
spline

Goal: Provide a“compact” approximated representation of f .
1st approach: Do a piecewise linear interpolation.
2nd approach: Iteratively insert new values at midpoints by averaging.
3rd approach: Subdivision ( curve fitting)
Exact representation

f =
∑

i,j,k

〈f, ψi,j,k〉ψi,j,k

Approximate representation
From now on, our function will be defined on [a, b] and continuous. That is,
the natural class to deal with is

X := C[a, b] := {f : [a, b] → IR : f is continuous}

(a big linear space of functions)
There are too many functions in X to represent, so we will select much
smaller class F in X. Let F be a small space of ’terrific’ functions, i.e., a
finite dimension space. For h ∈ F , we are talking about exact representation
and for f ∈ X − F , we will only approximate them. In other words, we try
to associate f with an approximation g in F . There are two issues in here:
1. How to represent g?
2. Whether this approximation is good or not?

Main question Given f ∈ X, find g ∈ F such that

f ≈ g

Representation of functions in an n-dimensional function space
Now, we will focus on the space F .
We will assume that F is a finite dimensional subspace with dimension n
and W = {w1, w2, · · · , wn} is a basis of F . With this basis, we can construct
a synthesis map.

W : IRn −→ F :





a(1)
...

a(n)



 7→

n
∑

j=1

a(j)wj

We want to understand what is the relationship between the coefficients
and the properties of the function obtained in this way from this synthesis
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operator.
Can we do analysis? Yes
Let Λ := {λ1, · · · , λn} be a collection of n linear functionals. And an analysis
map is defined by

Λ′f := [λ1f, · · · , λnf ]

Theses linear functionals are linearly independent, but in what sense? The
best way to realize this is that the following matrix

Λ′W :=





λ1w1 · · · λnw1
... λiwj

...
λnw1 · · · λnwn





should be invertible.

Definition We say that Λ is total for F ,
if ∀f ∈ F, λjf = 0 for all j = 1, · · · , n then f = 0.
Λ is total for F ⇐⇒ Λ′W should be invertible.

Now, for a given f ∈ X, WΛ′f =
∑n

j=1 λjfwj is an approximation of f . In
the best circumstances, we will have perfect reconstruction:

WΛ′ = Id onF

;WΛ′f =
n

∑

j=1

λjfwj = f for f ∈ F

In here, W is a synthesis operator and Λ′ is an analysis operator. But,in
general, it is not going to happen because you will enter with linear func-
tionals and a basis of your choices and you will have to refer that you don’t
have perfect reconstruction. How to fix this?
Example

F = span{1, t} =: Π1 (i.e.W = {1, t})

Λ = {δ0, δ1}

If f(t) = a+ bt, then f 6= WΛ′f = a+ (a+ b)t
Remedy

(1) Stick with Λ, change W to be {1 − t, t}
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(2) Stick with W , change Λ to be {δ0, δ1 − δ0}

(3) Use magic (manipulate matrices)

f = W (Λ′W )−1Λ′f ∀f ∈ Π1

Theorem If WΛ′ is invertible, then

P := W (Λ′W )−1Λ′ = Id onF

There are two different ways to understand this.
One way to understand this is split W (Λ′W )−1Λ′ into W and (Λ′W )−1Λ′

and consider (Λ′W )−1Λ′ as the right decomposition of the basis W (i.e.,
the basis W is important here) . The other way to understand this is split
W (Λ′W )−1Λ′ into W (Λ′W )−1 and Λ′ and consider W (Λ′W )−1 as the right
basis of the linear functionals Λ′ (i.e., the linear functional Λ′ is important
here).
proof
Let f ∈ F

g := W (Λ′W )−1Λf

It is enough to show Λ′f = Λ′g.

Λ′g = Λ′W (Λ′W )−1Λf = IdΛ′f = Λ′f

2

Properties

(1) Pf = f ∀f ∈ Π1 (projector)

(2) ||Pf ||∞,[a,b] ≤ C||f ||∞,[a,b]

Let’s P extend to a map on X. The requirement for the extension is

||Pf ||∞,[a,b] ≤ C||f ||∞,[a,b], ∀f ∈ X

dist∞,[a,b](f, F ) := min{||f − g||∞,[a,b]|g ∈ F}

Theorem If P : C[a, b] → F is a bounded linear projector, then for all
f ∈ X

||f − Pf ||∞,[a,b] ≤ (1 + C)dist∞,[a,b](f, F )
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where C is the bound of the projector.
Proof Let f ∈ X, g ∈ F

||f − Pf ||∞,[a,b] = ||(f − g) + (g − Pf)||∞,[a,b]

≤ ||f − g||∞,[a,b] + ||g − Pf ||∞,[a,b]

= ||f − g||∞,[a,b] + ||P (g − f)||∞,[a,b]

≤ (1 + C)||f − g||∞,[a,b]

2

We would like to know about B-splines now.
Definition: A knot is a either of finite or infinite sequence of points in the
real line;

· · · t0 ≤ t1 ≤ t2 · · ·

A order is a local degree of polynomials in the splines. We are going to
build a different synthesis system or different basis depending on the order.
A typical element in the system would be B-splines.
The ith B-spline order 1 for the knot sequence is defined by

Bi,1(t) :=

{

1, ti ≤ t < ti+1,
0, otherwise.

And, the ith B-spline order k > 1 for the knot sequence is defined by the
following recurrence relation:

Bi,1(t) :=
t− ti

ti+k−1 − ti
Bi,k−1(t) +

(

1 −
t− ti+1

ti+k − ti+1

)

Bi+1,k−1(t)

= wi,k(t)Bi,k−1(t) + (1 − wi+1,k(t))Bi+1,k−1(t)

where

wi,k(t) :=
t− ti

ti+k−1 − ti
(a linear polynomial)
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Note: Each higher order B-spline is smoother that the individual lower order
B-splines that contributed to the recurrence equation.

Πn := {f |f (n+1) = 0}

Properties of B-splines

(1) suppBi,k = (ti, ti+k) The end points are excluded since Bi,k is vanished
at the end points.

(2)Bi,k > 0, ∀t ∈ (ti, ti+k)
since wi,k and 1−wi+1,k are positive in the suppBi,k−1 and suppBi+1,k−1,
respectively.

(3) Bi,k|(ti,ti+1) ∈ Πk−1

(4) If ti−1 < ti < ti+1, then Bi,k is k-2 times differentiable at ti

We lose smoothness because of the multiplicity. See the following example

<−−−−

===>

titi ti+1 ti+2 ti+1 = ti+1

The B-spline order 2 whose knots are ti−1, ti−1, and ti−1 is not continuous
in the right figure.
Why do we need multiplicity? First of all, it gives us little bit more generality
and second the generality is very useful if we introduce splines over finite
interval. We will see that later.

Now, we want to use B-splines in order to synthesize other functions. That
is, B-splines are used to approximate functions. The questions are how to
assign good coefficients for a given function and how to manipulate the sum.
In order to approximate a function, we are fixing the order k and the knot
sequence.
Remark: Directly from the recurrence relation,

∑

j

ajBj,k =
∑

j

(ajwj,k + aj−1(1 − wj,k))Bj,k−1
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By using the recurrence relation, we can push down our representation from
splines of high order to splines of lower order, but the coefficients become
more complicated because they are multiplied by linear polynomials.

Theorem (Marsden’s identity) For any τ, t ∈ IR

∑

j

ψj,k(τ)Bj,k(t) = (t− τ)k−1

with
ψj,k(τ) := (tj+1 − τ) · · · (tj+k−1 − τ),

Proof
aj := ψj,k(τ)

Then,
aj = ajwj,k(t) + aj−1(1 − wj,k(t))

= (ti+k−1 − τ)wj,k(t) + (ti − τ)(1 − wj,k(t))ψj,k−1(τ) = (t− τ)ψj,k−1(τ)

.·.
∑

j

ψj,k(τ)Bj,k(t) = (t− τ)
∑

j

ψj,k−1(τ)Bj,k−1(t) = · · · = (t− τ)k−1

by induction 2

In here, the final outcome is a polynomial. This means we can span a
polynomial by a linear combinations of B-splines which are piecewise poly-
nomials. It is not hard to see that we can get a polynomials of the form
(t− τ)i, i ≤ k − 1 for any τ . Directly from the above equations, we get

∑

j

ψj,k(τ)

(k − 1)!
Bj,k =

(t− τ)k−1

(k − 1)!

Let’s differentiate this equation i times with respect to τ . Then

∑

j

(−D)iψj,k(τ)

(k − 1)!
Bj,k =

(t− τ)k−i−1

(k − i− 1)!

And, for any polynomial p with degree ≤ k − 1, we have

p(t) =
k−1
∑

i=0

p(k−i−1)(τ)
(t− τ)k−i−1

(k − i− 1)!
by the Taylor’s Theorem
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Hence, we found a way to express any given polynomial up to degree k − 1
as a linear combinations of B-splines and it shows the way to expand any
polynomial as a linear combinations of B-splines. It would be a major force
in terms of understanding how to approximate functions with B-splines.

We are trying to understand how to form linear combinations of B-spines,
i.e., what kind functions we are going to get when we assign a certain co-
efficients or conversely, if we want to obtain a certain function as a linear
combination, how to choose the coefficients.
The set of all polynomial functions of degree < k is denoted by

Π<k with dim(Π<k) = k

Then, for any p ∈ Π<k,

p =
∑

j

λj,kpBj,k

where

λj,kp :=
k

∑

i=1

(−D)i−1ψj,k(τ)

(k − 1)!
Dk−ip(τ)

Now, for any f such that f (k−1) is bounded,

λj,kf :=

k
∑

i=1

(−D)i−1ψj,k(τ)

(k − 1)!
Dk−if(τ)

Theorem If τ ∈ [ti, ti+k), then

λj,kBj′,k =

{

1, if j′ = j,
0, otherwise.

Proof: Assume that τ ∈ [tl, tl+1) ⊂ [ti, ti+k) .

Bj′,k|[tl,tl+1) = 0 if j′ < l − k + 1 if j′ > l

.·. λj,kBj′,k = 0 if j′ < l − k + 1 if j′ > l

Now, for each of the remaining j′, let pj′ be the polynomial which agrees
with Bj′,k on [tl, tl+1). Then

λj,kBj′,k =

k
∑

i=1

(−D)i−1ψj,k(τ)

(k − 1)!
Dk−iBj′,k(τ)
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=
k

∑

i=1

(−D)i−1ψj,k(τ)

(k − 1)!
Dk−ipj′(τ) ( .· · τ ∈ [tl, tl+1))

= λj,kpj′

.·. pj′ =
∑

j

λj,kpj′Bj,k =

l
∑

j=l−k+1

λj,kpj′Bj,k

since λj,kpj′ = λj,kBj′,k = 0 if j′ < l − k + 1 if j′ > l

tl−k+1 tl−k+2 tl tl+1 tl+2

pl−k+2

pl−k+1

On the other hand, ∀p ∈ Π<k,[tl,tl+1),

p =
∑

j

λj,kpBj,k =

l
∑

j=l−k+1

λj,kp pj on [tl, tl+1)

by the definition of pj That is {pl−k+1, · · · , pl} is a basis of Π<k,[tl,tl+1). That
is, pl−k+1, · · · , pl are linearly independent. Hence

pj′ =

l
∑

j=l−k+1

λj,kpj′Bj,k

=⇒ pj′ =
l

∑

j=l−k+1

λj,kpj′pj on [tl, tl+1)

=⇒ λj,kpj′ =

{

1, if j′ = j,
0, otherwise.

.·. λj,kBj′,k =

{

1, if j′ = j,
0, otherwise.

2

So,
∑

j

(

λj,kBj′,k
)

Bj,k = Bj′,k
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Conclusion: If f =
∑

j ajBj,k, then

aj = λj,kf

So if we know the output, we can find the coefficients. We know to do
the decomposition in a way that would give us the right coefficients for the
synthesis.
Finally, we want to insert the notion of a projector. This is the hardest part
of the entire building up of the spline theory, finding the inversion, finding
the right decomposition for the synthesis based on the B-splines.
Projector
Input: a smoothie function f

f ≈ Pf :=
∑

j

λj,kfBj,k

P 2f = Pf

A spline of order k with knot sequence t is a linear combination of the
B-splines.

$k,t := spanj{Bj,k}

We are trying to understand this space as a source of approximation for
more general functions.

λj,kf :=

k
∑

ν=1

(−D)ν−1ψj,k(τj)

(k − 1)!
Dk−νf(τj)

Note:
(−D)ν−1ψj,k(τj)

(k−1)! are numbers that depend only on the know sequence t

and τj and the information about the function f is recored f(τj). The infor-
mation is very local information that consists of function values, derivative
values and some fixed point τj. What do we know about the linear func-
tional λj,k? There are three facts:
(1) If p is a polynomial of degree< k, then

∑

j

λj,kpBj,k = p

(2)

λj,kBj′,k =

{

1, if j′ = j,
0, otherwise.
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(3) If P : f 7→
∑

j λj,kfBj,k, then

Pf = f ∀f ∈ $k,t

Question: What should be a good choice for τj?

f = 1 =⇒ λj,kf = 1

f ∈ Π1 =⇒ λj,kf = f(τj) +
(−D)k−2ψj,k(τj)

(k − 1)!
f ′(τj)

In here,

(−D)k−2ψj,k(τj)

(k − 1)!
= 0 if τj =

tj+1 + · · · + tj+k−1

k − 1
=: t∗j

.·. f =
∑

j

f(t∗j)Bj,k

For a given f , we want to find suitable coefficients and to analyze the error
or for a given coefficients, we want to understand how the coefficients are
encoding properties of the curve. These are two related issues, but they are
not entirely same. From now on, we will assume f, f ′, · · · , f (m) are continu-
ous everywhere.

Qf :=
∑

j

f(t∗j,k)Bj,k where t∗j,k =
tj+1 + · · · + tj+k−1

k − 1

Then Qf = f, ∀f ∈ Π1

‖f‖m,[a,b] := supt∈[a,b]

∣

∣

∣
f (m)(t)

∣

∣

∣

Fact: If p ∈ Πm−1, then

‖f − p‖0,[a,b] ≤ Cm(b− a)m‖f‖m,[a,b]

We are trying to approximate f on [a, b] by p, and our ability to do that is
related the quality of the approximation, namely the size of the error which
is related to the size of the interval. Essentially, it measures how bad or
good the function f is. Here is the error analysis for m=2. We are going to
approximate f as good as we can do that in the interval [tj−k+1, tj+k] by a
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linear polynomial. Note that the B-splines for Qf is compactly supported
and by the fact, there is a polynomial pt for m = 2. Now,

|f(t) −Qf(t)| = |f(t) − pt(t) −Q(f − Pt)(t)|

( .· · pt ∈ Π1, and Qpt = pt)

≤ |f(t) − pt(t)| + |Q(f − pt)(t)|

And,

|Q(f − pt)(t)| ≤
∑

j

∣

∣(f − pt)(t
∗

j,k)Bj,k
∣

∣

≤ ‖f − pt‖0,[tj−k+1,tj+k]

∑

j

Bj,k

≤ ‖f − pt‖0,[tj−k+1,tj+k]

.·. |f(t) −Qf(t)| ≤ 2C2‖f − pt‖0,[tj−k+1,tj+k](tj−k+1 − tj+k)
2

.·. |f(t) −Qf(t)| ≤ C‖f‖2,[tj−k+1,tj+k ](tj−k+1 − tj+k)
2

You are going to achieve nothing by changing the k. Your ability to suppress
error is by making the knot sequence denser and dancer. More than that,
the error reflects local smoothness of f .
Why m = 2? There are two reasons. One is that f is not that smooth and
the other is the scheme is not good enough. The scheme only reproduces
linear polynomials.
Here is the 2nd scheme.

Pf :=
∑

j

λj,k(f)Bj,k

Then Pf = f, ∀f ∈ Πk−1 and similarly, we can get

|f(t) − Pf(t)| ≤ C‖f‖k,[tj−k+1,tj+k](tj+k − tj−k+1)
k

The only reason not to use the scheme is not because of the error estimate,
but because the computing the coefficients is out of reach. It involves the
derivatives of f and usually we don’t have that information. But you will
never ask for an error estimates better than this. You will ask for an error
estimate compatible to this.

Properties
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1 Bj,k ≥ 0 and suppBj,k = (tj , tj+k)

2 ∀s ∈ $k,t,∀j,
s|(tj ,tj+k) ∈ Π<k

3 Smoothness:
tj−1 < tj = · · · = tj+m−1 < tj+m (m multiplicity), then every s ∈ $k,t
is (k −m− 1) times differentiable at tj

4 Truncated power of order k:

Tj(t) :=

{

0, t ≤ tj,
(t− tj)

k−1, otherwise.

We can build the spline space as a linear combination of truncated
powers. This is the one of the ways to define splines. If we can spanned
the truncated powers, we essentially proved that every function with
the piecewise polynomial structure is going to be spanned by the B-
splines. So we need to show that the B-splines can span the truncated
powers.

Ti(t) =

∞
∑

j=i

ψj,k(τ)Bj,k

where τ is one of the knots.

(· − tj)
k−1
+ := Tj

Theorem Given t and k, consider a function s with the following properties:

(1) s|(tj ,tj+k) ∈ Π<k

(2) s is k−m−1 differentiable at tj where tj−1 < tj = · · · = tj+m−1 < tj+m

then
s ∈ $k,t

Subdivision

t := (t0, · · · , tN )

Let’s define a new knot sequence.

t̄ := t ∪ {x}
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where the location x may be overlapped with an old knot or may be strictly
between two old knots. Then

$k,t ⊂ $k,t̄

Now, let

s =

N−k
∑

j=0

ajBj,k,t =

N−k+1
∑

j=0

ājBj,k,t̄

We want to know the relation between aj and āj .
We will use the dual knot sequence {t∗j} in order build what we call the
control line or the control polygon of the spline by building a piecewise
linear picture where at the dual knot we put a point aj (control point)

t∗j :=
tj+1 + · · · + tj+k−1

k − 1

t∗0 t∗j−1 t∗j t∗j+1 t∗N−k

(t∗j−1, aj−1)

(t∗j , aj)

(t∗j+1, aj+1)

We want to understand first of all between the control line from the coef-
ficients of

∑

j ajBj,k,t and the control line from the coefficients of
∑

j ājBj,k,t̄
Example k=3.
Let’s assume that we insert the knot x in between tj and tj+1. Then in the
control polygon, we lose t∗j and we gain ¯tj−1

∗ and t̄j
∗ since k=3.
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tj x tj+1

t∗j−3

t̄∗j−3

t∗j−2

t̄∗j−2

t∗j−1

t̄∗j−1

t∗j t∗j+1

t̄∗j+1 t̄∗j+2

t̄∗j

t̄∗j−2 t∗j−1t̄∗j−1 t̄∗j
t0 t̄∗j+1 t̄∗N−k+1

(t̄∗j−1, c(t̄
∗

j−1))

(t̄∗j , c(t̄
∗

j ))

(t̄∗j−2, aj−2)

(t∗j−1, aj−1)

(t̄∗j+1, aj)

That is, the control polygon of the spline function s is a picewise linear
function that connects the points (t∗j , aj), j = 0, · · · , N − k.
c(t̄∗j ) is obtained by the linear interpolation between the two adjacent control
points in the old control sequence.
So if you can figure out where your new knots are, then you know all the
new coefficients for free. And we can repeat the process. The new control
sequence is representing the same spline s only with respect to another knot
sequence. If we do the refinement a few hundred times, then we will be
able to get very nice approximation in terms of piecewise linear curve to the
spline.

Example K=4, i.e., cubic spline
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If we insert a knot x between tj and tj+1, then the new coefficients will be

āi =

{

ai, i ≤ j − 3,
ai−1, i ≥ j + 1

And, āj−2, āj−1, and āj are obtained by the linear interpolation between
the two adjacent control points in the old control sequence.

Conclusions.
Spline curves are shape preserving. Let

f =
∑

j

ajBj,k

(1) If aj ≥ 0 for all j, then f ≥ 0 everywhere.

(2) If aj ≤ aj+1 ≤ · · · for all j, then f is nondecreasing.

(3) If the control polygon is convex (or concave), then f is so.

Fact If t ⊆ ZZ, then
Bj,k,t = Bk(· − j)

where Bk = B1 ∗ · · · ∗B1 (k times).
Now, we want to elaborate little bit more about the idea of knot insertion
in this context.

t = ZZ

t̄ = ZZ/2

(i.e., inserting globally in order to preserve the equidistance). Then

Bj,k,̄t = Bk(2 · −j)

On the other hand, because of the refinability of Bk,

f =
∑

j

ajBk(· − j) =
∑

j

ājBk(·/2 − j)

where
ā = h̄0 ∗ (a ↑)

This is the subdivision algorithm. Subdivision is a global attempt to take
f which is represented only in terms of its coefficients. In other words,
you don’t know the information of φ, but you know the mask h of φ where

16



∑

j h(j) = 2

Approximation by splines

f ≈
∑

j

λj,k(f)Bj,k

These dual functionals requires not only function values but also derivatives
values. If they are given, this is the ideal approximation. If they are not
given, there are two major ideas:
(1) Interpolation
(2) Least squares
Let’s assume τ := (τi)

N
i=1 is given. We want to recover f based on the

Λ′f =





f(τ1)
...

f(τN)





The question is if we have N values, how many knots we are going to use.
In interpolation, it is going to be compatible to N and in least squares, it is
going to be significantly smaller than N .
Interpolation
Suppose the knot sequence t := t0 ≤ · · · ≤ tN and the order k are given.
Then there are N + 1 − k Select interpolation points

τ1 < · · · < τn wheren = N + 1 − k

Given, (f(τi))
n
i=1, we want to find g ∈ $k,t such that

g(τi) = f(τi) i = 1, · · · , n

Put g :=
∑N−k+1

j=0 ajBj,k,t. We will find the coefficients by solving the
following linear system:







B0,k(τ1) · · · Bn,k(τ1)
... Bj,k(τi)

...
B0,k(τn) · · · Bn,k(τn)











a1
...
an



 =





f(τ1)
...

f(τn)





(The above nxn matrix is called the collocation matrix.)
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Theorem (Whitney-Schoenberg) The collocation matrix in spline in-
terpolation, based on the B-spline representation, is invertible if and only if
its diagonal is positive.
Now, the question is where to place the interpolation points. If one of them
is given, then we will choose the other one relative to the ones that given.
If none of them is given, then we will put them uniformly space.
(1) If t is given, choose τ as the dual knots; τi = t∗i
(2) If τ is given, then we append τ∗ with τ1 and τk, each with multiplicity
k.
Example k=3, τ = 0 < .5 < 1.5 < 2 < 3 < 4 < 4.5 < 5
Then a good choice is

0, 0, 0, 1, 1 + 3/4, 2 + 1/2, 3 + 1/2, 4 + 1/4, 5, 5, 5

Pf := g

(1) P is a linear map
(2) P is a projector; If f ∈ $k,t, then Pf = f

Question: How good Pf is as an approximation to f?

||f − Pf ||∞,I := sup
t∈I

|f(t) − Pf(t)|

||P || := the smallest number such that ||Ph||∞,I ≤ ||P || ||h||∞,I ∀h

||f − Pf ||∞,I = ||f − g + g − Pf ||∞,I g ∈ $k,t

≤ ||f − g||∞,I + ||P (f − g)||∞,I

≤ ||f − g||∞,I + ||P || ||f − g||∞,I

= (1 + ||P ||)||f − g||∞,I

Least squares
Let Λ = [δxj

]nj=0. Then the data which we have is

Λ′f :=





f(τ1)
...

f(τn)





18



The two facts might be valid. One of them is that n is so large to do
interpolation. Another one is that our measurement is not accurate if there
is noisy in the measurement which is not negligible. If there is noisy in the
measurement, we do not want to interpolate.

Given some f : I −→ IR and Λ′f , we want to find g ∈ G := {g|g : I −→ IR}
so that

||Λ′(f − g)||l2

is minimized where dimG << n.

||Λ′(f − g)||l2 :=

[

n
∑

i=1

(f(τi) − g(τi))
2

]1/2

Let W = {g1, · · · , gm} be a basis for G. Then we want to find a1, · · · , am
such that





g1(τ1) · · · gm(τ1)
... gj(τi)

...
g1(τn) · · · gm(τn)









a1
...
am



 =





f(τ1)
...

f(τn)





By solving this linear system, we will get an approximation g =
∑m

j=1 amgm.

A := Λ′W =





g1(τ1) · · · gm(τ1)
... gj(τi)

...
g1(τn) · · · gm(τn)



 , a :=





a1
...
am



 , b :=





f(τ1)
...

f(τn)





Then we have

Aa = b =⇒ A′Aa = A′b (normal equation)

=⇒ a = (A′A)−1A′b

Recall L2([a, b]).

〈f, g〉 :=

∫ b

a
f(t)g(t)dt

||f ||2 :=

(∫ b

a
|f(t)|2dt

)1/2

Let F be a big space and G be a small space with a basis W = {g1, · · · , gm}.
Fact I: If you found g∗ ∈ G such that (f − g∗) ⊥ g ∀g ∈ G, then

||f − g∗||2 ≤ ||f − g||2, ∀g ∈ G\{g∗}
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(f ⊥ g ⇐⇒ 〈f, g〉 = 0 )
That is , g∗ is the unique minimizer.
Proof If f1, f2 ∈ F and f1 ⊥ f2, then

||f1 + f2||
2
2 = ||f1||

2
2 + ||f2||

2
2

Suppose g ∈ G\{g∗}, then

||f − g||22 = ||(f − g∗) + (g∗ − g)||22

= ||f − g∗||22 + ||g∗ − g||22 ( .· · (f − g∗) ⊥ (g∗ − g))

> ||f − g∗||22 ( .· · g∗ 6= g)

2

Fact II: How to find such g∗? Put

g∗ = Wa :=

m
∑

i=1

aigi

In order to find g∗, we need

〈f − g∗, gj〉 = 0, ∀gj ∈W

⇐⇒ 〈g∗, gj〉 = 〈f, gj〉, ∀gj ∈W

That is, find a such that





〈g1, g1〉 · · · 〈gm, g1〉
... 〈gj , gi〉

...
〈g1, gm〉 · · · 〈gm, gm〉









a1
...
am



 =





〈f, g1〉
...

〈f, gm〉



 −−−−(1)

Now, suppose we can not compute the continuous inner product 〈f, gk〉, then
what to do?
Assume that f is given in terms of

f̃ :=





f(x1)
...

f(xM )





〈f, g〉′ :=

M
∑

j=1

f(xj)g(xj)
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||f ||l2 :=





M
∑

j=1

|f(xj)|
2





1/2

With this new inner product, solve the linear system (1) to get g∗. Then
||f − g∗||l2 is minimal.
Now, consider G with a basis W = (Bj,k)

N−k
j=0 . Then for a given f : [a, b] →

IR, least squares produces a spline Pf ∈ G. It is now known that Pf is best
in tersmof minimizing in L2 error.
Properities of P .

(1) P is linear

(2) P is a projector ( .· · ||Pg − g||2 = 0)

(3) P is bounded in maximal norm sense;

||Pf ||∞,[a,b] ≤ C||f ||∞,[a,b]
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