines are continuously differentiable), and provided that dg provides values of the
first derivative of g).

lecture 08-10may: spline approximation
When the data

(0.1) ((τi, yi) : i = 1:N)

are not exact, e.g., yi may only be an approximation to g(τi), or there are more data than
needed to recover g ∈ X to the desired accuracy, one does not try to match the data
exactly, but simply finds an ‘approximate interpolant’ from some subspace F that has
dimF < N but can be expected to recover the ‘essential part’ of the information about g
in the data.

There are at least two standard ways to proceed, least-squares approximation and
smoothing.

Look at discrete least-squares approximation from F ⊂ X = IRI for some
interval I containing the sequence τ . With V a basis for F , look again at the linear system

∑

j

vj(τi)aj = yj , j = 1:N,

for the coordinate vector a for the ‘interpolant’ V a from F to the data. If the coefficient
matrix

A := Aτ := Λ′
τV

of this linear system is invertible, then there is a unique interpolant, and we get its coeffi-
cients just by solving the linear system. In Matlab, this amounts to the command

a = A;

12may00 24 c©2000 Carl de Boor

which is very user-friendly.
Remarkably, the very same command also suffices for computing the discrete least-

squares approximant from F to these data. This is, by definition, the unique element
PF y = V a ∈ F that minimizes

‖y − f‖2
2 :=

∑

i

(yi − f(τi))
2

over all f ∈ F .
To be sure, the asserted uniqueness requires the assumption that the Gramian matrix

A = Λ′
τV is 1-1; in particular, this requires that it have at least as many rows as it has

columns and be of full rank, i.e., its column sequence be linearly independent. But, with
that assumption, the matrix A′A is also 1-1 and, since it is square, therefore it is invertible,
hence the so-called normal equations

A′Aa = A′y

have a unique solution. These equations are so called because they identify c := Aa as
the unique element of ranA for which y − Aa is perpendicular to ranA, hence for which
‖y − c‖2 is minimized. In formula,

Aa = A(A′A)−1A′y

is the element in ranA closest to y. Do appreciate the by now familiar structure here: Aa
appears as the element of the linear space ranA recovered from the data A′y = (〈y, A(:
, i)〉 : i = 1:n) about y as written in terms of the basis A for ranA. From this,

PF y = V (A′A)−1A′y

provides the discrete least-squares approximant to the given data from F . However, for
stability reasons, Matlab does not actually solve the normal equations when it constructs
the vector —A‖y.

Here is an example that further exercises your growing understanding of the use of
bases. Suppose that we would like to compute the discrete least-squares approximant to
the data y ∼ Λ′

τg by C2-cubic splines with break-sequence ξξξξξ = (ξ1 < · · · < ξ`+1) and
I = [ξ1 . . ξ`+1]. Then our F is S4,t, with

t = (t1 ≤ · · · ≤ tn+4) = (ξ1, ξ1, ξ1, ξξξξξ, ξ`+1, ξ`+1, ξ`+1)

(why?). In particular,
n = `+ 3.

Hence, the command —spap2(augknt(—ξξξξξ—,4),4,—τ—,y)— would provide the desired
least-squares approximant, using the B-spline basis. But —spap2— is not part of plain
—Matlab—, so, what to do?

12may00 25 c©2000 Carl de Boor

Recall that plain —Matlab— does provide a cubic spline interpolant. Precisely, with
—xi— = ξξξξξ and z an arbitrary row vector with n entries, the Matlab command

cs = spline(xi,z);

provides (the ppform of) a C2-cubic spline f = Pξξξξξz with break-sequence ξξξξξ, i.e., f ∈ F ,
that matches the data

Λ′f := (Df(x1), f(x1), f(x2), . . . , f(xn−1), f(xn), Df(xn)) = z.

(Pξξξξξz is known as a complete cubic spline interpolant to the data z = Λ′f .) In
particular,

Λ′Px = id .

This implies that Λ′
F maps F onto IRn, hence, since dimF = n, Λ′

F must also be 1-1,
hence invertible. But since Pξξξξξ is a right inverse for Λ′

F , it must be the inverse for it and,
in particular, Pξξξξξ must be linear, 1-1, and onto F , hence a basis for F . It is this basis for
F we now will work with.

Set [v1, . . . , vn] = V := Pξξξξξ. Then, for j = 1:n, —vj= spline(x,—ij—)— is the jth
term in this basis, with

ij = [0, . . . , 0︸ ︷︷ ︸
j−1 terms

, 1, 0, 0, . . .] ∈ IRn

the jth unit vector of length n written as a row-vector, i.e., the jth row of the identity
matrix of order n. Since —spline(xi,z,xx)— is set up to return the values at —xx— of the
function —spline(xi,z)—, we therefore have

(vj(τ1), . . . , vj(τN)) = —spline(xi,—ij—,tau)—

provided —tau— is the row-vector containing τ . More than that, —spline— is set up to
work on vector-valued data. Specifically, if —z— is a d × n-matrix, then —spline(xi,z)—
is the d-vector valued function whose jth component is the complete cubic spline in-
terpolant to the data —z(j,:)—. In particular, the command —spline(xi,eye(n), tau)—
returns the n×N -matrix whose jth row is the vector (vj(τ1), . . . , vj(τN)). In other words,
—spline(xi,eye(n), tau)— is the transpose A′ of the matrix A = Λ′

τV we seek.
Since —(A)’— is the same as —y’/A’—, it follows that —y’/spline(xi,eye(n), tau)—

is the row-vector containing the coefficients a = (ai) we seek, in order to put together the
spline V a = Pξξξξξa, hence that spline is obtained by the single command

l2 = spline(xi,y/spline(xi,eye(n),tau));

The idea behind the above construction can be used to construct a least-squares
approximant from the range of any linear recovery map P for which one has a computer
implementation.

Note again that, strictly speaking, —f = spline(xi,z)— is not the spline recovered
from the data —z—, but only a representation for it from which, presumably, we can
obtain other information about it; e.g., —ppval(f,tau)— derives from that representation
the values of that spline at the entries of —tau—. Hence recovery is, strictly speaking,
just a change in representation.

quick review of spline part Spring’00

12may00 26 c©2000 Carl de Boor

Focus was on recovery (exact or partial) of a function g in some linear space X of
functions from some data Λ′g about it, with Λ′ : g 7→ (λig : i ∈ I) a linear map into
the coordinate space IFI . (The discussion involved the terms: linear, 1-1, onto, invertible,
range, kernel, linear (sub)space, basis, coordinate space, data map, analysis operator,
recovery map, synthesis operator, and the totally nonstandard term ‘column map’.)

If the recovered function is to be in the linear subspace F with basis W , then f =
Pg = W (Λ′W)−1Λ′g is the unique element of F that matches the given information (i.e.,
Λ′f = Λ′g), provided the Gramian matrix Λ′W = (λiwj) is invertible.

In that case, also V := W (Λ′W)−1 is a basis for F , and Λ′f are the coordinates of
f wrto that basis. Hence our recovery amounts to nothing more than a change of basis.
But such a change of basis is useful if the information about f (or g) we are after is more
readily obtainable from (Λ′W)−1Λ′f than from Λ′f .

This raises the basic question of which information about f ∈ F is readily available
from its coordinates wrto a given basis for F .

We explored this question for F = Π<n, comparing Lagrange basis and power basis.
We explored this question in very great detail for F a space of more or less smooth

piecewise polynomial functions, with special focus on its B-spline basis (but also some men-
tion of the ppform, which employs a basis for the space Π<k,ξξξξξ of all piecewise polynomials
of order k with break sequence ξξξξξ).

Specifically, we discussed altogether 12 (of course!) B-spline properties, including the
recurrence relation used in their definition, their support, number of nontrivial polynomial
pieces, conventions and formula concerning their differentiation, Marsden’s Identity, the
recipe for constructing the B-spline basis for Πk,ξξξξξ,ννννν , the Schoenberg-Whitney theorem, the
convex hull property, the dual functionals, local and nonnegative partition of unity, knot
insertion (refinability), control points and polygons, and variation diminution.

While there was some discussion concerning the construction of a spline, especially
a spline curve, by explicit specification of its control points, we mainly discussed con-
struction of a spline by interpolation to some data, including the proper choice of knot
sequence for that, and finished (much too early :-) with a discussion of least-squares spline
approximation, stressing again the underlying maps.

All details are available in the online lecture notes.

12may00 27 c©2000 Carl de Boor

